四种鲆鲽鱼类雌核发育及性别控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大多数鱼类雌雄个体在生长速度都存在差异,根据鱼类生长速度的雌雄个体差异进行性别控制和单性养殖可以大幅度提高产量和增加养殖效率。以大菱鲆和半滑舌鳎为代表的海水鲆鲽鱼类工厂化养殖业的兴起,掀起了海水养殖的第四次高潮。大多数鲆鲽鱼类雌性生长速度较快,因而进行全雌的鲆鲽类苗种培育对高效的工厂化养殖意义更加巨大。雌核发育技术是一种非常理想的遗传性别控制技术,结合性反转技术可以使鲆鲽鱼类全雌苗种生产成为可能。在本研究中,我们报道了这几种重要海水鱼类的雌核发育诱导方法,并且通过流式细胞仪和微卫星技术对雌核发育群体进行了鉴定,并结合性反转技术进了全雌苗种的生产。实验结果如下:
     1.大西洋牙鲆是一种重要的经济鱼类。在本研究中,采用紫外线(UV)照射冷冻保存的花鲈精子和大西洋牙鲆精子诱导犬齿牙鲆雌核发育。实验表明:犬齿牙鲆同源精子经80mJ/cm2的紫外线照射可以完全失活,冻存花鲈精子经紫外线照射后也同样具有诱导犬齿牙鲆雌核发育能力。无论同源精子还是异源精子,最佳诱导条件为,在18℃条件下,精子经80mJ/cm2的紫外线照射,在受精后4~5min,将受精卵放在3℃海水中进行冷休克处理,持续时间为45min,同源精子和异源精子二倍体诱导分别为32.66±7.03%和28.00±6.48%。采用形态学、流式细胞仪DNA含量分析和微卫星标记技术对雌核发育鱼苗进行了分析,证明了雌核发育鱼苗为雌核发育二倍体。100尾雌核发育群体中雌性共38尾,占38%,雄性62尾,占62%。按不同方法进行雄性激素处理2700余尾,培育1年后,雄性比例为100%。
     2.漠斑牙鲆是一种具有较高经济价值的深海比目鱼类。由于漠斑牙鲆雌性生长快,因此通过雌核发育获得漠斑牙鲆雌性群体是一种有效方法。雌核发育实验表明:同源精子只有经紫外线照射遗传失活后才能诱导雌核发育,否则形成三倍体,而花鲈精子也只有经过紫外线照射遗传失活后,才能诱导产生漠斑牙鲆雌核发育二倍体鱼苗,杂交胚可发育,但不能存活至孵化。经实验筛选出诱导漠斑牙鲆雌核发育的最佳条件为:花鲈冷冻精子采用80mJ/cm2的紫外线照射,然后与卵子进行授精,在受精后4~5min,施以65MPa的静水压休克处理6min。采用形态学、流式细胞仪DNA含量分析和微卫星标记技术对雌核发育鱼苗进行了分析,证明了雌核发育鱼苗为雌核发育二倍体。培育1年后的雌核发育群体经鉴定,雌性占42.8%;雄性激素浸泡处和投喂处理后的雄性比例分别达了95.3%和97.5%。
     3.条斑星鲽是一种大型冷水性经济鱼类。由于条斑星鲽雌性生长快于雄性,在生产上获得全雌群体对条斑星鲽具有重要意义。使用花鲈精子和同源精子诱导条斑星鲽雌核发育,结果显示花鲈精子只有经过紫外线照射遗传失活后,才能诱导产生条斑星鲽雌核发育二倍体鱼苗。经过大量实验筛选出诱导条斑星鲽雌核发育的最佳条件为:花鲈冷冻精子采用80mJ/cm2的紫外线照射,然后与条斑星鲽卵子进行授精,在受精后7~9min,将受精卵放在-1.0~1.5℃海水中进行冷休克处理,持续时间为60~90min,在此条件下,获得的雌核发育二倍体的最高诱导率达40.68%±7.24%。由于不失活精子与条斑星鲽卵形成的杂交胚只能存活到原肠期,而染色体未被成功加倍的胚胎会由于单倍体的致死效应在孵化前后死亡,所以存活的仔鱼全部为条斑星鲽雌核发育二倍体。采用微卫星标记技术对雌核发育鱼苗进行了分析,证明了雌核发育鱼苗为雌核发育二倍体。培育一年后经鉴定,雌核发育群体生别比例为42.7%;高温、激素和投喂激素处理雌核发育群体和正常苗种,只出现了个别雌性个体,雄性比例达95.1%~100%
     4.半滑舌鳎是新近开发的一种重要的经济海洋鱼类。为了获得半滑舌鳎全雌苗种并阐明其性别机制,本文首先采用冷冻保存的鲈鱼精子作为刺激半滑舌鳎卵子进行雌核发育的有效精子源,建立了精子遗传失活的条件;其次,筛选出有效的冷休克起始时间、适合的冷休克温度和冷休克处理时间。获得了异源冷冻精子-鲈鱼精子诱导产生的半滑舌鳎雌核发育鱼苗。采用常规方法对雌核发育胚胎进行了染色体分析,观察到单倍体染色体数目为21条,雌核发育二倍体染色体数目为42条,观察到含有2条W染色体的个体,表明雌核发育二倍体包含有ZZ和WW两种类型;采用微卫星标记对雌核发育鱼苗进行了分析,证明了雌核发育鱼苗的可靠性;采用半滑舌鳎雌性特异AFLP标记对雌核发育鱼苗进行了遗传性别鉴定,获得了具有雌性特异DNA标记的雌核发育二倍体鱼苗。在10多次雌核发育实验中获得雌核发育二倍体鱼苗6600多尾。在鱼苗长大后鉴定生理性别,其中同源精子诱导组雌性比例为11.5%,异源精子诱导组雌性比例为17.7%,而同批次正常对照组雌性比例45.8±8.2%。雌核发育群体雌性比例明显低于正常组。
     本研究采用冷冻保存的鲈鱼精子,在多种鲆鲽鱼类建议了人工雌核发育技术和雌核发育群体鉴别技术,获得了雌核发育二倍体鱼苗,部分种类完成性反转,为鲆鲽鱼类全雌育种技术的建立和全雌苗种的生产奠定了基础,提供了技术手段。
The majority of marine fishes have a difference at growth rate between female and male. It was conducted by sex control and mono-sex culture to greatly increase yield and improve the efficiency of breeding according to the difference of growth rate. Recently, the rise of factory farming in flatfishes gave birth to the fourth aquaculture wave, especially the culture of tarbot and half-smooth tongue sole. Thus, the development of all-female group is very important to high-efficiency factory farming.
     Gynogensis technology is a well sex control technology, combined with the sex reversal make the product of all-female group possible. Here we report the methods of gynogenesis on the four important marine fishes and all-female production were attained by sex reversal. At the same time, the flow cytometry and microsatellite analysis were used to identification on the offspring of the gynogenesis.
     The following results were received:
     1. Summer flounder, Paralichthys dentatus, is an important commercial and recreational fish. In this study, diploid gynogenesis was induced by activating egg development with UV irradiated summer flounder sperm or sea perch sperm (80 mJ/cm2) for 5 min in seawater, and then subjecting the eggs to coldshock in 3℃seawater for 45 min. The hybrid of could not survive to hatching, thus the offspring was allogynogenesis only. The normal temperature of cultivation to one years later, the total survival is 228 and 100 randomly selected to identify the sex ratio. The result show that the female were 38 while the male were 62. Sex ratio are not comply the presumed 1:1 by the chi-square test. The 2700 individuals were dealt with using different methods of hormone treatment, 30 to 100 fishes from each treatment group randomly selected after one year cultivation and were determined the sex ratio. The results of all treatment groups were male and the male ratio was 100%.
     2. Southern flounder, Paralichthys lethostigma, is one member of a large family of distinctive benthic flatfishes with a high economic values. Effective methods for induction of diploid gynogenesis of the southern flounder, Paralichthys lethostigma, are needed to initiate monosex culture, which will allow growers to take advantage of the more rapid growth and larger size attained by females. The results of experiments showed that gynogenetic diploid and triploid can be induced by inactivated homologous sperm and noninactivated, respectively; and only gynogenetic diploid were obtained using inactivated heterologous sperm because that hybrid would be died before hatching. Diploid gynogenesis was induced by activating egg development with UV irradiated homologous sperm (80 mJ/cm2) for 4~5 min in seawater, and then then 65MPa pressure treatment for 6min. Flow cytometry and microsatellite DNA analysis were used to demonstrate diploidy. These results indicate that the use of UV irradiated sperm from Lateolabrax japonicas for activation of flounder eggs and pressure shock for polar body retention is an effective method to produce gynogenetic offspring.subjecting the eggs to coldshock in 3℃seawater for 45 min. The offspring of gynogensis were identified by morphologically examination after one year. The result show that the rate of male was 42.8%. After the Androgen immersion and the feeding, the rate of male can reach to 95.3% and 97.5%, respectively.
     3. Barfin flounder, Verasper moseri is an important economical marine fish. Since females grow faster than males, the production of all-female populations is highly desirable. To test methods for inducing diploid gynogenesis in barfin flounder using homologous sperm, The Cryopreservative sperm of Lateolabrax japonicas was used to active eggs and cool shock was used to prevent extrusion of the second polar body. Four treatments, named for their expected outcome, were employed: hybrid, haploid, triploid, and gynogenetic diploid to prove the ability of Lateolabrax japonicas sperm activing flounder eggs. Diploid gynogenesis was induced by activating egg development with UVirradiated sperm (80 mJ/cm2) for 7~9 min in seawater, and then subjecting the eggs to cold shock in -1~1.5℃seawater for 60–90 min. The hybrid of could not survive to hatching, thus the offspring was allogynogenesis only and the result of microsatellite markers analysis proved this result. This work provides procedures for induction of diploid gynogenesis in barfin flounder using heterologous sperm.
     4. Half-smooth tongue sole (Cynoglossus semilaevis) is a newly exploited and commercially important cultured marine fish in China. In order to attain the all-female and elucidation the sex mechanism of tongue sole, a set of experiments were carried out for developing artificial gynogenesis technique in the tongue sole. First of all, the effects of different sperms on gynogenesis induction were examined. The sea perch (Lateolabrax japonicus) sperm was considered to be effective sperm in inducing gynogenesis in the tongue sole. Secondly, iradiation conditions for sea perch spermatozoa were developed. Thirdly, the optimal iniation time for cold shock of gynogenetic eggs was determined, the optimal temperature and treatment time were determined. Chromosomes from gynogenetic haploid, diploid were analyzed, WW chromosomes were discovered in some gynogenetic diploid embryos. Microsatellite marker technique was applied to analyze gynogenetic diploid fry. Among the 30 gynogenetic diploid fry, 11 fry contained only one allele, 19 contained two alleles which had same genetype as their mother. Finally, female-specific DNA marker for half-smooth tongue sole was observed in four individuals of ten gynogenetic diploid fry. Thus, a set of techniques for induction of artificial gynogenesis was developed for the first time in half smooth tongue sole, and more than 6600 gynogenetic diploid tongue sole fry were successfully produced by using this technique.
     In this study, the method of gynogenesis was established by sperm of the sea bass for four marine fishes and the flow cytometry and microsatellite were involved in the identification of offspring of gynogenesis. Moreover, the fishes of sex reversal were also achieved. Therefore it was a foundation for the gynogenesis and all-female production in practice. ?
引文
[1] Nelson J S. Fishes of the World[M]. New York, NY: Wiley, 1994: 600.
    [2]楼允东.鱼类育种学[M].中国农业出版社, 1999.
    [3]葛伟.鱼类的天然雌核发育[J].水生生物学报. 1989, 13(3): 274-286.
    [4] Arai K. Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan[J]. Aquaculture. 2001, 197(1-4): 205-228.
    [5] Yamazaki F. Sex control and manipulation in fish[J]. Aquaculture. 1983, 33(1-4): 329-354.
    [6] Arkhipchuk V. Role of chromosomal and genome mutations in the evolution of bony fishes[J]. Hydrobiol. J. 1995, 31: 55-65.
    [7] Devlin R H, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences[J]. Aquaculture. 2002, 208: 191-364.
    [8] Born G G, Bertollo L. An XX/XY sex chromosome system in a fish species, Hoplias malabaricus, with a polymorphic NOR-bearing X chromosome[J]. Chromosome Research. 2000, 8(2): 111-118.
    [9] Kondo M, Nagao E, Mitani H, et al. Differences in recombination frequencies during female and male meioses of the sex chromosomes of the medaka, Oryzias latipes[J]. Genetics Research. 2001, 78(01): 23-30.
    [10] Carrasco L, Penman D J, Bromage N. Evidence for the presence of sex chromosomes in the Nile tilapia (Oreochromis niloticus) from synaptonemal complex analysis of XX, XY and YY genotypes[J]. Aquaculture. 1999, 173(1-4): 207-218.
    [11] Kitano T. Sex of flounders with the effect of water temperatures.[J]. Newsletter of Japan Society for Comparative Endocrinology. 2006, 120: 10-12.
    [12]常重杰,余其兴.大鳞副泥鳅ZZ/ZW型性别决定的细胞遗传学证据[J].遗传. 1997, 19(003): 17-19.
    [13] Bertollo L, Cavallaro Z I. A highly differentiated ZZ/ZW sex chromosome system in a Characidae fish, Triportheus guentheri[J]. Cytogenet Cell Genet. 1992, 60: 60-63.
    [14] Diniz D, Moreira-Filho O, Bertollo L. Molecular cytogenetics and characterization of aZZ/ZW sex chromosome system in Triportheus nematurus (Characiformes, Characidae)[J]. Genetica. 2008, 133(1): 85-91.
    [15]周丽青,杨爱国,柳学周,等.半滑舌鳎染色体核型分析[J].水产学报. 2005, 29(003): 417-419.
    [16]洪云汉,周暾.短颌鲚的核型及其ZZ/ZO型性染色体[J].遗传. 1984, 6(4): 12-14.
    [17] Sharma O P, Tripathi N K. Female heterogamety in two teleostean fishes[J]. Cytologia. 1988, 53: 81-86.
    [18] Ueno K, Takai A. Multiple sex chromosome system of X1X1X2X2/X1X2Y type in lutjanid fish, Lutjanus quinquelineatus (Perciformes)[J]. Genetica. 2008, 132(1): 35-41.
    [19] Moreira Filho O, Bertollo L, Galetti Junior P M. Evidences for a multiple sex chromosome system with female heterogamety in Apareiodon affinis (Pisces, Paradontidae)[J]. Caryologia. 1980, 33(1): 83-91.
    [20] Feist G, Yeoh C, Fitzpatrick M S, et al. The production of functional sex-reversed male rainbow trout with 17α-methyltestosterone and 11β-hydroxyandrostenedione[J]. Aquaculture. 1995, 131(2): 145-152.
    [21] Streisinger G, Walker C, Dower N, et al. Production of clones of homozygous diploid zebra fish(Brachydanio rerio)[J]. Nature. 1981, 291(5813): 293-296.
    [22] Müller-Belecke A, H Rstgen-Schwark G. Sex determination in tilapia (Oreochromis niloticus) sex ratios in homozygous gynogenetic progeny and their offspring[J]. Aquaculture. 1995, 137(1-4): 57-65.
    [23] Caputo V, Machella N, Nisi-Cerioni P, et al. Cytogenetics of nine species of Mediterranean blennies and additional evidence for an unusual multiple sex-chromosome system in Parablennius tentacularis (Perciformes, Blenniidae)[J]. Chromosome Research. 2001, 9(1): 3-12.
    [24] Traut W, Winking H. Meiotic chromosomes and stages of sex chromosome evolution in fish: zebrafish, platyfish and guppy[J]. Chromosome Research. 2001, 9(8): 659-672.
    [25] Piferrer F. Endocrine sex control strategies for the feminization of teleost fish[J]. Aquaculture. 2001, 197(1-4): 229-281.
    [26] Crews D. Temperature-dependent sex determination: the interplay of steroid hormones and temperature[J]. Zoological science. 1996, 13(1): 1-13.
    [27] Sumpter J P. Environmental control of fish reproduction: a different perspective[J]. Fish Physiology and Biochemistry. 1997, 17(1): 25-31.
    [28]王念民,孙大江,曲秋芝,等.温度对鱼类性别分化和性别决定的影响[J].水产学杂志. 2007, 20(2): 91-93.
    [29] Ospina-álvarez N, Piferrer F. Temperature-Dependent Sex Determination in Fish Revisited: Prevalence, a Single Sex Ratio Response Pattern, and Possible Effects of Climate Change[J]. PLoS ONE. 2008, 3: e2837.
    [30] Robertson D R. Social control of sex reversal in a coral-reef fish[Z]. 1972: 177, 1007-1009.
    [31] Mair G C, Abucay J S, Beardmore J A, et al. Growth performance trials of genetically male tilapia (GMT) derived from YY-males in Oreochromis niloticus L.: On station comparisons with mixed sex and sex reversed male populations[J]. Aquaculture. 1995, 137(1-4): 313-323.
    [32]孟田湘,任胜民.渤海半滑舌鳎的年龄与生长[J].海洋水产研究. 1988, 9: 173-183.
    [33] Pandian T J, Sheela S G. Hormonal induction of sex reversal in fish[J]. Aquaculture. 1995, 138(1-4): 1-22.
    [34] Beardmore J A, Mair G C, Lewis R I. Monosex male production in finfish as exemplified by tilapia: applications, problems, and prospects[J]. Aquaculture. 2001, 197(1-4): 283-301.
    [35] Baker I J, Solar I I, Donaldson E M. Masculinization of chinook salmon (Oncorhynchus tshawytscha) by immersion treatments using 17α-methyltestosterone around the time of hatching[J]. Aquaculture. 1988, 72(3): 359-367.
    [36] Piferrer F, Donaldson E M. Uptake and clearance of exogenous estradiol-17βand testosterone during the early development of coho salmon (Oncorhynchus kisutch), including eggs, alevins and fry[J]. Fish Physiology and Biochemistry. 1994, 13(3): 219-232.
    [37] Komen H, Thorgaard G H. Androgenesis, gynogenesis and the production of clones in fishes: A review[J]. Aquaculture. 2007, 269(8): 150-173.
    [38]陈松林.水产生物技术研究的回顾、最新进展及前景展望[J].水产学报. 2007, 31(6): 825-840.
    [39] Gomelsky B. Chromosome set manipulation and sex control in common carp: a review[J]. Aquatic Living Resources. 2003, 16(5): 408-415.
    [40] Hickling C F. The Malacca tilapia hybrids[J]. Journal of Genetics. 1960, 57(1): 1-10.
    [41] Beardmore J A, Mair G C, Lewis R I. Monosex male production in finfish as exemplified bytilapia: applications, problems, and prospects[J]. Aquaculture. 2001, 197(1-4): 283-301.
    [42] Mair G C, Abucay J S, Skibinski D, et al. Genetic manipulation of sex ratio for the large-scale production of all-male tilapia, Oreochromis niloticus[J]. Canadian journal of fisheries and aquatic sciences. 1997, 54(2): 396-404.
    [43]魏于生,杨永铨.莫桑比克罗非鱼YY型雄性同配体雌性转化研究[J].淡水渔业. 1993, 23(6): 19-21.
    [44]万松良,杨永铨. YY型莫桑比克罗非鱼雌性转化后测交筛选的研究[J].水产科技情报. 1994, 21(005): 195-199.
    [45]吴清江,陈荣德,叶玉珍,等.鲤鱼人工雌核发育及其作为建立近交系新途径的研究[J].遗传学报. 1981, 8(1): 50-55.
    [46] Tabata K. Induction of gynogenetic diploid males and presumption of sex determination mechanisms in the hirame Paralichthys olivaceus[J]. Nippon Suisan Gakkaishi. 1991, 57(5): 845-850.
    [47] Hubbs C L, Hubbs L C. Apparent parthenogenesis in nature, in a form of fish of hybrid origin[J]. Science. 1932, 76: 628-630.
    [48] Rasch E M, Monaco P J, Balsano J S. Cytophotometric and autoradiographic evidence for functional apomixis in a gynogenetic fish, Poecilia formosa and its related, triploid unisexuals[J]. Histochemistry and Cell Biology. 1982, 73(4): 515-533.
    [49] Ye Y, Wu Q, Chen R. Studies on cytology of crosses between grass carp and carp-asynchronization between nucleus and cytoplasm in distant hybridization of fishes[J]. Acta Hydrobiologica Sinica. 1989, 13: 234-239.
    [50] Cherfas N B. Natural triploidy in the females of the unisexual variety of the silver crucian carp (C. auratus gibelio Bloch)[J]. Genetika (Moscow). 1966, 2(5): 16-24.
    [51] Cherfas N B, Gomelsky B I, Emelyanova O V, et al. Induced diploid gynogenesis and polyploidy in crucian carp, Carassius auratus gibelio (Bloch), x common carp, Cyprinus carpio L., hybrids.[J]. Aquaculture Research. 1994, 25(9): 943-954.
    [52] Dong S, Taniguchi N, Tsuji S. Identification of clones of ginbuna Carassius langsdorfii by DNA fingerprinting and isozyme pattern[J]. Bulletin of the Japanese Society of Scientific Fisheries (Japan). 1996, 62: 747-752.
    [53] Zhou J, Shen J, Liu M. A cytological study on the gynogenesis of Fang-Zheng Crucian carpof Heilongjiang Province.[J]. Acta Zool. Sin. 1983, 29: 11-15.
    [54]桂建芳.银鲫天然雌核发育机理研究的回顾与展望[J].中国科学基金. 1997, 11(1): 11-16.
    [55]朱蓝菲,蒋一圭.银鲫不同雌核发育系的生物学特性比较研究[J].水生生物学报. 1993, 17(2): 112-120.
    [56] Boron A. Karyotypes of diploid and triploid silver crucian carp Carassius auratus gibelio (Bloch)[J]. Cytobios 80. 1994: 117.
    [57] Cherfas N B., 1966. Natural triploidy in the females of the unisexual variety of the goldfish Carassius auratus gibelio (Bloch)[J]. Sov. Genet. 1966, 13: 557-563.
    [58]丁军,单仕新.银鲫卵对两类精核发育的初级控制作用模式的研究[J].中国科学(B). 1991(11): 1160-1165.
    [59] Rokicki J, Kulikowski M. Occurrence of male Carassius auratus gibelio (Bloch, 1783) in Poland[J]. Przegl. Zool. 1994, 38: 89-92.
    [60]将一珪,梁绍昌,陈本德.异源精子在银鲫核发育子代中的生物学效应[J].水生生物学报. 1983, 8(1): 1-16.
    [61] Goddard K A, Dawley R M. Clonal inheritance of a diploid nuclear genome by a hybrid freshwater minnow (Phoxinus eos-neogaeus, Pisces: Cyprinidae)[J]. Evolution. 1990: 1052-1065.
    [62] Goddard K A, Megwinoff O, Wessner L L, et al. Confirmation of gynogenesis in Phoxinus eos-neogaeus (Pisces: Cyprinidae)[J]. Journal of Heredity. 1998, 89(2): 151-157.
    [63] Vasil Eva E D, Osinov A G, Vasil Ev V P. The problem of reticulate speciation in vertebrates: the diploid–triploid–tetraploid complex in the genus Cobitis (Cobitidae)[J]. Journal of Ichthyology. 1989, 7: 35-47.
    [64] Vasil Yev V I, Vasil Yeva E D, Osinov A G. The problem of reticulate species formation in vertebrates of the diploid–triploid–tetraploid complex in the genus Cobitis (Cotibidae): 4. Tetraploid form[J]. J. Ichthyol. 1991, 31: 21-35.
    [65] Onozato H. Diploidization of gynogenetically activated salmonid eggs using hydrostatic pressure[J]. Aquaculture. 1984, 43(1-3): 91-97.
    [66] Pascual A B, Penman D J, Rana K J, et al. Cryopreservation and refrigerated storage of UV-inactivated milt for gynogenesis[J]. Aquaculture. 1993, 111(2): 324-325.
    [67] Hollebecq M G, Chourrout D, Wohlfarth G, et al. Diploid gynogenesis induced by heat shocks after activation with UV-irradiated sperm in common carp[J]. Aquaculture. 1986, 54: 69-76.
    [68] Komen J, Wiegertjes G F, Van Ginneken V J T, et al. Gynogenesis in common carp (Cyprinus carpio L.). III. The effects of inbreeding on gonadal development of heterozygous and homozygous gynogenetic offspring[J]. Aquaculture. 1992, 104: 51-66.
    [69]杨书婷,桂建芳.两个雌核发育白鲢群体同工酶分析遗传标记的确定[J].水生生物学报. 1999, 23(003): 264-268.
    [70]李冰霞,罗琛.热休克法抑制第一次卵裂实现草鱼雌核发育的细胞学观察[J].水生生物学报. 2003, 27(002): 155-160.
    [71]贾方钧,王剑伟.异源精子诱导稀有鮈鲫的人工雌核发育[J].水生生物学报. 2002, 26(3): 246-252.
    [72]邹曙明,李思发.团头鲂良种雌核发育群体的建立及其遗传变异[J].水产学报. 2001, 25(4): 311-316.
    [73] Sun Y, Zhang C, Liu S, et al. Induction of Gynogenesis in Japanese Crucian Carp (Carassius cuvieri)[J]. Acta Genetica Sinica. 2006, 33(5): 405-412.
    [74]许建和,尤锋,吴雄飞,等.大黄鱼雌核发育二倍体的人工诱导[J].海洋科学. 2006(12): 37-42.
    [75] Fopp-Bayat D, Kolman R, Woznicki P. Induction of meiotic gynogenesis in sterlet (Acipenser ruthenus) using UV-irradiated bester sperm[J]. Aquaculture. 2007, 264(3): 54-58.
    [76] Morgan A J, Murashige R, Woolridge C A, et al. Effective UV dose and pressure shock for induction of meiotic gynogenesis in southern flounder (Paralichthys lethostigma) using black sea bass (Centropristis striata) sperm[J]. Aquaculture. 2006, 259(1): 290-299.
    [77] Piferrer F, Cal R M, Gsmez C, et al. Induction of gynogenesis in the turbot (Scophthalmus maximus):: Effects of UV irradiation on sperm motility, the Hertwig effect and viability during the first 6 months of age[J]. Aquaculture. 2004, 238(1): 403-419.
    [78] Rougeot C, Ngingo J V, Gillet L, et al. Gynogenesis induction and sex determination in the Eurasian perch, Perca fluviatilis[J]. Aquaculture. 2005, 243(2): 411-415.
    [79] Lin F, Dabrowski K. Induction of gynogenesis in muskellunge (Esox masquinongy)[J]. Aquaculture. 1995, 137(8): 153-154.
    [80]潘英,李琪.海洋贝类雌核发育研究进展和展望[J].水产学报. 2002, 26(5): 465-471.
    [81]李雅娟,毛连菊,李霞,等.太平洋牡蛎人工诱导雌核发育精子遗传失活的初步研究[J].大连水产学院学报. 2003, 18(2): 109-113.
    [82] Li Q, Kijima A. Microsatellite analysis of gynogenetic families in the Pacific oyster, Crassostrea gigas[J]. Journal of Experimental Marine Biology and Ecology. 2006, 331(1): 1-8.
    [83]楼允东,李小勤.中国鱼类远缘杂交研究及其在水产养殖上的应用[J].中国水产科学. 2006, 13(1): 151-158.
    [84]程汉良,潘黔生,马国文, et al.热休克诱导鲫鱼纯合雌核发育二倍体的研究[J].水利渔业. 2005, 25(3): 25-27.
    [85]苏鹏志,陈松林,杨景峰,等.异源冷冻精子诱导大菱鲆的雌核发育[J].中国水产科学. 2008, 15(5): 715-721.
    [86]王德祥,苏永全,王世锋,等.异源精子诱导大黄鱼雌核发育的研究[J].高技术通讯. 2006, 16(011): 1206-1210.
    [87] Peruzzi S, Chatain B. Pressure and cold shock induction of meiotic gynogenesis and triploidy in the European sea bass, Dicentrarchus labrax L.: relative efficiency of methods and parental variability[J]. Aquaculture. 2000, 189(1-2): 23-37.
    [88] Lincoln R F, Aulstad D, Grammeltvedt A. Attempted triploid induction in Atlantic salmon (Salmo salar) using cold shocks[J]. Aquaculture. 1974, 4: 287-297.
    [89] Refstie T, Stoss J, Donaldson E M. Production of all female coho salmon (Oncorhynchus kisutch) by diploid gynogenesis using irradiated sperm and cold shock[J]. Aquaculture. 1982, 29(4): 67-82.
    [90] Don J, Avtalion R R. Comparative study on the induction of triploidy in tilapias, using cold-and heat-shock techniques[J]. Journal of Fish Biology. 1988, 32(5): 665-672.
    [91] Volckaert F A M, Galbusera P H A, Hellemans B A S, et al. Gynogenesis in the African catfish (Clarias gariepinus). I. Induction of meiogynogenesis with thermal and pressure shocks[J]. Aquaculture. 1994, 128(4): 221-233.
    [92] Refstie T, Vassvik V, Gjedrem T. Induction of polyploidy in salmonids by cytochalasin B[J]. Aquaculture. 1977, 10: 65-74.
    [93] Mair G C, Scott A G, Penman D J, et al. Sex determination in the genus Oreochromis 2. Sexreversal, hybridisation, gynogenesis and triploidy in O. aureus Steindachner[J]. Theoretical and Applied Genetics. 1991, 82: 153-160.
    [94] Liu Q, Goudie C A, Simco B A, et al. Sex-linkage of glucosephosphate isomerase-B and mapping of the sex-determining gene in channel catfish[J]. Cytogenetics and cell genetics. 1996, 73: 282-285.
    [95] Devlin R H, Biagi C A, Smailus D E. Genetic mapping of Y-chromosomal DNA markers in Pacific salmon[J]. Genetica. 2001, 111(1): 43-58.
    [96] Refstie T, Stoss J, Donaldson E M. Production of all female coho salmon (Oncorhynchus kisutch) by diploid gynogenesis using irradiated sperm and cold shock[J]. Aquaculture. 1982, 29(1): 67-82.
    [97] Van Eenennaam A L, Murray J D, Medrano J F. Karyotype of the American green sturgeon[J]. Transactions of the American Fisheries Society. 1999, 128(1): 175-177.
    [98] Flynn S R, Matsuoka M, Reith M, et al. Gynogenesis and sex determination in shortnose sturgeon, Acipenser brevirostrum Lesuere[J]. Aquaculture. 2006, 253(3): 721-727.
    [99] Tvedt H B, Benfey T J, Martin-Robichaud D J, et al. Gynogenesis and sex determination in Atlantic Halibut (Hippoglossus hippoglossus)[J]. Aquaculture. 2006, 252(4): 573-583.
    [100] Omoto N, Maebayashi M, Adachi S, et al. Sex ratios of triploids and gynogenetic diploids induced in the hybrid sturgeon, the bester (Huso huso female×Acipenser ruthenus male) [J]. Aquaculture. 2005, 245(5): 39-47.
    [101] Mirza J A, Shelton W L. Induction of gynogenesis and sex reversal in silver carp[J]. Aquaculture. 1988, 68(1): 1-14.
    [102] Kavumpurath S, Pandian T J. Induction of heterozygous and homozygous diploid gynogenesis in Betta splendens (Regan) using hydrostatic pressure[J]. Aquaculture Research. 1994, 25(2): 133-142.
    [103] Avtalion R R, Don J. Sex-determining genes in tilapia: a model of genetic recombination emerging from sex ratio results of three generations of diploid gynogenetic Oreochromis aureus[J]. Journal of fish biology. 1990, 37(1): 167-173.
    [104] Mair G C, Scott A G, Penman D J, et al. Sex determination in the genus Oreochromis 2. Sex reversal, hybridisation, gynogenesis and triploidy in O. aureus Steindachner[J]. Theoretical and Applied Genetics. 1991, 82(2): 153-160.
    [105] Campos-Ramos R, Harvey S C, Mcandrew B J, et al. An investigation of sex determination in the Mozambique tilapia, Oreochromis mossambicus, using synaptonemal complex analysis, FISH, sex reversal and gynogenesis[J]. Aquaculture. 2003, 221(2): 125-140.
    [106] Scott A G, Penman D J, Beardmore J A, et al. The‘YY’supermale in Oreochromis niloticus (L.) and its potential in aquaculture[J]. Aquaculture. 1989, 78(3): 237-251.
    [107] Ezaz M T, Myers J M, Powell S F, et al. Sex ratios in the progeny of androgenetic and gynogenetic YY male Nile tilapia, Oreochromis niloticus L.[J]. Aquaculture. 2004, 232(2): 205-214.
    [108] Mims S D, Shelton W L, Linhart O, et al. Induced meiotic gynogenesis of paddlefish Polyodon spathula[J]. Journal of the World Aquaculture Society. 1997, 28(4): 334-343.
    [109] Pongthana N, Penman D J, Karnasuta J, et al. Induced gynogenesis in the silver barb (Puntius gonionotus Bleeker) and evidence for female homogamety[J]. Aquaculture. 1995, 135(4): 267-276.
    [110] Pongthana N, Penman D J, Baoprasertkul P, et al. Monosex female production in the silver barb (Puntius gonionotus Bleeker)[J]. Aquaculture. 1999, 173(1-4): 247-256.
    [111] Chakraborty B K, Miah M I, Mirja M J A, et al. Induction of gynogenesis in endangered sarpunti, Puntius sarana (Hamilton) and evidence for female homogamety[J]. Aquaculture. 2006, 258(5): 312-320.
    [112] Kawamura K. Sex determination system of the rosy bitterling, Rhodeus ocellatus ocellatus[J]. Environmental Biology of Fishes. 1998, 52(1): 251-260.
    [113] Haffray P, Petit V, Guiguen Y, et al. Successful production of monosex female brook trout Salvelinus fontinalis using gynogenetic sex reversed males by a combination of methyltestosterone immersion and oral treatments[J]. Aquaculture. 2009, 43(1): 269-278.
    [114] Colburn H R, Nardi G C, Borski R J, et al. Induced meiotic gynogenesis and sex differentiation in summer flounder (Paralichthys dentatus)[J]. Aquaculture. 2009, 289(2): 175-180.
    [115] Howell B R, Baynes S M, Thompson D. Progress towards the identification of the sex-determining mechanism of the sole, Solea solea (L.), by the induction of diploid gynogenesis[J]. Aquaculture Research. 1995, 26(2): 135-140.
    [116] Kakimoto Y, Aida S, Arai K, et al. Induction of gynogenetic diploids in ocellated pufferTakifugu rubripes [Tetrodontoidei] by cold and heat treatments[J]. Journal of the Faculty of Applied Biological Science-Hiroshima University (Japan). 1994, 33(2): 103-112.
    [117] Bengtson D A. Aquaculture of summer flounder (Paralichthys dentatus): status of knowledge, current research and future research priorities[J]. Aquaculture. 1999, 176(1-2): 39-49.
    [118]王波,张朝晖,左言明,等.牙鲆属主要经济鱼类的生物学及养殖研究概况[J].海洋水产研究. 2004, 25(5): 86-92.
    [119]王波,李继强,曹志海,等.犬齿牙鲆幼鱼呼吸耗氧率的研究[J].海洋科学进展. 2003, 21(3): 325-330.
    [120]王波,张朝晖,张杰东,等.大西洋牙鲆繁殖生物学及繁育技术研究进展[J].海洋水产研究. 2004, 25(1): 90-96.
    [121]王波,李继强,曹志海,等.大西洋牙鲆幼鱼标准代谢的初步研究[J].海洋科学进展. 2004, 22(1): 62-68.
    [122]王波,张朝晖,谭萌,等.大西洋牙鲆胚胎发育的形态观察[J].海洋科学进展. 2007, 25(2): 191-199.
    [123] Berlinsky D L, William K V, Hodson R G, et al. Hormone induced spawning of summer flounder Paralichthys dentatus[J]. Journal of the World Aquaculture Society. 1997, 28(1): 79-86.
    [124] Ji X S, Chen S L, Tian Y S, et al. Cryopreservation of sea perch (Lateolabrax japonicus) spermatozoa and feasibility for production-scale fertilization[J]. Aquaculture. 2004, 241(1-4): 517-528.
    [125]陈松林.鱼类精子和胚胎冷冻保存的理论与技术[M].北京:中国农业出版社, 2007.
    [126] Shao C, Xu G, Wang L, et al. New polymorphic microsatellite markers for the summer flounder, Paralichthys dentatus[J]. Conservation Genetics. 2009: in press.
    [127] Luckenbach J A, Godwin J, Daniels H V, et al. Induction of diploid gynogenesis in southern flounder (Paralichthys lethostigma) with homologous and heterologous sperm[J]. Aquaculture. 2004, 237(1): 499-516.
    [128]戈文龙,张全启,齐洁,等.异源精子诱导牙鲆雌核发育二倍体[J].中国海洋大学学报. 2005, 35(6): 1011-1016.
    [129] Felip A, Zanuy S, Carrillo M, et al. Induction of triploidy and gynogenesis in teleost fishwith emphasis on marine species[J]. 2001.
    [130] Adam L J, Godwin J, Daniels H V, et al. Induction of diploid gynogenesis in southern flounder (Paralichthys lethostigma) with homologous and heterologous sperm[J]. 2004.
    [131]戈文龙,张全启,齐洁,等.异源精子诱导牙鲆雌核发育二倍体[J]. 2005.
    [132] Devlin R H, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences[J]. Aquaculture. 2002, 208(3-4): 191-364.
    [133] Rountree R A, Able K W. Foraging Habits, Growth, and Temporal Patterns of Salt-Marsh Creek Habitat Use by Young-of-Year Summer Flounder in New Jersey[J]. Transactions of the American Fisheries Society. 1992, 121(6): 765-776.
    [134] Daniels H V, Berlinsky D L, Hodson R G, et al. Effects of stocking density, salinity, and light intensity on growth and survival of southern flounder Paralichthys lethostigma larvae[J]. Journal of the World Aquaculture Society. 1996, 27(2): 153-159.
    [135] Berlinsky D L, King V W, Smith T, et al. Induced ovulation of southern flounder Paralichthys lethostigma using gonadotropin releasing hormone analogue implants[J]. Journal of the World Aquaculture Society. 1996, 27(2): 143-152.
    [136] Denson M R, Smith T. Diet and light intensity effects on survival, growth and pigmentation of southern flounder Paralichthys lethostigma[J]. Journal of the World Aquaculture Society. 1997, 28(4): 366-373.
    [137] Lasswell J L, Lyons B W, Bailey W H. Hormone-induced spawning of southern flounder[J]. The Progressive Fish-Culturist. 1978, 40(4): 154.
    [138] Berlinsky D L, King V W, Smith T, et al. Induced ovulation of southern flounder Paralichthys lethostigma using gonadotropin releasing hormone analogue implants[J]. Journal of the World Aquaculture Society. 1996, 27(2): 143-152.
    [139]桂建芳,肖武汉.静水压休克诱导水晶彩鲫三倍体和四倍体的细胞学机理初探[J].水生生物学报. 1995, 19(001): 49-55.
    [140] Morgan A J, Murashige R, Woolridge C A, et al. Effective UV dose and pressure shock for induction of meiotic gynogenesis in southern flounder (Paralichthys lethostigma) using black sea bass (Centropristis striata) sperm[J]. Aquaculture. 2006, 259(1-4): 290-299.
    [141] Adam Luckenbach J, Godwin J, Daniels H V, et al. Induction of diploid gynogenesis insouthern flounder (Paralichthys lethostigma) with homologous and heterologous sperm[J]. Aquaculture. 2004, 237(1-4): 499-516.
    [142] Piferrer F, Cal R M, Gómez C, et al. Induction of gynogenesis in the turbot (Scophthalmus maximus): Effects of UV irradiation on sperm motility, the Hertwig effect and viability during the first 6 months of age[J]. Aquaculture. 2004, 238(1-4): 403-419.
    [143] Zhu X P, You F, Zhang P J, et al. Effects of hydrostatic pressure on microtubule organization and cell cycle in gynogenetically activated eggs of olive flounder (Paralichthys olivaceus)[J]. Theriogenology. 2007, 68(6): 873-881.
    [144]王伟,尤锋,高天翔,等.人工诱导牙鲆异质雌核发育群体的微卫星标记分析[J].高技术通讯. 2005, 15(007): 107-110.
    [145]朱晓琛,刘海金,孙效文,等.微卫星评价牙鲆雌核发育二倍体纯合性[J].动物学研究. 2006, 27(001): 63-67.
    [146] Peruzzi S, Chatain B, Saillant E, et al. Production of meiotic gynogenetic and triploid sea bass, Dicentrarchus labrax L.: 1. Performances, maturation and carcass quality[J]. Aquaculture. 2004, 230(1): 41-64.
    [147] Chen S L, Tian Y S, Yang J F, et al. Artificial Gynogenesis and Sex Determination in Half-Smooth Tongue Sole (Cynoglossus semilaevis)[J]. Marine Biotechnology. : 1-9.
    [148] Sundin K, Brown K H, Drew R E, et al. Genetic analysis of a development rate QTL in backcrosses of clonal rainbow trout, Oncorhynchus mykiss[J]. Aquaculture. 2005, 247: 75-83.
    [149] Lahrech Z, Kishioka C, Morishima K 1, et al. Genetic verification of induced gynogenesis and microsatellite–centromere mapping in the barfin flounder, Verasper moseri[J]. Aquaculture. 2007, 272(3): S115-S124.
    [150]姜言伟,刘英林.渤海半滑舌鳎人工育苗工艺技术的研究[J].海洋水产研究. 1993(14): 25-33.
    [151]柳学周,徐永江,马爱军,等.温度,盐度,光照对半滑舌鳎胚胎发育的影响及孵化条件调控技术研究[J].海洋水产研究. 2004, 25(6): 1-6.
    [152] Chen S L, Li J, Deng S P, et al. Isolation of female-specific AFLP markers and molecular identification of genetic sex in half-smooth tongue sole (Cynoglossus semilaevis)[J]. Marine Biotechnology. 2007, 9(2): 273-280.
    [153]李静,陈松林,邓思平,等.半滑舌鳎雌性特异扩增片段长度多态性标记的筛选与应用[J].水产学报. 2007, 31(5): 591-597.
    [154]邓思平,陈松林,田永胜,等.半滑舌鳎的性腺分化和温度对性别决定的影响[J].中国水产科学. 2007, 14(5): 714-719.
    [155] Liao X, Shao C W, Tian Y S, et al. Polymorphic dinucleotide microsatellites in tongue sole (Cynoglossus semilaevis)[J]. Molecular Ecology Notes. 2007, 7(6): 1147-1149.
    [156]沙珍霞,陈松林,叶寒青,等.适合花鲈的几种染色体制备方法的比较[J].中国水产科学. 2003, 10(6): 469-473.
    [157] Chen S L, Sha Z X, Ye H Q. Establishment of a pluripotent embryonic cell line from sea perch (Lateolabrax japonicus) embryos[J]. Aquaculture. 2003, 218(1-4): 141-151.
    [158] Varadi L, Benks I, Varga J, et al. Induction of diploid gynogenesis using interspecific sperm and production of tetraploids in African catfish, Clarias gariepinus Burchell (1822)[J]. Aquaculture. 1999, 173(2): 401-411.
    [159] Yamamoto E. Studies on sex-manipulation and production of cloned populations in hirame, Paralichthys olivaceus (Temminck et Schlegel)[J]. Aquaculture. 1999, 173(1-4): 235-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700