抑癌基因SARI在慢性髓细胞白血病中异常调控分子机制及作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     SARI基因是近年来发现的一种新型抑癌基因,它在多种正常组织细胞中均有表达,而在许多实体肿瘤中表达水平明显下降。然而其表达异常机制尚不清楚。本课题通过检测慢性髓细胞白血病患者与正常人中SARI基因中的表达水平,以慢性髓细胞白血病细胞系K562为模型,探讨SARI基因在慢性髓细胞白血病中的作用及其表达调节可能的分子机制,为慢性髓细胞白血病基因治疗的研究提供新线索。
     方法
     (1)初发慢性髓细胞白血病患者中SARI表达水平的研究:46名初发慢性髓细胞白血病患者作为实验组,40名健康受试者作为正常对照组。采集每位患者和健康受试者的外周血,分离单个核细胞,使用实时定量PCR技术检测两组人群中SARI基因的相对表达水平。(2) SARI基因在慢性髓细胞白血病中表达异常分子机制的研究:以慢性髓细胞白血病细胞系K562为研究模型,使用Bcr-Abl抑制剂STI571处理K562细胞,做时间梯度实验和浓度梯度实验。设置浓度梯度:0,0.5,1.5,2.5μM及时间梯度:6,12,24小时。收集各组细胞,用实时定量PCR技术检测各组SARI基因表达情况。使用P13K抑制剂LY294002 (20μM), MEK抑制剂PD98059 (50μM), JAK抑制剂Ag490(501μM)处理K562细胞24小时后收集各组细胞,以未处理K562细胞作为对照组,用实时定量PCR技术检测各组SARI基因表达情况。(3)SARI基因在慢性髓细胞白血病中作用的研究:使用SARI特异性siRNA转染K562细胞:siRNA+转染液+K562细胞为实验组,转染液+K562细胞为Mock对照组,未转染K562细胞为空白对照组。使用750ng SARI特异性siRNA转染K562细胞72小时,用实时定量PCR技术检测K562细胞中SARI基因表达水平,确定其干扰效率。用STI571(2.5μM)分别处理实验组和Mock对照组K562细胞24小时,用流式细胞术检测两组K562细胞凋亡率及STI571处理后两组K562细胞的凋亡率。
     结果
     1.初发慢性髓细胞白血病患者中SARI表达水平的研究
     与正常对照组(n=40)相比,实验组(n=46) SARI基因表达在mRNA水平明显降低,三次实验结果所得数据经过Student's unpaired t-test分析,p<0.001,两组间具有明显的统计学差异。
     2. SARI基因在慢性髓细胞白血病中表达异常分子机制的研究2.1 STI571对SARI基因表达的影响
     使用STI571(1.5μM)处理K562细胞12小时后SARI基因mRNA表达水平开始增高。在浓度梯度实验中,各组SARI基因表达未显示明显的浓度依赖关系;在时间梯度实验中,各组SARI基因表达显示较明显的时间依赖性,随着处理时间的延长,SARI基因表达逐渐升高。
     2.2信号通路抑制剂对SARI基因表达的影响
     用MEK抑制剂PD98059处理24小时后,K562细胞中SARI基因1mRNA表达水平高于对照组(p<0.05);与之相似,用JAK抑制剂Ag490处理24小时后,K562细胞中SARI基因mRNA表达水平高于对照组(p<0.05);而PI3K抑制剂处理24小时后,K562细胞中SARI基因mRNA表达水平下降。
     3. SARI基因在慢性髓细胞白血病中作用的研究
     3.1 SARI特异性siRNA干扰效应
     与Mock对照组相比,使用SARI特异性siRNA(750ng)转染K562细胞72小时后,SARI基因mRNA表达水平降低了72%(p<0.001);而空白对照组和Mock对照组SARI基因mRNA表达水平无明显差异(p>0.05)。
     3.2 SARI干扰对K562细胞凋亡的影响
     使用流式细胞术检测各组凋亡率,与Mock对照组相比,实验组K562细胞凋亡率增加了(1.74±0.30)%,p=0.05)。
     3.3 SARI干扰对STI571诱导细胞凋亡的影响
     实验组与Mock对照组经过STI571(2.5μM)处理24小时后,使用流式细胞术检测两组凋亡率,与Mock对照组相比,实验组K562细胞凋亡率减少了((7.61±0.16)%,p<0.001)。
     结论
     慢性髓细胞白血病患者外周血SARI mRNA表达水平降低可能与该疾病的发生发展过程相关联。在慢性髓细胞白血病细胞系K562中,SARI基因表达下调与Bcr-Abl抑制作用有关,而Bcr-Abl下调SARI基因表达可能是通过其下游MEK和JAK信号通路实现的。干扰SARI基因在K562细胞中表达部分降低了STI571诱导的凋亡作用,SARI基因可能参与了STI571诱导细胞凋亡作用。
Objective
     SARI (suppressor of activator protein (AP)-1, regulated by (interferon) IFN) is a novel tumor suppressor gene which has been found recently. The constitutive expression of SARI mRNA was detected in multiple lineage-specific normal cells, but not detected in their tumorigenic counterparts. However, the suppression mechanisms of SARI expression are still obscure. This study was purposed to investigate the SARI expression level in patients with chronic myeloid leukemia (CML) and healthy volunteers. This study also aimed to explore the role and the regulation molecular mechanism of SARI in CML-derived cell line K562. The study will provide a new clue for the treatment of CML.
     Methods
     (1) SARI expression in patients with CML and healthy volunteers:46 patients with CML as the experimental group,40 healthy volunteers as the normal control group. Peripheral blood mononuclear cells (PBMCs) of patients with CML and healthy volunteers were collected. SARI expression in two groups was detected using real-time quantitative PCR. (2) The molecular mechanisms of down-regulation of SARI in CML:in vitro, K562 cells were treated by Bcr-Abl inhibitor STI571. Set the concentration gradient:0,0.5,1.5, 2.5μM and time gradient:6,12,24 hours. Then K562 cells were collected to detect SARI expression using real-time quantitative PCR. In respective experiment, K562 cells were treated by the PI3K inhibitor LY294002 (20μM), MEK inhibitor PD98059 (50μM), JAK inhibitor Ag490 (50μM) for 24 hours. Then the cells were collected to detect SARI expression using real-time quantitative PCR. (3) The role of SARI in CML:K562 cells were transfected with transfection reagent as the Mock control group, non-transfected K562 cells as the control group. K562 cells were transfected with SARI specific siRNA for 72 hours following detection of SARI expression using real-time quantitative PCR. Further, transfected K562 cells were treated by STI571 (2.5μM) for 24 hours. Then K562 cells were collected to detect the apoptosis rate by using flow cytometry.
     Results
     1. SARI expression in patients with CML and healthy volunteers
     Compared with the normal control group (n=40), SARI mRNA expression in the experimental group (n=46) was significantly lower. The data were obtained after three experiments. Student's unpaired t-test was employed to analysis the data. The difference between two groups has statistically significant with p<0.001.
     2. The molecular mechanisms of down-regulation of SARI in CML
     2.1 The influence of STI571 on SARI expression in K562 cells
     In time-course and dose-course study, SARI mRNA expression is enhanced in K562 cells as early as 12 hours after treated with STI571 (1.5μM). And the results show that SARI mRNA expression was up-regulated by STI571 in a time-dependent manner, but not dose-dependent manner at a different time period.
     2.2 The influence of signaling pathway inhibitors on SARI expression in K562cells
     Treatment with the MEK inhibitor PD98059 for 24 hours, SARI mRNA expression in K562 cells was higher (p<0.001). Similarly, treatment with JAK inhibitor Ag490 for 24 hours, SARI mRNA expression increased in K562 cells (p<0.05). While the PI3K inhibitor LY294002 down-regulated SARI mRNA expression in K562 cells.
     3. The role of SARI in CML
     3.1 Interference effect of SARI-special siRNA
     Compared with the Mock group, SARI mRNA expression in transfected K562 cells was decreased by 72%(p<0.001); while SARI mRNA expression in the control group and the Mock group was no significant difference (p>0.05).
     3.2 The influence of SARI-special siRNA on apoptosis of K562 cells
     Using flow cytometry to detect the apoptosis rate. Compared with the Mock control group, the apoptosis rate of the transfected K562 cells was increased by (1.74±0.30)% (p=0.05).
     3.3 The influence of SARI-special siRNA on STI571-induced apoptosis in K562 cells
     Treated with STI571 (2.5μM) for 24 hours, then the apoptosis rate of the transfected group and Mock group were detected by flow cytometry. Compared with the Mock group, the apoptosis rate of the transfected group was reduced by (7.61±0.16)%(p<0.001).
     Conclusion
     The suppression of SARI expression may be associated with the pathology of CML. Bcr-Abl mediates the down-regulation of SARI mRNA expression in K562 cells. Further, Bcl-Abl down-stream signal pathways, including JAK signal pathway and MEK signal pathway are involved in the down-regulation of SARI mRNA expression in K562 cells. In addition, SARI silencing may decrease the sensitivity of K562 cells against STI571-induced apoptosis.
引文
1. NOWELL PC. The minute chromosome (Phl) in chronic granulocytic leukemia. Blut 1962;8:65-6.
    2. Sattler M, Salgia R. Activation of hematopoietic growth factor signal transduction pathways by the human oncogene BCR/ABL. Cytokine Growth Factor Rev 1997;8:63-79.
    3. Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N, Batzer A, Rabun KM, Der CJ, Schlessinger J and others. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993;75:175-85.
    4. Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG, Arlinghaus R, Pawson T. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J 1994; 13:764-73.
    5. Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK, Trotta R, Wlodarski P, Perrotti D, Chan TO and others. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 1997;16:6151-61.
    6. Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD. STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood 2000;95:2118-25.
    7. Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B, Skorski T. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med 1999; 189:1229-42.
    8. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18:189-218.
    9. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Regenass U, Lydon NB. Selective inhibition of the platelet-derived growth factor signal transduction pathway by a protein-tyrosine kinase inhibitor of the 2-phenylaminopyrimidine class. Proc Natl Acad Sci U S A 1995;92:2558-62.
    10. Deininger MW, Goldman JM, Lydon N, Melo JV. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood 1997;90:3691-8.
    11. Dan S, Naito M, Tsuruo T. Selective induction of apoptosis in Philadelphia chromosome-positive chronic myelogenous leukemia cells by an inhibitor of BCR-ABL tyrosine kinase, CGP 57148. Cell Death Differ 1998;5:710-5.
    12. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S and others. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344:1031-7.
    13. Hochhaus A, Kreil S, Corbin A, La Rosee P, Lahaye T, Berger U, Cross NC, Linkesch W, Druker BJ, Hehlmann R and others. Roots of clinical resistance to STI-571 cancer therapy. Science 2001;293:2163.
    14. Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ. Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 1994;83:2038-44.
    15. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood 2000;96:3343-56.
    16. Jiang X, Lopez A, Holyoake T, Eaves A, Eaves C. Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. Proc Natl Acad Sci U S A 1999;96:12804-9.
    17. Sill H, Goldman JM, Cross NC. Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia. Blood 1995;85:2013-6.
    18. Feinstein E, Cimino G, Gale RP, Alimena G, Berthier R, Kishi K, Goldman J, Zaccaria A, Berrebi A, Canaani E. p53 in chronic myelogenous leukemia in acute phase. Proc Natl Acad Sci U S A 1991;88:6293-7.
    19. Towatari M, Adachi K, Kato H, Saito H. Absence of the human retinoblastoma gene product in the megakaryoblastic crisis of chronic myelogenous leukemia. Blood 1991;78:2178-81.
    20. Calabretta B, Perrotti D. The biology of CML blast crisis. Blood 2004;103:4010-22.
    21. Britschgi C, Fey MF. Tumor suppressor genes in myeloid differentiation and leukemogenesis. Future Oncol 2009;5:245-57.
    22. Fisher PB, Prignoli DR, Hermo HJ, Weinstein IB, Pestka S. Effects of combined treatment with interferon and mezerein on melanogenesis and growth in human melanoma cells. J Interferon Res 1985;5:11-22.
    23. Fisher PB, Hermo HJ, Solowey WE, Dietrich MC, Edwalds GM, Weinstein IB, Langer JA, Pestka S, Giacomini P, Kusama M and others. Effect of recombinant human fibroblast interferon and mezerein on growth, differentiation, immune interferon binding and tumor associated antigen expression in human melanoma cells. Anticancer Res 1986;6:765-74.
    24. Jiang H, Kang DC, Alexandre D, Fisher PB. RaSH, a rapid subtraction hybridization approach for identifying and cloning differentially expressed genes. Proc Natl Acad Sci U S A 2000;97:12684-9.
    25. Jiang H, Lin J, Su ZZ, Herlyn M, Kerbel RS, Weissman BE, Welch DR, Fisher PB. The melanoma differentiation-associated gene mda-6, which encodes the cyclin-dependent kinase inhibitor p21, is differentially expressed during growth, differentiation and progression in human melanoma cells. Oncogene 1995; 10:1855-64.
    26. Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 1995; 11:2477-86.
    27. Lin JJ, Jiang H, Fisher PB. Melanoma differentiation associated gene-9, mda-9, is a human gamma interferon responsive gene. Gene 1998;207:105-10.
    28. Su ZZ, Lee SG, Emdad L, Lebdeva IV, Gupta P, Valerie K, Sarkar D, Fisher PB. Cloning and characterization of SARI (suppressor of AP-1, regulated by IFN). Proc Natl Acad Sci U S A 2008;105:20906-11.
    1. Bennett JH. Classics in oncology. Two cases of disease and enlargement of the spleen in which death took place from the purulent matter in the blood. CA Cancer J Clin 1980;30:59-62.
    2. Nowell PC. Discovery of the Philadelphia chromosome:a personal perspective. J Clin Invest 2007; 117:2033-5.
    3. Rowley JD. Chromosomal translocations:revisited yet again. Blood 2008;112:2183-9.
    4. de Klein A, Bartram CR, Hagemeijer A, Heisterkamp N, Stam K, Groffen J, Grosveld G. The c-abl oncogene in chronic myelogenous leukemia. Haematologica 1987;72:19-22.
    5. Savage DG, Szydlo RM, Goldman JM. Clinical features at diagnosis in 430 patients with chronic myeloid leukaemia seen at a referral centre over a 16-year period. Br J Haematol 1997;96:111-6.
    6. Cotta CV, Bueso-Ramos CE. New insights into the pathobiology and treatment of chronic myelogenous leukemia. Ann Diagn Pathol 2007; 11:68-78.
    7. Spiers AS, Bain BJ, Turner JE. The peripheral blood in chronic granulocytic leukaemia. Study of 50 untreated Philadelphia-positive cases. Scand J Haematol 1977;18:25-38.
    8. Thiele J, Kvasnicka HM, Schmitt-Graeff A, Zirbes TK, Birnbaum F, Kressmann C, Melguizo-Grahmann M, Frackenpohl H, Sprungmann C, Leder LD and others. Bone marrow features and clinical findings in chronic myeloid leukemia--a comparative, multicenter, immunohistological and morphometric study on 614 patients. Leuk Lymphoma 2000;36:295-308.
    9. Solomon H, Brosh R, Buganim Y, Rotter V. Inactivation of the p53 tumor suppressor gene and activation of the Ras oncogene:cooperative events in tumorigenesis. Discov Med 2010;9:448-54.
    10. Costa B, Dettori D, Lorenzato A, Bardella C, Coltella N, Martino C, Cammarata C, Carmeliet P, Olivero M, Di Renzo MF. Fumarase tumor suppressor gene and MET oncogene cooperate in upholding transformation and tumorigenesis. FASEB J 2010;24:2680-8.
    11. Pirogova E, Akay M, Cosic I. Investigating the interaction between oncogene and tumor suppressor protein. IEEE Trans Inf Technol Biomed 2009;13:10-5.
    12. Giefing M, Wierzbicka M, Rydzanicz M, Cegla R, Kujawski M, Szyfter K. Chromosomal gains and losses indicate oncogene and tumor suppressor gene candidates in salivary gland tumors. Neoplasma 2008;55:55-60.
    13. Sung J, Turner J, McCarthy S, Enkemann S, Li CG, Yan P, Huang T, Yeatman TJ. Oncogene regulation of tumor suppressor genes in tumorigenesis. Carcinogenesis 2005;26:487-94.
    14. Watanabe N. [Oncogene and tumor suppressor gene]. Rinsho Byori 2002;Suppl 123:131-6.
    15. Helmig S, Schneider J. Oncogene and tumor-suppressor gene products as serum biomarkers in occupational-derived lung cancer. Expert Rev Mol Diagn 2007;7:555-68.
    16. Csontos Z, Nadasi E, Csejtey A, Illenyi L, Kassai M, Lukacs L, Kelemen D, Kvarda A, Zolyomi A, Horvath OP and others. Oncogene and tumor suppressor gene expression changes in the peripheral blood leukocytes of patients with colorectal cancer. Tumori 2008;94:79-82.
    17. Thorner AR, Parker JS, Hoadley KA, Perou CM. Potential tumor suppressor role for the c-Myb oncogene in luminal breast cancer. PLoS One 2010;5:e13073.
    18. Anz D, Thaler R, Stephan N, Waibler Z, Trauscheid MJ, Scholz C, Kalinke U, Barchet W, Endres S, Bourquin C. Activation of melanoma differentiation-associated gene 5 causes rapid involution of the thymus. J Immunol 2009; 182:6044-50.
    19. Nasirudeen AM, Wong HH, Thien P, Xu S, Lam KP, Liu DX. RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis 2011;5:e926.
    20. Triantafilou K, Vakakis E, Richer EA, Evans GL, Villiers JP, Triantafilou M. Human rhinovirus recognition in non-immune cells is mediated by Toll-like receptors and MDA-5, which trigger a synergetic pro-inflammatory immune response. Virulence 2011;2:22-9.
    21. Dash R, Bhutia SK, Azab B, Su ZZ, Quinn BA, Kegelmen TP, Das SK, Kim K, Lee SG, Park MA and others. mda-7/IL-24:a unique member of the IL-10 gene family promoting cancer-targeted toxicity. Cytokine Growth Factor Rev 2010;21:381-91.
    22. Dent P, Yacoub A, Hamed HA, Park MA, Dash R, Bhutia SK, Sarkar D, Gupta P, Emdad L, Lebedeva IV and others. MDA-7/IL-24 as a cancer therapeutic:from bench to bedside. Anticancer Drugs 2010;21:725-31.
    23. Xiao CW, Xue XB, Zhang H, Gao W, Yu Y, Chen K, Zheng JW, Wang CJ. Oncolytic adenovirus-mediated MDA-7/IL-24 overexpression enhances antitumor activity in hepatocellular carcinoma cell lines. Hepatobiliary Pancreat Dis Int 2010;9:615-21.
    24. Patani N, Douglas-Jones A, Mansel R, Jiang W, Mokbel K. Tumour suppressor function of MDA-7/IL-24 in human breast cancer. Cancer Cell Int 2010;10:29.
    25. Rahmani M, Mayo M, Dash R, Sokhi UK, Dmitriev IP, Sarkar D, Dent P, Curiel DT, Fisher PB, Grant S. Melanoma differentiation associated gene-7/interleukin-24 potently induces apoptosis in human myeloid leukemia cells through a process regulated by endoplasmic reticulum stress. Mol Pharmacol 2010;78:1096-104.
    26. Yang BX, Duan YJ, Dong CY, Zhang F, Gao WF, Cui XY, Lin YM, Ma XT. Novel functions for mda-7/IL-24 and IL-24 delE5:regulation of differentiation of acute myeloid leukemic cells. Mol Cancer Ther 2011.
    27. Boukerche H, Su ZZ, Emdad L, Baril P, Balme B, Thomas L, Randolph A, Valerie K, Sarkar D, Fisher PB. mda-9/Syntenin:a positive regulator of melanoma metastasis. Cancer Res 2005;65:10901-11.
    28. Boukerche H, Aissaoui H, Prevost C, Hirbec H, Das SK, Su ZZ, Sarkar D, Fisher PB. Src kinase activation is mandatory for MDA-9/syntenin-mediated activation of nuclear factor-kappaB. Oncogene 2010;29:3054-66.
    29. Okumura F, Yoshida K, Liang F, Hatakeyama S. MDA-9/syntenin interacts with ubiquitin via a novel ubiquitin-binding motif. Mol Cell Biochem 2011.
    30. Boukerche H, Su ZZ, Prevot C, Sarkar D, Fisher PB. mda-9/Syntenin promotes metastasis in human melanoma cells by activating c-Src. Proc Natl Acad Sci U S A 2008; 105:15914-9.
    31. Su ZZ, Lee SG, Emdad L, Lebdeva IV, Gupta P, Valerie K, Sarkar D, Fisher PB. Cloning and characterization of SARI (suppressor of AP-1, regulated by IFN). Proc Natl Acad Sci U S A 2008;105:20906-11.
    32. Brazma D, Grace C, Howard J, Melo JV, Holyoke T, Apperley JF, Nacheva EP. Genomic profile of chronic myelogenous leukemia:Imbalances associated with disease progression. Genes Chromosomes Cancer 2007;46:1039-50.
    33. Calabretta B, Perrotti D. The biology of CML blast crisis. Blood 2004; 103:4010-22.
    34. Radich JP. The Biology of CML blast crisis. Hematology Am Soc Hematol Educ Program 2007:384-91.
    35. Nowicki MO, Pawlowski P, Fischer T, Hess G, Pawlowski T, Skorski T. Chronic myelogenous leukemia molecular signature. Oncogene 2003;22:3952-63.
    36. Wong JC, Le Beau MM, Shannon K. Tumor suppressor gene inactivation in myeloid malignancies. Best Pract Res Clin Haematol 2008;21:601-14.
    37. Britschgi C, Fey MF. Tumor suppressor genes in myeloid differentiation and leukemogenesis. Future Oncol 2009;5:245-57.
    38. Sill H, Goldman JM, Cross NC. Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia. Blood 1995;85:2013-6.
    39. Wendel HG, de Stanchina E, Cepero E, Ray S, Emig M, Fridman JS, Veach DR, Bornmann WG, Clarkson B, McCombie WR and others. Loss of p53 impedes the antileukemic response to BCR-ABL inhibition. Proc Natl Acad Sci U S A 2006; 103:7444-9.
    40. Beck Z, Kiss A, Toth FD, Szabo J, Bacsi A, Balogh E, Borbely A, Telek B, Kovacs E, Olah E and others. Alterations of P53 and RB genes and the evolution of the accelerated phase of chronic myeloid leukemia. Leuk Lymphoma 2000;38:587-97.
    41. Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW, Liu S, Mao H, Chang JS, Galietta A, Uttam A and others. The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 2005;8:355-68.
    42. Neviani P, Santhanam R, Oaks JJ, Eiring AM, Notari M, Blaser BW, Liu S, Trotta R, Muthusamy N, Gambacorti-Passerini C and others. FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest 2007; 117:2408-21.
    1. Borgaonkar DS. Philadelphia-chromosome translocation and chronic myeloid leukaemia. Lancet 1973; 1:1250.
    2. Laurent E, Talpaz M, Kantarjian H, Kurzrock R. The BCR gene and philadelphia chromosome-positive leukemogenesis. Cancer Res 2001;61:2343-55.
    3. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990;247:824-30.
    4. Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990;247:1079-82.
    5. Verfaillie CM, Hurley R, Lundell BI, Zhao C, Bhatia R. Integrin-mediated regulation of hematopoiesis:do BCR/ABL-induced defects in integrin function underlie the abnormal circulation and proliferation of CML progenitors? Acta Haematol 1997;97:40-52.
    6. Sattler M, Salgia R, Shrikhande G, Verma S, Uemura N, Law SF, Golemis EA, Griffin JD. Differential signaling after betal integrin ligation is mediated through binding of CRKL to p120(CBL) and p110(HEF1). J Biol Chem 1997;272:14320-6.
    7. Cortez D, Reuther G, Pendergast AM. The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene 1997;15:2333-42.
    8. Danial NN, Pernis A, Rothman PB. Jak-STAT signaling induced by the v-abl oncogene. Science 1995;269:1875-7.
    9. Skorski T, Kanakaraj P, Nieborowska-Skorska M, Ratajczak MZ, Wen SC, Zon G, Gewirtz AM, Perussia B, Calabretta B. Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 1995;86:726-36.
    10. Sawyers CL, Callahan W, Witte ON. Dominant negative MYC blocks transformation by ABL oncogenes. Cell 1992;70:901-10.
    11. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996;87:619-28.
    12. Wang HG, Rapp UR, Reed JC. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 1996;87:629-38.
    13. McGahon AJ, Nishioka WK, Martin SJ, Mahboubi A, Cotter TG, Green DR. Regulation of the Fas apoptotic cell death pathway by Abl. J Biol Chem 1995;270:22625-31.
    14. Dai Z, Quackenbush RC, Courtney KD, Grove M, Cortez D, Reuther GW, Pendergast AM. Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent pathway. Genes Dev 1998;12:1415-24.
    15. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 2000;289:1938-42.
    16. Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Druker BJ, Lydon NB. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 1996;56:100-4.
    17. Deininger MW, Goldman JM, Lydon N, Melo JV. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood 1997;90:3691-8.
    18. Dan S, Naito M, Tsuruo T. Selective induction of apoptosis in Philadelphia chromosome-positive chronic myelogenous leukemia cells by an inhibitor of BCR-ABL tyrosine kinase, CGP 57148. Cell Death Differ 1998;5:710-5.
    19. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S and others. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344:1031-7.
    20. Matulonis UA, Dosiou C, Lamont C, Freeman GJ, Mauch P, Nadler LM, Griffin JD. Role of B7-1 in mediating an immune response to myeloid leukemia cells. Blood 1995;85:2507-15.
    21. Sawyers CL, Gishizky ML, Quan S, Golde DW, Witte ON. Propagation of human blastic myeloid leukemias in the SCID mouse. Blood 1992;79:2089-98.
    22. Lugo TG, Witte ON. The BCR-ABL oncogene transforms Rat-1 cells and cooperates with v-myc. Mol Cell Biol 1989;9:1263-70.
    23. Daley GQ, McLaughlin J, Witte ON, Baltimore D. The CML-specific P210 bcr/abl protein, unlike v-abl, does not transform NIH/3T3 fibroblasts. Science 1987;237:532-5.
    24. Garin MI, Apperley JF, Melo JV. Ex vivo expansion and characterisation of CD34+ cells derived from chronic myeloid leukaemia bone marrow and peripheral blood, and from normal bone marrow and mobilised peripheral blood. Eur J Haematol 2000;64:85-92.
    25. Drexler HG, MacLeod RA, Uphoff CC. Leukemia cell lines:in vitro models for the study of Philadelphia chromosome-positive leukemia. Leuk Res 1999;23:207-15.
    26. Zhang X, Ren R. Bcr-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice:a novel model for chronic myelogenous leukemia. Blood 1998;92:3829-40.
    27. Deininger MW, Vieira S, Mendiola R, Schultheis B, Goldman JM, Melo JV. BCR-ABL tyrosine kinase activity regulates the expression of multiple genes implicated in the pathogenesis of chronic myeloid leukemia. Cancer Res 2000;60:2049-55.
    28. Sung J, Turner J, McCarthy S, Enkemann S, Li CG, Yan P, Huang T, Yeatman TJ. Oncogene regulation of tumor suppressor genes in tumorigenesis. Carcinogenesis 2005;26:487-94.
    29. Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N, Batzer A, Rabun KM, Der CJ, Schlessinger J and others. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993;75:175-85.
    30. Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG, Arlinghaus R, Pawson T. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J 1994; 13:764-73.
    31. Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK, Trotta R, Wlodarski P, Perrotti D, Chan TO and others. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 1997;16:6151-61.
    32. Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B, Skorski T. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med 1999;189:1229-42.
    33. Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD. STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood 2000;95:2118-25.
    34. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004;18:189-218.
    35. Chiosis G, Rosen N, Sepp-Lorenzino L. LY294002-geldanamycin heterodimers as selective inhibitors of the PI3K and PI3K-related family. Bioorg Med Chem Lett 2001;11:909-13.
    36. Baines P, Fisher J, Truran L, Davies E, Hallett M, Hoy T, Burnett AK. The MEK inhibitor, PD98059, reduces survival but does not block acute myeloid leukemia blast maturation in vitro. Eur J Haematol 2000;64:211-8.
    37. Wu MH, Chen XY, Cai KR. Effects of a JAK inhibitor, AG490, on proliferation and apoptosis of human nasopharyngeal carcinoma cell line CNE-2Z. Ai Zheng 2009;28:24-8.
    38. Quintas-Cardama A, Cortes J. Molecular biology of bcr-abll-positive chronic myeloid leukemia. Blood 2009;113:1619-30.
    1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11.
    2. Ergunay K. [RNA interference:mechanism and applications]. Mikrobiyol Bul 2004;38:285-94.
    3. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev 2001;15:188-200.
    4. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494-8.
    5. Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 2005;23:222-6.
    6. Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 2001; 107:309-21.
    7. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000;404:293-6.
    8. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002; 110:563-74.
    9. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004;305:1437-41.
    10. Rand TA, Ginalski K, Grishin NV, Wang X. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci U S A 2004;101:14385-9.
    11. Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ, Joshua-Tor L. Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 2005;12:340-9.
    12. Bartel DP. MicroRNAs:target recognition and regulatory functions. Cell 2009;136:215-33.
    13. Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 2010;38:323-32.
    14. Ying SY, Chang CP, Lin SL. Intron-mediated RNA interference, intronic microRNAs, and applications. Methods Mol Biol 2010;629:205-37.
    15. Hannon GJ. RNA interference. Nature 2002;418:244-51.
    16. He S, Zhang D, Cheng F, Gong F, Guo Y. Applications of RNA interference in cancer therapeutics as a powerful tool for suppressing gene expression. Mol Biol Rep 2009;36:2153-63.
    17. Kurreck J. RNA interference:from basic research to therapeutic applications. Angew Chem Int Ed Engl 2009;48:1378-98.
    18. Lares MR, Rossi JJ, Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol 2010;28:570-9.
    19. Munkacsy G, Tulassay Z, Gyorffy B. [RNA interference and its clinical applications]. Orv Hetil 2007; 148:2235-40.
    20. Martin SE, Caplen NJ. Applications of RNA interference in mammalian systems. Annu Rev Genomics Hum Genet 2007;8:81-108.
    21. Zhou D, He QS, Wang C, Zhang J, Wong-Staal F. RNA interference and potential applications. Curr Top Med Chem 2006;6:901-11.
    22. Recent patent applications in RNA interference. Nat Biotechnol 2005;23:492.
    23. Stanislawska J, Olszewski WL. RNA interference--significance and applications. Arch Immunol Ther Exp (Warsz) 2005;53:39-46.
    24. Heinonen JE, Smith CI, Nore BF. Silencing of Bruton's tyrosine kinase (Btk) using short interfering RNA duplexes (siRNA). FEBS Lett 2002;527:274-8.
    25. Sui G, Soohoo C, Affar EB, Gay F, Shi Y, Forrester WC, Shi Y. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A 2002;99:5515-20.
    26. Clemens JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, Hemmings BA, Dixon JE. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci U S A 2000;97:6499-503.
    27. Tian X, Zhang P, Zamek-Gliszczynski MJ, Brouwer KL. Knocking down transport: applications of RNA interference in the study of drug transport proteins. Drug Metab Rev 2005;37:705-23.
    28. Makimura H, Mizuno TM, Mastaitis JW, Agami R, Mobbs CV. Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencing food intake. BMC Neurosci 2002;3:18.
    29. Hassan A. Potential applications of RNA interference-based therapeutics in the treatment of cardiovascular disease. Recent Pat Cardiovasc Drug Discov 2006;1:141-9.
    30. van Rij RP. Virus meets RNAi. Symposium on antiviral applications of RNA interference. EMBO Rep 2008;9:725-9.
    31. Peralta-Zaragoza O, Bermudez-Morales VH, Madrid-Marina V. [RNA interference: biogenesis molecular mechanisms and its applications in cervical cancer]. Rev Invest Clin 2010;62:63-80.
    32. Lage H. Potential applications of RNA interference technology in the treatment of cancer. Future Oncol 2005;1:103-13.
    33. Bedford JS, Liber HL. Applications of RNA interference for studies in DNA damage processing, genome stability, mutagenesis, and cancer. Semin Cancer Biol 2003;13:301-8.
    34. Wang Y, Decker SJ, Sebolt-Leopold J. Knockdown of Chkl, Weel and Mytl by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol Ther 2004;3:305-13.
    35. Su ZZ, Lee SG, Emdad L, Lebdeva IV, Gupta P, Valerie K, Sarkar D, Fisher PB. Cloning and characterization of SARI (suppressor of AP-1, regulated by IFN). Proc Natl Acad Sci U S A 2008;105:20906-11.
    36. Fedorov Y, Anderson EM, Birmingham A, Reynolds A, Karpilow J, Robinson K, Leake D, Marshall WS, Khvorova A. Off-target effects by siRNA can induce toxic phenotype. RNA 2006; 12:1188-96.
    37. Hochhaus A, Kreil S, Corbin A, La Rosee P, Lahaye T, Berger U, Cross NC, Linkesch W, Druker BJ, Hehlmann R and others. Roots of clinical resistance to STI-571 cancer therapy. Science 2001;293:2163.
    38. Sacha T, Hochhaus A, Hanfstein B, Muller MC, Rudzki Z, Czopek J, Wolska-Smolen T, Czekalska S, Salamanchuk Z, Jakobczyk M and others. ABL-kinase domain point mutation as a cause of imatinib (STI571) resistance in CML patient who progress to myeloid blast crisis. Leuk Res 2003;27:1163-6.
    39. Shah NP, Sawyers CL. Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene 2003;22:7389-95.
    40. Hofmann WK, Komor M, Hoelzer D, Ottmann OG. Mechanisms of resistance to STI571 (Imatinib) in Philadelphia-chromosome positive acute lymphoblastic leukemia. Leuk Lymphoma 2004;45:655-60.
    41. Cowan-Jacob SW, Guez V, Fendrich G, Griffin JD, Fabbro D, Furet P, Liebetanz J, Mestan J, Manley PW. Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment. Mini Rev Med Chem 2004;4:285-99.
    42. Yu C, Rahmani M, Almenara J, Subler M, Krystal G, Conrad D, Varticovski L, Dent P, Grant S. Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Res 2003;63:2118-26.
    43. Gao L, Chen L, Fei XH, Qiu HY, Zhou H, Wang JM. STI571 combined with vincristine greatly suppressed the tumor formation of multidrug-resistant K562 cells in a human-nude mice xenograft model. Chin Med J (Engl) 2006; 119:911-8.
    44. Jakubowska J, Stasiak M, Szulawska A, Bednarek A, Czyz M. Combined effects of doxorubicin and STI571 on growth, differentiation and apoptosis of CML cell line K562. Acta Biochim Pol 2007;54:839-46.
    45. Greene LM, Kelly L, Onnis V, Campiani G, Lawler M, Williams DC, Zisterer DM. STI-571 (imatinib mesylate) enhances the apoptotic efficacy of pyrrolo-1,5-benzoxazepine-6, a novel microtubule-targeting agent, in both STI-571-sensitive and-resistant Bcr-Abl-positive human chronic myeloid leukemia cells. J Pharmacol Exp Ther 2007;321:288-97.
    46. Huguet F, Giocanti N, Hennequin C, Croisy M, Touboul E, Favaudon V. Growth inhibition by STI571 in combination with radiation in human chronic myelogenous leukemia K562 cells. Mol Cancer Ther 2008;7:398-406.
    47. Chinenov Y, Kerppola TK. Close encounters of many kinds:Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 2001;20:2438-52.
    48. Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1991;1072:129-57.
    49. Eferl R, Wagner EF. AP-1:a double-edged sword in tumorigenesis. Nat Rev Cancer 2003;3:859-68.
    1. NOWELL PC. The minute chromosome (Phi) in chronic granulocytic leukemia. Blut 1962;8:65-6.
    2. Rowley JD. Letter:A new consistent chromosomal abnormality in chronic myelogeno-us leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973;243:290-3.
    3. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 1984;36:93-9.
    4. Bartram CR, Grosveld G. [Philadelphia translocation and the human c-abl oncogene--relations in the light of molecular genetics]. Klin Padiatr 1985; 197:196-202.
    5. de Klein A, Bartram CR, Hagemeijer A, Heisterkamp N, Stam K, Groffen J, Grosveld G. The c-abl oncogene in chronic myelogenous leukemia. Haematologica 1987;72:19-22.
    6. Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transfo-rmation potency of bcr-abl oncogene products. Science 1990;247:1079-82.
    7. Abelson HT, Rabstein LS. Lymphosarcoma:virus-induced thymic-independent disease in mice. Cancer Res 1970;30:2213-22.
    8. Laneuville P. Abl tyrosine protein kinase. Semin Immunol 1995;7:255-66.
    9. Cohen GB, Ren R, Baltimore D. Modular binding domains in signal transduction proteins. Cell 1995;80:237-48.
    10. Feller SM, Knudsen B, Hanafusa H. c-Abl kinase regulates the protein binding activity of c-Crk. EMBO J 1994; 13:2341-51.
    11. Van Etten RA, Jackson P, Baltimore D. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell 1989;58:669-78.
    12. Kipreos ET, Wang JY. Cell cycle-regulated binding of c-Abl tyrosine kinase to DNA. Science 1992;256:382-5.
    13. McWhirter JR, Wang JY. An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J 1993; 12:1533-46.
    14. Kipreos ET, Wang JY. Differential phosphorylation of c-Abl in cell cycle determined by cdc2 kinase and phosphatase activity. Science 1990;248:217-20.
    15. Sawyers CL, McLaughlin J, Goga A, Havlik M, Witte O. The nuclear tyrosine kinase c-Abl negatively regulates cell growth. Cell 1994;77:121-31.
    16. Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J, Huang YY, Lu H, Kharbanda S, Weichselbaum R, Kufe D. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 1999;399:814-7.
    17. Lewis JM, Schwartz MA. Integrins regulate the association and phosphorylation of paxillin by c-Abl. J Biol Chem 1998;273:14225-30.
    18. Reuther GW, Fu H, Cripe LD, Collier RJ, Pendergast AM. Association of the protein kinases c-Bcr and Bcr-Abl with proteins of the 14-3-3 family. Science 1994;266:129-33.
    19. McWhirter JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 1993;13:7587-95.
    20. Denhardt DT. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell:the potential for multiplex signalling. Bioche-m J 1996;318(Pt 3):729-47.
    21. Diekmann D, Brill S, Garrett MD, Totty N, Hsuan J, Monfries C, Hall C, Lim L, Hall A. Bcr encodes a GTPase-activating protein for p21rac. Nature 1991;351:400-2.
    22. Diekmann D, Nobes CD, Burbelo PD, Abo A, Hall A. Rac GTPase interacts with GAPs and target proteins through multiple effector sites. EMBO J 1995;14:5297-305.
    23. Wu Y, Liu J, Arlinghaus RB. Requirement of two specific tyrosine residues for the catalytic activity of Bcr serine/threonine kinase. Oncogene 1998;16:141-6.
    24. Ma G, Lu D, Wu Y, Liu J, Arlinghaus RB. Bcr phosphorylated on tyrosine 177 binds Grb2. Oncogene 1997;14:2367-72.
    25. Liu J, Wu Y, Ma GZ, Lu D, Haataja L, Heisterkamp N, Groffen J, Arlinghaus RB. Inhibition of Bcr serine kinase by tyrosine phosphorylation. Mol Cell Biol 1996;16:998- 1005.
    26. Voncken JW, Kaartinen V, Groffen J, Heisterkamp N. Bcr/Abl associated leukemogen-esis in bcr null mutant mice. Oncogene 1998;16:2029-32.
    27. McWhirter JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 1993;1-3:7587-95.
    28. Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N, Batzer A, Rabun KM, Der CJ, Schlessinger J and others. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993;75:1-75-85.
    29. Pendergast AM, Muller AJ, Havlik MH, Maru Y, Witte ON. BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner. Cell 1991;66:161-71.
    30. Afar DE, Goga A, McLaughlin J, Witte ON, Sawyers CL. Differential complementation of Bcr-Abl point mutants with c-Myc. Science 1994;264:424-6.
    31. Ilaria RJ, Van Etten RA. The SH2 domain of P210BCR/ABL is not required for the transformation of hematopoietic factor-dependent cells. Blood 1995;86:3897-904.
    32. Van Etten RA, Jackson P, Baltimore D. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell 1989;58:669-78.
    33. Mayer BJ, Baltimore D. Mutagenic analysis of the roles of SH2 and SH3 domains in regulation of the Abl tyrosine kinase. Mol Cell Biol 1994;14:2883-94.
    34. Danial NN, Pernis A, Rothman PB. Jak-STAT signaling induced by the v-abl oncogene. Science 1995;269:1875-7.
    35. Shi Y, Alin K, Goff SP. Abl-interactor-1, a novel SH3 protein binding to the carboxy-terminal portion of the Abl protein, suppresses v-abl transforming activity. Genes Dev 1995;9:2583-97.
    36. Dai Z, Pendergast AM. Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev 1995;9:2569-82.
    37. Cicchetti P, Mayer BJ, Thiel G, Baltimore D. Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho. Science 1992;257:803-6.
    38. Dai Z, Quackenbush RC, Courtney KD, Grove M, Cortez D, Reuther GW, Pendergast AM. Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent pathway. Genes Dev 1998;12:1415-24.
    39. Wen ST, Van Etten RA. The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity. Genes Dev 1997;11:2456-67.
    40. Goga A, McLaughlin J, Pendergast AM, Parmar K, Muller A, Rosenberg N, Witte ON. Oncogenic activation of c-ABL by mutation within its last exon. Mol Cell Biol 1993; 13:4967-75.
    41. Jackson PK, Paskind M, Baltimore D. Mutation of a phenylalanine conserved in SH3-containing tyrosine kinases activates the transforming ability of c-Abl. Oncogene 1993;8:1943-56.
    42. Golub TR, Goga A, Barker GF, Afar DE, McLaughlin J, Bohlander SK, Rowley JD, Witte ON, Gilliland DG. Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol Cell Biol 1996;16:4107-16.
    43. Janssen JW, Ridge SA, Papadopoulos P, Cotter F, Ludwig WD, Fonatsch C, Rieder H, Ostertag W, Bartram CR, Wiedemann LM. The fusion of TEL and ABL in human acute lymphoblastic leukaemia is a rare event. Br J Haematol 1995;90:222-4.
    44. Reiter A, Sohal J, Kulkarni S, Chase A, Macdonald DH, Aguiar RC, Goncalves C, Hernandez JM, Jennings BA, Goldman JM and others. Consistent fusion of ZNF198 to the fibroblast growth factor receptor-1 in the t(8;13)(pll;ql2) myeloproliferative syndrome. Blood 1998;92:1735-42.
    45. Golub TR, Barker GF, Lovett M, Gilliland DG. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994;77:307-16.
    46. Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD, Druker BJ. Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem 1994;269:22925-8.
    47. Carpino N, Wisniewski D, Strife A, Marshak D, Kobayashi R, Stillman B, Clarkson B. p62(dok):a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells. Cell 1997;88:197-204.
    48. Tauchi T, Feng GS, Shen R, Song HY, Donner D, Pawson T, Broxmeyer HE. SH2-containing phosphotyrosine phosphatase Syp is a target of p210bcr-abl tyrosine kinase. J Biol Chem 1994;269:15381-7.
    49. LaMontagne KJ, Flint AJ, Franza BJ, Pandergast AM, Tonks NK. Protein tyrosine phosphatase 1B antagonizes signalling by oncoprotein tyrosine kinase p210 bcr-abl in vivo. Mol Cell Biol 1998; 18:2965-75.
    50. LaMontagne KJ, Hannon G, Tonks NK. Protein tyrosine phosphatase PTP1B suppresses p210 bcr-abl-induced transformation of rat-1 fibroblasts and promotes differentiation of K562 cells. Proc Natl Acad Sci U S A 1998;95:14094-9.
    51. Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG, Arlinghaus R, Pawson T. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J 1994;13:764-73.
    52. Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ. Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 1994;83:2038-44.
    53. Dai Z, Quackenbush RC, Courtney KD, Grove M, Cortez D, Reuther GW, Pendergast AM. Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent pathway. Genes Dev 1998;12:1415-24.
    54. Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF. Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature 1987;328:342-4.
    55. Verfaillie CM, Hurley R, Lundell BI, Zhao C, Bhatia R. Integrin-mediated regulation of hematopoiesis:do BCR/ABL-induced defects in integrin function underlie the abnormal circulation and proliferation of CML progenitors? Acta Haematol 1997;9-7:40-52.
    56. Bhatia R, Wayner EA, McGlave PB, Verfaillie CM. Interferon-alpha restores normal adhesion of chronic myelogenous leukemia hematopoietic progenitors to bone marrow stroma by correcting impaired beta 1 integrin receptor function. J Clin Invest 1994;94:384-91.
    57. Lewis JM, Baskaran R, Taagepera S, Schwartz MA, Wang JY. Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport. Proc Natl Acad Sci U S A 1996;93:15174-9.
    58. Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD, Druker BJ. Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem 1994;269:22925-8.
    59. Uemura N, Griffin JD. The adapter protein Crkl links Cbl to C3G after integrin ligation and enhances cell migration. J Biol Chem 1999;274:37525-32.
    60. Salgia R, Pisick E, Sattler M, Li JL, Uemura N, Wong WK, Burky SA, Hirai H, Chen LB, Griffin JD. p130CAS forms a signaling complex with the adapter protein CRKL in hematopoietic cells transformed by the BCR/ABL oncogene. J Biol Chem 1996;271:25198-203.
    61. Sattler M, Salgia R, Shrikhande G, Verma S, Uemura N, Law SF, Golemis EA, Griffin JD. Differential signaling after betal integrin ligation is mediated through binding of CRKL to p120(CBL) and p110(HEF1). J Biol Chem 1997;272:14320-6.
    62. Sattler M, Salgia R, Okuda K, Uemura N, Durstin MA, Pisick E, Xu G, Li JL, Prasad KV, Griffin JD. The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3'kinase pathway. Oncogene 1996; 12:839-46.
    63. Deininger MW, Vieira S, Mendiola R, Schultheis B, Goldman JM, Melo JV. BCR-ABL tyrosine kinase activity regulates the expression of multiple genes implicated in the pathogenesis of chronic myeloid leukemia. Cancer Res 2000;60:2049-55.
    64. Bazzoni G, Carlesso N, Griffin JD, Hemler ME. Bcr/Abl expression stimulates integrin function in hematopoietic cell lines. J Clin Invest 1996;98:521-8.
    65. Pelicci G, Lanfrancone L, Salcini AE, Romano A, Mele S, Grazia BM, Segatto O, Di Fiore PP, Pelicci PG. Constitutive phosphorylation of Shc proteins in human tumors. Oncogene 1995; 11:899-907.
    66. Senechal K, Halpern J, Sawyers CL. The CRKL adaptor protein transforms fibroblasts and functions in transformation by the BCR-ABL oncogene. J Biol Chem 1996;271:23-255-61.
    67. Heaney C, Kolibaba K, Bhat A, Oda T, Ohno S, Fanning S, Druker BJ. Direct binding of CRKL to BCR-ABL is not required for BCR-ABL transformation. Blood 1997;89:2-97-z306.
    68. Watzinger F, Gaiger A, Karlic H, Becher R, Pillwein K, Lion T. Absence of N-ras mutations in myeloid and lymphoid blast crisis of chronic myeloid leukemia. Cancer Res 1994;54:3934-8.
    69. Marais R, Light Y, Paterson HF, Marshall CJ. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J 1995;14:3136-45.
    70. Cahill MA, Janknecht R, Nordheim A. Signalling pathways:jack of all cascades. Curr Biol 1996;6:16-9.
    71. Kabarowski JH, Allen PB, Wiedemann LM. A temperature sensitive p210 BCR-ABL mutant defines the primary consequences of BCR-ABL tyrosine kinase expression in growth factor dependent cells. EMBO J 1994;13:5887-95.
    72. Cortez D, Reuther G, Pendergast AM. The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene 1997;15:2333-42.
    73. Raitano AB, Halpern JR, Hambuch TM, Sawyers CL. The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci U S A 1995;92:11746-50.
    74. Skorski T, Wlodarski P, Daheron L, Salomoni P, Nieborowska-Skorska M, Majewski M, Wasik M, Calabretta B. BCR/ABL-mediated leukemogenesis requires the activity of the small GTP-binding protein Rac. Proc Natl Acad Sci U S A 1998;95:11858-62.
    75. Shi CS, Tuscano JM, Witte ON, Kehrl JH. GCKR links the Bcr-Abl oncogene and Ras to the stress-activated protein kinase pathway. Blood 1999;93:1338-45.
    76. Wilson-Rawls J, Xie S, Liu J, Laneuville P, Arlinghaus RB. P210 Bcr-Abl interacts with the interleukin 3 receptor beta(c) subunit and constitutively induces its tyrosine phosphorylation. Cancer Res 1996;56:3426-30.
    77. Hallek M, Danhauser-Riedl S, Herbst R, Warmuth M, Winkler A, Kolb HJ, Druker B, Griffin JD, Emmerich B, Ullrich A. Interaction of the receptor tyrosine kinase pl45c-kit with the p210bcr/abl kinase in myeloid cells. Br J Haematol 1996;94:5-16.
    78. Wisniewski D, Strife A, Berman E, Clarkson B. c-kit ligand stimulates tyrosine phosphorylation of a similar pattern of phosphotyrosyl proteins in primary primitive normal hematopoietic progenitors that are constitutively phosphorylated in comparable primitive progenitors in chronic phase chronic myelogenous leukemia. Leukemia 1996;10:229-37.
    79. Di Cristofano A, Carpino N, Dunant N, Friedland G, Kobayashi R, Strife A, Wisniewski D, Clarkson B, Pandolfi PP, Resh MD. Molecular cloning and characterization of p56dok-2 defines a new family of RasGAP-binding proteins. J Biol Chem 1998;273:4827-30.
    80. Bhat A, Johnson KJ, Oda T, Corbin AS, Druker BJ. Interactions of p62(dok) with p210(bcr-abl) and Bcr-Abl-associated proteins. J Biol Chem 1998;273:32360-8.
    81. Ilaria RJ, Van Etten RA. P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 1996;271:31704-10.
    82. Chai SK, Nichols GL, Rothman P. Constitutive activation of JAKs and STATs in BCR-Abl-expressing cell lines and peripheral blood cells derived from leukemic patien-ts. J Immunol 1997; 159:4720-8.
    83. de Groot RP, Raaijmakers JA, Lammers JW, Jove R, Koenderman L. STAT5 activation by BCR-Abl contributes to transformation of K562 leukemia cells. Blood 1999;94:11-08-12.
    84. Horita M, Andreu EJ, Benito A, Arbona C, Sanz C, Benet I, Prosper F, Fernandez-Luna JL. Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J Exp Med 2000; 191:977-84.
    85. Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD. STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood 2000;95:2118-25.
    86. Daley GQ, Baltimore D. Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci U S A 1988;85:9312-6.
    87. Jiang X, Lopez A, Holyoake T, Eaves A, Eaves C. Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. Proc Natl Acad Sci U S A 1999;96:12804-9.
    88. Amos TA, Lewis JL, Grand FH, Gooding RP, Goldman JM, Gordon MY. Apoptosis in chronic myeloid leukaemia:normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids. Br J Haematol 1995;91:387-93.
    89. Jonuleit T, Peschel C, Schwab R, van der Kuip H, Buchdunger E, Fischer T, Huber C, Aulitzky WE. Bcr-Abl kinase promotes cell cycle entry of primary myeloid CML cells in the absence of growth factors. Br J Haematol 1998;100:295-303.
    90. Pierce A, Owen-Lynch PJ, Spooncer E, Dexter TM, Whetton AD. p210 Bcr-Abl expression in a primitive multipotent haematopoietic cell line models the development of chronic myeloid leukaemia. Oncogene 1998; 17:667-72.
    91. Skorski T, Kanakaraj P, Nieborowska-Skorska M, Ratajczak MZ, Wen SC, Zon G, Gewirtz AM, Perussia B, Calabretta B. Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 1995;86:726-36.
    92. Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK, Trotta R, Wlodarski P, Perrotti D, Chan TO and others. Transformation of hematopoie-tic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 1997;16:6151-61.
    93. Franke TF, Kaplan DR, Cantley LC. PI3K:downstream AKTion blocks apoptosis. Cell 1997;88:435-7.
    94. Del PL, Gonzalez-Garcia M, Page C, Herrera R, Nunez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997;278:687-9.
    95. Lioubin MN, Algate PA, Tsai S, Carlberg K, Aebersold A, Rohrschneider LR. p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev 1996; 10:1084-95.
    96. Wisniewski D, Strife A, Swendeman S, Erdjument-Bromage H, Geromanos S, Kavana-ugh WM, Tempst P, Clarkson B. A novel SH2-containing phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase (SHIP2) is constitutively tyrosine phosphorylated and associated with src homologous and collagen gene (SHC) in chronic myelogenous leukemia progenitor cells. Blood 1999;93:2707-20.
    97. Sawyers CL, Callahan W, Witte ON. Dominant negative MYC blocks transformation by ABL oncogenes. Cell 1992;70:901-10.
    98. Zou X, Rudchenko S, Wong K, Calame K. Induction of c-myc transcription by the v-Abl tyrosine kinase requires Ras, Rafl, and cyclin-dependent kinases. Genes Dev 1997;11:654-62.
    99. Stewart MJ, Litz-Jackson S, Burgess GS, Williamson EA, Leibowitz DS, Boswell HS. Role for E2F1 in p210 BCR-ABL downstream regulation of c-myc transcription initiation. Studies in murine myeloid cells. Leukemia 1995;9:1499-507.
    100.Bissonnette RP, Echeverri F, Mahboubi A, Green DR. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 1992;359:552-4,
    101.Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC. Induction of apoptosis in fibroblasts by c-myc protein. Cell 1992;69:119-28.
    102.Daley GQ, Baltimore D. Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/ab1 protein. Proc Natl Acad Sci U S A 1988;85:9312-6.
    103.Sirard C, Laneuville P, Dick JE. Expression of bcr-abl abrogates factor-dependent growth of human hematopoietic M07E cells by an autocrine mechanism. Blood 1994;83:1575-85.
    104.Cortez D, Kadlec L, Pendergast AM. Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol 199-5;15:5531-41.
    105.Sanchez-Garcia I, Martin-Zanca D. Regulation of Bcl-2 gene expression by BCR-ABL is mediated by Ras. J Mol Biol 1997;267:225-8.
    106.Wang HG, Rapp UR, Reed JC. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 1996;87:629-38.
    107.Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996;87:619-28.
    108.Neshat MS, Raitano AB, Wang HG, Reed JC, Sawyers CL. The survival function of the Bcr-Abl oncogene is mediated by Bad-dependent and-independent pathways:roles for phosphatidylinositol 3-kinase and Raf. Mol Cell Biol 2000;20:1179-86.
    109.Majewski M, Nieborowska-Skorska M, Salomoni P, Slupianek A, Reiss K, Trotta R, Calabretta B, Skorski T. Activation of mitochondrial Raf-1 is involved in the antiapoptotic effects of Akt. Cancer Res 1999;59:2815-9.
    110.Gabriele L, Phung J, Fukumoto J, Segal D, Wang IM, Giannakakou P, Giese NA, Ozato K, Morse HR. Regulation of apoptosis in myeloid cells by interferon consensus sequence-binding protein. J Exp Med 1999; 190:411-21.
    111.Hao SX, Ren R. Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol Cell Biol 2000;20:1149-61.
    112.Holtschke T, Lohler J, Kanno Y, Fehr T, Giese N, Rosenbauer F, Lou J, Knobeloch KP, Gabriele L, Waring JF and others. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 1996;87:307-17.
    113.Scheller M, Foerster J, Heyworth CM, Waring JF, Lohler J, Gilmore GL, Shadduck RK, Dexter TM, Horak I. Altered development and cytokine responses of myeloid progenitors in the absence of transcription factor, interferon consensus sequence binding protein. Blood 1999;94:3764-71.
    114.Evan GI, Brown L, Whyte M, Harrington E. Apoptosis and the cell cycle. Curr Opin Cell Biol 1995;7:825-34.
    115.Santucci MA, Anklesaria P, Laneuville P, Das IJ, Sakakeeny MA, FitzGerald TJ, Greenberger JS. Expression of p210 bcr/abl increases hematopoietic progenitor cell radiosensitivity. Int J Radiat Oncol Biol Phys 1993;26:831-6.
    116.Albrecht T, Schwab R, Henkes M, Peschel C, Huber C, Aulitzky WE. Primary proliferating immature myeloid cells from CML patients are not resistant to induction of apoptosis by DNA damage and growth factor withdrawal. Br J Haematol 1996;95:5-01-7.
    117.McGahon AJ, Nishioka WK, Martin SJ, Mahboubi A, Cotter TG, Green DR. Regulation of the Fas apoptotic cell death pathway by Abl. J Biol Chem 1995;270:226-25-z31.
    118.Selleri C, Maciejewski JP, Pane F, Luciano L, Raiola AM, Mostarda I, Salvatore F, Rotoli B. Fas-mediated modulation of Bcr/Abl in chronic myelogenous leukemia results in differential effects on apoptosis. Blood 1998;92:981-9.
    119.Gora-Tybor J, Deininger MW, Goldman JM, Melo JV. The susceptibility of Philadelphia chromosome positive cells to FAS-mediated apoptosis is not linked to the tyrosine kinase activity of BCR-ABL. Br J Haematol 1998;103:716-20.
    120.Maguer-Satta V, Burl S, Liu L, Damen J, Chahine H, Krystal G, Eaves A, Eaves C. BCR-ABL accelerates C2-ceramide-induced apoptosis. Oncogene 1998; 16:237-48.
    121.Gewirtz AM, Sokol DL, Ratajczak MZ. Nucleic acid therapeutics:state of the art and future prospects. Blood 1998;92:712-36.
    122.James HA, Gibson I. The therapeutic potential of ribozymes. Blood 1998;91:371-82.
    123.Cobaleda C, Sanchez-Garcia I. In vivo inhibition by a site-specific catalytic RNA subunit of RNase P designed against the BCR-ABL oncogenic products:a novel approach for cancer treatment. Blood 2000;95:731-7.
    124.Dazzi F, Szydlo RM, Goldman JM. Donor lymphocyte infusions for relapse of chronic myeloid leukemia after allogeneic stem cell transplant:where we now stand. Exp Hematol 1999;27:1477-86.
    125.Pinilla-Ibarz J, Cathcart K, Korontsvit T, Soignet S, Bocchia M, Caggiano J, Lai L, Jimenez J, Kolitz J, Scheinberg DA. Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood 2000;95:1781-7.
    126.Boutin JA. Tyrosine protein kinase inhibition and cancer. Int J Biochem 1994;26:12-03-26.
    127.Levitzki A, Gazit A. Tyrosine kinase inhibition:an approach to drug development. Science 1995;267:1782-8.
    128.Buchdunger E, Zimmermann J, Mett H, Meyer T, Muller M, Regenass U, Lydon NB. Selective inhibition of the platelet-derived growth factor signal transduction pathway by a protein-tyrosine kinase inhibitor of the 2-phenylaminopyrimidine class. Proc Natl Acad Sci U S A 1995;92:2558-62.
    129.Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996;2:561-6.
    130.1e Coutre P, Mologni L, Cleris L, Marchesi E, Buchdunger E, Giardini R, Formelli F, Gambacorti-Passerini C. In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. J Natl Cancer Inst 1999;91:163-8.
    131.Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S and others. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344:1031-7.
    132.Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM, Melo JV. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571:diverse mechanisms of resistance. Blood 2000;96:1070-9.
    133.Gishizky ML, Cortez D, Pendergast AM. Mutant forms of growth factor-binding protein-2 reverse BCR-ABL-induced transformation. Proc Natl Acad Sci U S A 1995;92:10889-93.
    134.Emanuel PD, Snyder RC, Wiley T, Gopurala B, Castleberry RP. Inhibition of juvenile myelomonocytic leukemia cell growth in vitro by farnesyltransferase inhibitors. Blood 2000;95:639-45.
    135.Warmuth M, Bergmann M, Priess A, Hauslmann K, Emmerich B, Hallek M. The Src family kinase Hck interacts with Bcr-Abl by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr. J Biol Chem 1997;272:33260-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700