神经甾体激素硫化孕烯醇酮和脱氢表雄酮对AD脑神经再生的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     在成年啮齿类和某些哺乳动物脑内,存在神经干细胞和神经前体细胞,这类细胞具有终生自我更新的能力,可以分化为神经细胞——成年神经发生(Neurogenesis)。在海马齿状回,这些新生神经元显示了与成熟颗粒细胞相同的形态和功能特征,能与CA3区神经元和内嗅皮层的传入纤维建立突触联系,诱发突触传递和可塑性。特别是海马齿状回的神经发生已被证实与空间认知功能密切相关,如新生神经元数量增多能提高学习记忆功能,而阻碍成年神经发生则造成记忆功能减退。因此,成年海马的新生神经元被认为能取代自然老化或病变的神经元,最大限度地维护脑的结构和功能。
     阿尔茨海默病(Alzheimer’s disease, AD)是一种以进行性认知功能障碍为特征的神经退行性疾病。新生神经元是否能替代病变的神经元——神经再生,改善认知功能障碍已成为目前AD研究的一个新焦点。神经发生过程主要包括干细胞增殖、前体细胞存活和分化、新生神经元的成熟、突触形成和神经回路整合4个阶段。研究发现,AD患者脑内海马的干细胞增殖有增加的趋势。在APP转基因的小鼠,前体细胞向神经元的分化比例明显减少,同时新生神经元的存活率显著降低。我们的早期研究已报道,β-淀粉肽(β-amyloid, Aβ)25-35片段(Aβ25-35)侧脑室注射能损害新生神经元的突起生长,导致新生神经细胞死亡。这些结果都提示,AD脑神经再生过程的破坏可能是认知功能进行性减退的重要病理机制之一。但是,迄今有关AD脑的神经再生过程仍然缺乏系统性的研究。
     在啮齿类动物,中枢神经元能自身合成甾体激素——神经甾体激素。硫化孕烯醇酮(pregnenolone sulfat, PREGS)和脱氢表雄酮(dehydroepiandrosterone, DHEA)是中枢神经系统中含量最丰富、活性最强的神经甾体激素。早期的研究报道,DHEA能促进大鼠海马齿状回新生神经元的存活,也可以拮抗皮质酮抑制神经干细胞增殖的作用。我们的研究已报道PREGS能促进成年大鼠海马齿状回的神经发生,能增强新生神经元的传入兴奋性(增加新生神经元的突触前谷氨酸释放)。临床研究发现,与同年龄非认知障碍的人群相比,AD患者脑内PREGS浓度明显降低,而DHEA的浓度却有增加趋势。AD脑内PREGS和DHEA浓度的变化是否影响神经再生的过程,迄今仍未见有明确的报道。
     目的
     1、采用APPswe/PS1dE9转基因小鼠(简称APP/PS1小鼠),确定Aβ过表达对海马齿状回神经再生过程(包括增殖、分化、迁移、突起生长和成熟)的影响;
     2、探讨PREGS和DHEA的处理是否对Aβ损害海马神经再生有作用。
     实验方法
     1、AD动物模型的准备:将生后8月龄APP/PS1小鼠作为AD的实验动物模型。用剪尾提取DNA进行PCR扩增的方法来鉴定基因型。用Aβ免疫组织化学染色的方法,检测APP/PS1小鼠脑的老年斑生成;用“Morris”水迷宫实验,检查APP/PS1小鼠的空间记忆功能。
     2、检测小鼠海马齿状回的神经再生过程(包括增殖、分化、迁移、突起生长和成熟)。用BrdU(5-溴-2-脱氧尿嘧啶核苷)连续12天皮下注射标记有丝分裂的细胞。分别在BrdU末次注射后24小时,第14天和第28天,进行BrdU免疫组织化学染色,分别进行海马齿状回1天龄-BrdU阳性细胞(BrdU+细胞)、14天龄-BrdU+细胞和28天龄-BrdU+细胞的计数。
     3、分别用神经特异性核蛋白(Neuron-specific protein, NeuN)或胶质纤维酸性蛋白(Glial fibrillary acidic protein, GFAP)与BrdU双标记免疫荧光染色,检测海马齿状回新生神经细胞的分化和成熟。
     4、采用增殖细胞核抗原(Proliferating cell nuclear antigen, Ki67)染色,检测海马齿状回神经干细胞的增殖。
     5、用doublecortin (DCX)免疫组织染色,检测新生神经元突起的长度和密度。
     6、分别给8月龄APP/PS1小鼠进行PREGS或DHEA处理,探讨和比较两种神经甾体激素对APP/PS1小鼠海马齿状回神经再生过程(包括增殖、分化、迁移、突起生长和成熟)的影响;
     7、用Morris水迷宫实验法检测空间学习记忆功能。探讨PREGS或DHEA改变APP/PS1小鼠的神经再生对空间认知障碍的作用。
     结果
     1、与同窝或同周龄的野生型小鼠相比,8月龄APP/PS1小鼠的大脑皮层和海马区域出现大量的老年斑,并表现水迷宫登台潜伏期的明显延长;
     2、与对照组小鼠相比,APP/PS1小鼠海马齿状回的1天龄BrdU+细胞数量增加约30%,而14天龄BrdU+细胞数量两组之间无统计学意义,但是28天龄BrdU+细胞数量减少约50%;
     3、与对照组小鼠相比,APP/PS1小鼠海马齿状回的Ki67免疫阳性(Ki67+)细胞数量显著增加;但是DCX免疫阳性(DCX+)细胞的突起长度显著减小,而DCX+细胞数量两组之间无统计学差异;BrdU和NeuN免疫反应双阳性(BrdU+/NeuN+)细胞数量显著减少,而BrdU和GFAP免疫反应双阳性(BrdU+/GFAP+)细胞数量两组之间无统计学差异。
     4、PREGS和DHEA并不影响APP/PS1小鼠的神经干细胞的过增殖;但是PREGS和DHEA保护APP/PS1小鼠新生神经元的突起生长;而只有PREGS能保护APP/PS1小鼠新生神经元的存活,导致BrdU+/NeuN+细胞增加;
     5、PREGS能改善APP/PS1小鼠水迷宫登台潜伏期的延长。
     结论
     1、Aβ刺激海马齿状回干细胞的增殖,但是不影响神经前体细胞的分化。Aβ损害新生神经元的突起生长和新生神经元的存活,导致成熟的新生神经元减少。
     2、PREGS或DHEA能保护APP/PS1小鼠海马新生神经元的突起生长,但是只有PREGS能保护APP/PS1小鼠海马新生神经元的存活,并改善APP/PS1小鼠的空间认知功能。本论文的结果提示,AD脑的PREGS水平降低可能与神经再生障碍的发生有关;PREGS治疗有可能缓解AD患者的痴呆症状。
Introduction
     It is widely accepted that the mammalian brain produces continuously newborn neurons in the hippocampal dentate gyrus (DG) throughout the adult life with a comparative rate as that of mature granular cells death. It has been implicated that the adult hippocampal neurogenesis plays an important role in the regulation of cognition. Hippocampal neurogenesis decreases drastically during aging in rodents, and this decline in neurogenic capacity has been suggested to underlie cognitive deterioration in aged animals. Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is characterized by selective damage in the cognitive function. The number of immature newborn neurons is increased in the hippocampus of AD patients and model with Swedish and Indiana amyloid precursor protein mutations. It is also known that the overproduction and subsequent aggregation of Aβlimit the survival of hippocampal newborn neurons. Thus, it is speculated that the impaired hippocampal neurogenesis might be one of the causes for cognitive deterioration in AD.
     Neurosteroids dehydroepiandrosterone (DHEA) and pregnenolone sulfate (PREGS) are synthesized in the rodent brain independently of peripheral glandular sources. Previous study reported that DHEA could increase the number of newly generated neurons in rat hippocampal dentate gyrus and antagonize the suppressive effect of corticosterone on neuronal precursor proliferation. PREGS is also known to facilitate the production of new neurons, which takes place during early development and throughout life within specific brain regions such as the dentate gyrus of the hippocampus. Specially, PREGS influences the developmental processes of neural circuit formation through strengthening immature excitatory synapses in the hippocampus. Even in old rats, PREGS stimulates neurogenesis in the dentate gyrus. Recently, correlation between the decreased level of brain neurosteroids and neuronal degeneration in AD patients has been paid close attention. Interestingly, the level of DHEA increases in AD patients, although synthesis of brain DHEA declines with normal aging. The level of PREGS decreases in AD patients’brain in comparison with that of age-matched non-demented controls.
     Objective
     (1) To determine the changes in the hippocampal neurogenesis in male mice over-expressing amyloid precursor protein (APP) and presenilin-1 (PS1) (APP/PS1 mice).
     (2) To explore the effects of neurosteroids PREGS or DHEA on neurogenesis and the impairment of spatial memory in APP/PS1 mice.
     Materials and Methods
     1. Preparation of an animal model: APP/PS1 mice were obtained from Jackson Laboratory (Bar Harbor, ME, USA). The genotyping for APP/PS1 mice was performed by polymerase chain reaction (PCR) method recommended by the Jackson Laboratory, using tissue samples from tail of mice. The APP/PS1 mice were generated by crossing transgenic mice with B6C3F1 mice and characterized as described previously.
     2. Drug administration: Proliferating cells were labeled by bromodeoxyuridine (BrdU). DHEA and PREGS at 20 mg/kg concentration were injected (i.p.) once daily.
     3. Immunohistochemistry: Aβ、Ki67、BrdU and Doublecortin immuno-reactivities were visualized by avidin-biotin horseradish peroxidase complex. BrdU and NeuN or GFAP double immunostaining. And quantitative evaluation of immuno-positive cells.
     4. Behavioral Analysis: Morris water maze task.
     Results
     1、8-month-old APP/PS1 mice showed the extracellular deposition of Aβ, amyloid plaques in hippocampus and spatial memory impairment
     2、Comparison with control rats, in the hippocampal dentate gyrus of 8-month-old APP/PS1 mice the proliferation of progenitor cells increased, while the neurite growth and survival of newborn neuronal cells were markedly impaired.
     3、Either PREGS or DHEA could perfectly rescue the hypoplastic neurite of newborn neurons in APP/PS1 mice, whereas neither of them affected the over-proliferation of progenitor cells.
     4、Notably, PREGS but not DHEA could protect the survival of newborn neuronal cells to approach maturation in APP/PS1 mice.
     5、The protection of hippocampal neurogenesis in APP/PS1 mice treated with PREGS was accompanied with an improvement of spatial learning and memory.
     Conclusion
     The present study provides in vivo evidence that the treatment with either PREGS or DHEA could rescue the impaired neurite of newborn neurons, but only PREGS perfectly protected the survival and maturation of newly generated neuronal cells in APP/PS1 mice. The protection of PREGS against Aβ-impaired neurogenesis had a definite effect on improving cognitive deterioration in APP/PS1 mice.
引文
[1]Palmer AM. Pharmacotherapy for Alzheimer's disease: progress and prospects. Trends Pharmacol Sci., 2002, 23:426-433.
    [2]Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 2003, 60:1119-1122.
    [3]Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R. How common are the“common”neurologic disorders? Neurology 2007, 68:326-337.
    [4]Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat Med, 1998, 4:1313–1317.
    [5]Christie BR, Cameron HA. Neurogenesis in the adult hippocampus. Hippocampus, 2006, 16:199–207.
    [6]Laga AC, Zhan Q, Weishaupt C, Ma J, Frank MH, Murphy GF. SOX2 and nestin expression in human melanoma: an immunohistochemical and experimental study. Exp Dermatol., 2011, 20:339-345.
    [7]Zhao C, Teng EM, Summers RG Jr, Ming GL, Gage FH. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci., 2006, 26:3-11.
    [8]Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature, 2001, 410:372–376.
    [9]Markakis E, Gage F. Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol, 1999, 406:449–460.
    [10]Leuner B, Gould E, Shors TJ. Is there a link between adult neurogenesis and learning? Hippocampus, 2006, 16:216–224.
    [11]van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature, 2002, 415:1030-1034.
    [12]Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 2004, 429:184-187.
    [13]Winocur G, Wojtowicz JM, Sekeres M, Snyder JS, Wang S. Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus, 2006, 16:296–304.
    [14]Kempermann G, Kuhn HG, Gage FH. Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci, 1998, 18:3206 -3212.
    [15]Zhang Z, Yang R, Zhou R, Li L, Sokabe M, Chen L. Progesterone promotes the survival of newborn neurons in the dentate gyrus of adult male mice. Hippocampus, 2010, 20:402-412
    [16]Jin K, Galvan V, Xie L, Mao XO, Gorostiza OF, Bredesen DE, Greenberg DA. Enhanced neurogenesis in Alzheimer’s disease transgenic (PDGF-APPSw,Ind) mice. Proc Natl Acad Sci USA, 2004a, 101:13360-13367.
    [17]Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA, 2004b, 101:343-347.
    [18]Zhang C, McNeil E, Dressler L, Siman R. Long-lasting impairment in hippocampal neurogenesis associated with amyloid deposition in a knock-in mouse model of familial Alzheimer’s disease. Exp Neurol, 2007, 204:77-87.
    [19]Verret L, Jankowsky JL, Xu GM, Borchelt DR, Rampon C. Alzheimer’s-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. J Neurosci, 2007, 27:6771-6780.
    [20]Donovan MH, Yazdani U, Norris RD, Games D, German DC, Eisch AJ. Decreased adult hippocampal neurogenesis in the PDAPP mouse model ofAlzheimer's disease. J. Comp. Neurol., 2006, 495:70-83.
    [21]Chen L, Wang HF, Zhang Z, Li Z, He DJ, Sokabe M, Chen L. DMXB (GTS-21) ameliorates the cognitive deficits in beta amyloid(25-35(-) ) injected mice through preventing the dysfunction of alpha7 nicotinic receptor. J. Neuroscience Res., 2010, 88(8):1784-1794.
    [22]Charalampopoulos I, Remboutsika E, Margioris AN, Gravanis A. Neurosteroids as modulators of neurogenesis and neuronal survival. Trends. Endocrinol. Metab, 2008, 19:300-307.
    [23]Selkoe DJ. Deciphering the genesis and fate of amyloid beta-protein yields novel therapies for Alzheimer disease. J Clin Invest, 2002, 110:1375-1381.
    [24]Li L, Xu BZ, Zhu Y, Chen L, Sokabe M, Chen L. DHEA prevents Aβ25-35-impaired survival of newborn neurons in the dentate gyrus through a modulation of PI3K-Akt-mTOR signaling. Neuropharmacology, 2010, 59:323-333.
    [25]Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomolecular Engineering, 2001, 17:157-165.
    [26]Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol, 2000, 182:311-322.
    [27]Kempermann G, Jessberger S, Steiner B, Kronenberg G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci, 2004, 27:447-452.
    [28]Rao MS, Shetty AK. Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci, 2004, 19:234-246.
    [29]Gan L, Qiao S, Lan X, Chi L, Luo C, Lien L, Yan Liu Q, Liu R. Neurogenic responses to amyloid-beta plaques in the brain of Alzheimer’s disease-like transgenic (pPDGF-APP(Sw Ind)) mice. Neurobiol. Dis., 2008, 29:71-80.
    [30]Naylor M, Bowen KK, Sailor KA, Dempsey RJ, Vemuganti R. Preconditioning-induced ischemic tolerance stimulates growth factor expression and neurogenesis in adult rat hippocampus. Neurochem Int, 2005, 47:5655-5672.
    [31]Takasawa K, Kitagawa K, Yagita Y, Sasaki T, Tanaka S, Matsushita K, Ohstuki T, Miyata T, Okano H, Hori M, Matsumoto M. Increased Proliferation of Neural Progenitor Cells but Reduced Survival of Newborn Cells in the Contralateral Hippocampus After Focal Cerebral Ischemia in Rats. J Cereb Blood Flow Metab, 2002, 22:299-307.
    [32]Blumcke I, Thom M, Wiestler OD. Ammon's horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol., 2002, 12:199-211.
    [33]Areechun Sotthibundhu, Qiao-Xin Li, Wipawan Thangnipon, Elizabeth J. Coulson. Aβ1-42 stimulates adult SVZ neurogenesis through the p75 neurotrophin receptor. Neurobiology of Aging, 2009, 30:1975-1985.
    [34]Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 2002, 110:163-175.
    [35]Bhaskar PT, Hay N. The two TORCs and Akt. Dev Cell, 2007, 12:487-502.
    [36]Wullschleger S, Loewith R, Oppliger W, Hall MN. Molecular organization of target of rapamycin complex 2. J Biol Chem., 2005, 280:30697-30704.
    [37]Yankner BA, Dawes LR, Fisher S, Villa-Komaroff L, Oster-Granite ML, Neve RL. Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science, 1989, 245:417– 420.
    [38]Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW. Neurodegeneration induced byβ-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci, 1993, 13:1676–1687.
    [39]Lee A Selznick, Timothy S Zheng, Richard A Flavell, Pasko Rakic, Kevin A.Roth. Amyloid Beta-Induced Neuronal Death is Bax-Dependent but Caspase-Independent. Journal of Neuropathology and Experimental Neurology, 2000, 59: 271-279.
    [40]Haughey NJ, Nath A, Chan SL, Borchard AC, Rao MS, Mattson MP. Disruption of neurogenesis by amyloid betapeptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem, 2002, 83:1509-1524.
    [41]Oppenheim RW. Cell death during development of the nervous system. Annu. Rev Neuroscience, 1991, 14:453-501.
    [42]Marcus J. Calkins, P. Hemachandra Reddy. Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer's disease neurons. Biochimica et Biophysica Acta, 2011, 1812:507-513.
    [43]Connor B, Dragunow M. The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res. Brain Rev., 1998, 27: 1-39.
    [44]Chevallier NL, Soriano S, Kang DE, Masliah E, Hu G, Koo EH. Perturbed neurogenesis in the adult hippocampus associated with presenilin-1 A246E mutation. Am. J. Pathol., 2005, 167:151-159.
    [45]Qian Chen, Akira Nakajima, Se Hoon Choi, Xiaoli Xiong, Sangram S Sisodia, Ya-Ping Tang. Adult neurogenesis is functionally associated with AD-like neurodegeneration. Neurobiology of Disease, 2008, 29:316-326.
    [1]Baulieu EE, Robel P, Schumacher M. Neurosteroids: beginning of the story. Int. Rev. Neurobiol., 2001, 46:1-32.
    [2]Belelli D, Herd MB, Mitchell EA, Peden DR, Vardy AW, Gentet L, Lambert JJ. Neuroactive steroids and inhibitory neurotransmission: mechanisms of action and physiological relevance. Neuroscience, 2006, 138:821-829.
    [3]Schumacher M, Guennoun R, Ghoumari A, Massaad C, Robert F, El-Etr M, Akwa Y, Rajkowski K, Baulieu EE. Novel perspectives for progesterone in hormone replacement therapy, with special reference to the nervous system. Endocr. Rev., 2007, 28:387-439.
    [4]Charalampopoulos I, Remboutsika E, Margioris AN, Gravanis A. Neurosteroids as modulators of neurogenesis and neuronal survival. Trends. Endocrinol. Metab, 2008, 19:300-307.
    [5]Kimoto T, Tsurugizawa T, Ohta Y, Makino J, Tamura H, Hojo Y, Takata N, Kawato S. Neurosteroid synthesis by cytochrome p450-containing systems localized in the rat brain hippocampal neurons: N-methyl-D-aspartate and calcium-dependent synthesis. Endocrinology, 2001, 142:3578-3589.
    [6]Compagnone NA, Mellon SH. Dehydroepiandrosterone: a potential signalling molecule for neocortical organization during development. Proc. Natl. Acad. Sci. U. S. A., 1998, 95:4678-4683.
    [7]MacLusky NJ, Hajszan T, Leranth C. Effects of dehydroepiandrosterone and flutamide on hippocampal CA1 spine synapse density in male and female rats: implications for the role of androgens in maintenance of hippocampal structure. Endocrinology, 2004, 145:4154-4161.
    [8]Hajszan T, MacLusky NJ, Leranth C. Dehydroepiandrosterone increases hippocampal spine synapse density in ovariectomized female rats. Endocrinology, 2004, 145:1042-1045.
    [9]Karishma KK, Herbert J. Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression. Eur. J. Neurosci., 2002, 16:445-453.
    [10]Suzuki M, Wright LS, Marwah P, Lardy HA, Svendsen CN. Mitotic and neurogenic effects of dehydroepiandrosterone (DHEA) on human neural stem cell cultures derived from the fetal cortex. Proc. Natl. Acad. Sci. U. S. A., 2004, 101:3202-3207.
    [11]Schumacher M., Liere P., Akwa Y., Rajkowski K., Griffiths W., Bodin K., Sj?vall J., Baulieu E.E. Pregnenolone sulfate in the brain: a controversial neurosteroid. Neurochem. Int., 2008, 52, 522-540.
    [12]Vallee M, Mayo W, Darnaudery M, Corpechot C, Young J, Koehl M, LeMoal M, Baulieu E, Robel R, Simon H. Neurosteroids: deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc. Natl. Acad. Sci. U.S.A., 1997, 94:14865-14870.
    [13]Maurice T, Su TP, Privat A. Sigma (σ1) receptor agonist and neurosteroids attenuateβ25-35-amyloid peptide-induced amnesia in mice through a common mechanism. Neuroscience, 1998, 83:413-428.
    [14]Sliwinski A., Monnet F.P., Schumacher M., Morin-Surun M.P. Pregnenolone sulfate enhances long-term potentiation in CA1 in rat hippocampus slices through the modulation of N-methyl-D-aspartate receptors. J. Neurosci. Res., 2004, 78, 691-701.
    [15]Mameli M, Carta M, Partridge LD, Valenzuela CF. Neurosteroid induced plasticity of immature synapses via retrograde modulation of presynaptic NMDAreceptors. J Neuroscience, 2005, 25:2285-2294.
    [16]Monnet F.P., Mahe V., Robel P., Baulieu E.E. Neurosteroids, via sigma receptors, modulate the [3H]norepinephrine release evoked by N-methyl-Daspartate in the rat hippocampus. Proc. Natl. Acad. Sci. U.S.A., 1995, 92:3774-3778.
    [17]Hige T., Fujiyoshi Y., Takahashi T. Neurosteroid pregnenolone sulfate enhances glutamatergic synaptic transmission by facilitating presynaptic calcium currents at the calyx of Held of immature rats. Eur. J. Neurosci., 2006, 24, 1955-1966.
    [18]Chen L, Sokabe M. Presynaptic modulation of synaptic transmission by pregnenolone sulfate as studied by optical recordings. J Neurophysiology, 2005, 94:4131-4144.
    [19]Mayo W, Lemaire V, Malaterre J, Rodriguez JJ, Cayre M, Stewart MG, Kharouby M, Rougon G, Le Moal M, Piazza PV, Abrous DN. Pregnenolone sulfate enhances neurogenesis and PSA-NCAM in young and aged hippocampus. Neurobiology of Aging, 2005, 26:103-114.
    [20]Jin K, Galvan V, Xie L, Mao XO, Gorostiza OF, Bredesen DE, Greenberg DA. Enhanced neurogenesis in Alzheimer’s disease transgenic (PDGF-APPSw,Ind) mice. Proc Natl Acad Sci USA, 2004a, 101:13360-13367.
    [21]Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA, 2004b, 101:343-347.
    [22]Bizon JL, Gallagher M. Production of new cells in the rat dentate gyrus over the lifespan: relation to cognitive decline. Eur J Neurosci, 2003, 18:215-219.
    [23]Mayo W, George O, Darbra S, Bouyer JJ, Vallee M, Darnaudery M, Pallarès M, Lemaire-Mayo V, Le Moal M, Piazza PV, Abrous N. Individual differences in cognitive aging: implication of pregnenolonesulfate. Prog Neurobiol, 2003, 71:43-48.
    [24]Yang R, Rong Zhou, Lei Chen, Weiyan Cai, Hidekazu Tomimoto, MasahiroSokabe, Chen L. Pregnenolone sulfate enhances survival of adult-generated hippocampal granule cells via sustained presynaptic potentiation. Neuropharmacology, 2011, 60:529-541.
    [25]Weill-Engerer S, David JP, Sazdovitch V, Liere P, Eychenne B, Pianos A, Schumacher M, Delacourte A, Baulieu EE, Akwa Y. Neurosteroid quantification in human brain regions: comparison between Alzheimer’s and nondemented patients. J Clin Endocrinol Metab, 2002, 87:5138-5143.
    [26]Naylor JC, Kilts JD, Hulette CM, Steffens DC, Blazer DG, Ervin JF, Strauss JL, Allen TB, Massing MW, Payne VM, Youssef NA, Shampine LJ, Marx CE. Allopregnanolone levels are reduced in temporal cortex in patients with Alzheimer's disease compared to cognitively intact control subjects. Biochim Biophys Acta, 2010, 1801:951-959.
    [27]Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomolecular Engineering, 2001, 17:157-165.
    [28]Zhang Z, Yang R, Zhou R, Li L, Sokabe M, Chen L. Progesterone promotes the survival of newborn neurons in the dentate gyrus of adult male mice. Hippocampus, 2010, 20:402-412
    [29]Liu L, Chen L, Chung J, Huang S. Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins. Oncogene, 2008, 27:4998-5010.
    [30]Li L, Xu BZ, Zhu Y, Chen L, Sokabe M, Chen L. DHEA prevents Aβ25-35-impaired survival of newborn neurons in the dentate gyrus through a modulation of PI3K-Akt-mTOR signaling. Neuropharmacology, 2010, 59:323-333.
    [31]Monnet FP, Maurice T. The sigma-1 protein as a target for the nongenomic effects of neuro(active)steroids: molecular, physiological, and behavioral aspects. J Pharmacol Sci, 2006, 100:93-118.
    [32]Oppenheim RW. Cell death during development of the nervous system. Annu. Rev Neuroscience, 1991, 14:453-501.
    [33]Tashiro A, Sandler VM, Toni N, Zhao C, Gage FH. NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature, 2006, 442:929-933.
    [34]Liu QS, Kawai H, Berg DK. bata-Amyloid peptide blocks the response ofα7- containing nicotinic receptors on hippocampal neurons. Proc Natl Acad Sci USA, 2001, 98:4734-4739.
    [35]Gray R, Rajan A, Radcliffe K, Yakehiro M, Dani J. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature, 1996, 383:713-716.
    [36]Chen L, Yamada K, Nabeshima T, Sokabe M. alpha7 Nicotinic acetylcholine receptor as a target to rescue deficit in hippocampal LTP induction in beta-amyloid infused rats. Neuropharmacology, 2006, 50:254-268.
    [37]Jin Y, Yan EZ, Fan Y, Zong ZH, Qi ZM, Li Z. Sodium ferulate prevents amyloid-beta-induced neurotoxicity through suppression of p38 MAPK and upregulation of ERK-1/2 and Akt/protein kinase B in rat hippocampus. Acta Pharmacol Sin, 2005, 26:943-951.
    [38]Shimohama S. Nicotinic receptor-mediated neuroprotection in neurodegenerative disease models. Biol Pharm Bull, 2009, 32:332-336.
    [39]Zhang L, Li B, Ma W, Barker JL, Chang YH, Zhao W, Rubinow DR. Dehydroepiandrosterone (DHEA) and its sulfated derivative (DHEAS) regulate apoptosis during neurogenesis by triggering the Akt signaling pathway in opposing ways. Brain Res Mol Brain Res, 2002, 98:58-66.
    [40]Meyer EM, Tay ET, Papke RL, Meyers C, Huang GL, de Fiebre CM. 3-[2,4-Dimethoxybenzylidene]anabaseine (DMXB) selectively activates rat alpha7 receptors and improves memory-related behaviors in a mecamylamine-sensitivemanner. Brain Res., 1997, 768:49-56.
    [41]Leuner B, Gould E, Shors TJ. Is there a link between adult neurogenesis and learning? Hippocampus, 2006, 16:216–224.
    [42]Drapeau E, Mayo W, Aurousseau C, Le Moal M, Piazza PV, Abrous DN. Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci USA, 2003, 100:14385-14390.
    [43]Zhao C, Teng EM, Summers RG Jr, Ming GL, Gage FH. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neuroscience, 2006, 26:3-11.
    [44]Toni N, Laplagne DA, Zhao C, Lombardi G, Ribak CE, Gage FH, Schinder AF. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neuroscience, 2008, 11:901-907.
    [45]van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature, 2002, 415:1030-1034.
    [46]Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 2004, 429:184-187.
    [47]Flood JF, Morley JE, Roberts E. Pregnenolone sulfate enhances posttraining memory processes when injected in very low doses into limbic system structures: the amygdala is by far the most sensitive. Proc Natl Acad Sci USA, 1995, 92:10806-10810.
    [1]Baulieu EE, Robel P, Schumacher M. Neurosteroids: beginning of the story. Int. Rev. Neurobiol., 2001, 46:1–32.
    [2]Belelli D, Herd MB, Mitchell EA, Peden DR, Vardy AW, Gentet L, Lambert JJ. Neuroactive steroids and inhibitory neurotransmission: mechanisms of action and physiological relevance. Neuroscience, 2006, 138:821–829.
    [3]Schumacher M, Guennoun R, Ghoumari A, Massaad C, Robert F, El-Etr M, Akwa Y, Rajkowski K, Baulieu EE. Novel perspectives for progesterone in hormonereplacement therapy, with special reference to the nervous system. Endocr. Rev., 2007, 28:387–439.
    [4]Compagnone NA, Bulfone A, Rubenstein JL, Mellon SH. Steroidogenic enzyme P45Oc17 is expressed in the embryonic central nervous system. Endocrinology, 1995, 136:5212–5223.
    [5]Kibaly C, Patte-Mensah C, Mensah-Nyagan AG. Molecular and neurochemical evidence for the biosynthesis of dehydroepiandrosterone in the adult rat spinal cord. J. Neurochem., 2005, 93:1220–1230.
    [6]Mellon S.H., Vaudry H. Biosynthesis of neurosteroids and regulation of their synthesis. Int. Rev. Neurobiol., 2001, 46:33–78.
    [7]Mellon S.H., Griffin L.D. Neurosteroids: biochemistry and clinical significance. Trends Endocrinol. Metab., 2002, 13:35–43.
    [8]Compagnone N.A., Mellon S.H. Dehydroepiandrosterone: a potential signalling molecule for neocortical organization during development. Proc. Natl. Acad. Sci. U. S. A., 1998, 95:4678–4683.
    [9]Brinton R.D. The neurosteroid 3 alpha-hydroxy-5 alphapregnan-20-one induces cytoarchitectural regression in cultured fetal hippocampal neurons. J. Neurosci., 1994, 14:2763–2774.
    [10]MacLusky NJ, Hajszan T, Leranth C. Effects of dehydroepiandrosterone and flutamide on hippocampal CA1 spine synapse density in male and female rats: implications for the role of androgens in maintenance of hippocampal structure. Endocrinology, 2004, 145:4154–4161.
    [11]Hajszan T, MacLusky NJ, Leranth C. Dehydroepiandrosterone increases hippocampal spine synapse density in ovariectomized female rats. Endocrinology, 2004, 145:1042–1045.
    [12]Ibanez C, Shields SA, El-Etr M, Leonelli E, Magnaghi V, Li WW, Sim FJ, Baulieu EE, Melcangi RC, Schumacher M, Franklin RJ. Steroids and the reversal of age-associated changes in myelination and remyelination. Prog. Neurobiol., 2003, 71:49–56.
    [13]Schumacher M, Guennoun R, Robert F, Carelli C, Gago N, Ghoumari A, Gonzalez Deniselle MC, Gonzalez SL, Ibanez C, Labombarda F, Coirini H, Baulieu EE, De Nicola AF. Local synthesis and dual actions of progesterone in the nervous system: neuroprotection and myelination. Growth Horm. IGF Res., 2004, 14 (Suppl. A):S18–S33.
    [14]Baulieu E., Schumacher M. Progesterone as a neuroactive neurosteroid, with special reference to the effect of progesterone on myelination. Steroids, 2000, 65:605–612.
    [15]Jung-Testas I, Hu ZY, Baulieu EE, Robel P. Neurosteroids: biosynthesis of pregnenolone and progesterone in primary cultures of rat glial cells. Endocrinology, 1989, 125:2083–2091.
    [16]Schumacher M, Guennoun R, Mercier G, Désarnaud F, Lacor P, Bénavides J, Ferzaz B, Robert F, Baulieu EE. Progesterone synthesis and myelin formation in peripheral nerves. Brain Res. Brain Res. Rev., 2001, 37:343–359.
    [17]Ghoumari AM, Baulieu EE, Schumacher M. Progesterone increases oligodendroglial cell proliferation in rat cerebellar slice cultures. Neuroscience, 2005, 135:47–58.
    [18]Leonelli E, Bianchi R, Cavaletti G, Caruso D, Crippa D, Garcia-Segura LM, Lauria G, Magnaghi V, Roglio I, Melcangi RC. Progesterone and its derivatives are neuroprotective agents in experimental diabetic neuropathy: a multimodal analysis. Neuroscience, 2007, 144:1293–1304.
    [19]Gonzalez Deniselle MC, Garay L, Gonzalez S, Saravia F, Labombarda F, Guennoun R, Schumacher M, De Nicola AF. Progesterone modulates brainderived neurotrophic factor and choline acetyltransferase in degenerating Wobbler motoneurons. Exp. Neurol., 2007, 203:406–414.
    [20]Gago N, Akwa Y, Sananès N, Guennoun R, Baulieu EE, El-Etr M, Schumacher M. Progesterone and the oligodendroglial lineage: stage-dependent biosynthesis and metabolism. Glia, 2001, 36:295–308.
    [21]Mattson M.P. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol., 2000, 1:120–129.
    [22]Krantic S, Mechawar N, Reix S, Quirion R. Molecular basis of programmed cell death involved in neurodegeneration. Trends Neurosci., 2005, 28:670–676.
    [23]Graeber M.B., Moran L.B. Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol., 2002, 12:385–390.
    [24]Hughes R.E., Olson J.M. Therapeutic opportunities in polyglutamine disease. Nat. Med., 2001, 7:419–423.
    [25]Mehler M.F., Gokhan S. Mechanisms underlying neural cell death in neurodegenerative diseases: alterations of a developmentally-mediated cellular rheostat. Trends Neurosci., 2000, 23:599–605.
    [26]Alexi T, Borlongan CV, Faull RL, Williams CE, Clark RG, Gluckman PD, Hughes PE. Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases. Prog. Neurobiol., 2000, 60:409–470.
    [27]Rogawski M.A., Reddy D.S. Neurosteroids and infantile spasms: the deoxycorticosterone hypothesis. Int. Rev. Neurobiol., 2002, 49:199–219.
    [28]Reddy D.S., Rogawski M.A. Stress-induced deoxycorticosterone-derived neurosteroids modulate GABA(A) receptor function and seizure susceptibility. J. Neurosci., 2002, 22:3795–3805.
    [29]B(a|¨)ckstr(o|¨)m T, Andersson A, AndreéL, Birzniece V, Bixo M, Bj?rn I, Haage D, Isaksson M, Johansson IM, Lindblad C, Lundgren P, Nyberg S, Odmark IS, Str?mberg J, Sundstr?m-Poromaa I, Turkmen S, Wahlstr?m G, Wang M, Wihlb?ck AC, Zhu D, Zingmark E. Pathogenesis in menstrual cycle-linked CNS disorders. Ann. N. Y. Acad. Sci., 2003, 1007:42–53.
    [30]Guarneri P, Cascio C, Russo D, D'Agostino S, Drago G, Galizzi G, De Leo G, Piccoli F, Guarneri M, Guarneri R. Neurosteroids in the retina: neurodegenerative and neuroprotective agents in retinal degeneration. Ann. N. Y. Acad. Sci., 2003, 1007:117–128.
    [31]Stoffel-Wagner B. Neurosteroid biosynthesis in the human brain and its clinical implications. Ann. N. Y. Acad. Sci., 2003, 1007:64–78.
    [32]Barbaccia M.L. Neurosteroidogenesis: relevance to neurosteroid actions in brain and modulation by psychotropic drugs. Crit. Rev. Neurobiol., 2004, 16:67–74.
    [33]Genazzani AR, Inglese S, Lombardi I, Pieri M, Bernardi F, Genazzani AD, Rovati L, Luisi M. Long-term low-dose dehydroepiandrosterone replacement therapy in aging males with partial androgen deficiency. Aging Male, 2004, 7:133–143.
    [34]Brinton R.D., Wang J.M. Therapeutic potential of neurogenesis for prevention and recovery from Alzheimer’s disease: allopregnanolone as a proof of concept neurogenic agent. Curr. Alzheimer Res., 2006, 3:185–190.
    [35]Charalampopoulos I, Alexaki VI, Tsatsanis C, Minas V, Dermitzaki E, Lasaridis I, Vardouli L, Stournaras C, Margioris AN, Castanas E, Gravanis A. Neurosteroids as endogenous inhibitors of neuronal cell apoptosis in aging. Ann. N. Y. Acad. Sci., 2006, 1088:139–152.
    [36]Kurata K, Takebayashi M, Morinobu S, Yamawaki S. beta-estradiol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate protect againstN-methyl-Daspartate-induced neurotoxicity in rat hippocampal neurons by different mechanisms. J. Pharmacol. Exp. Ther., 2004, 311:237–245.
    [37]Belelli D., Lambert J.J. Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat. Rev. Neurosci., 2005, 6:565–575.
    [38]Weaver CE Jr, Marek P, Park-Chung M, Tam SW, Farb DH. Neuroprotective activity of a new class of steroidal inhibitors of the N-methyl-aspartate receptor. Proc. Natl. Acad. Sci. U. S. A., 1997, 94:10450–10454.
    [39]Lapchak P.A. The neuroactive steroid 3-alpha-ol-5-betapregnan-20-one hemisuccinate, a selective NMDA receptor antagonist improves behavioral performance following spinal cord ischemia. Brain Res., 2004, 997:152–158.
    [40]Kimonides VG, Khatibi NH, Svendsen CN, Sofroniew MV, Herbert J. Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc. Natl. Acad. Sci. U. S. A., 1998, 95:1852–1857.
    [41]Lockhart EM, Warner DS, Pearlstein RD, Penning DH, Mehrabani S, Boustany RM. Allopregnanolone attenuates N-methyl-Daspartate-induced excitotoxicity and apoptosis in the human NT2 cell line in culture. Neurosci. Lett., 2002, 328:33–36.
    [42]Puia G, Santi MR, Vicini S, Pritchett DB, Purdy RH, Paul SM, Seeburg PH, Costa E. Neurosteroids act on recombinant human GABAA receptors. Neuron, 1990, 4:759–765.
    [43]Puia G., Belelli D. Neurosteroids on our minds. Trends Pharmacol. Sci., 2001, 22:266–267.
    [44]Xilouri M., Papazafiri P. Anti-apoptotic effects of allopregnanolone on P19 neurons. Eur. J. Neurosci., 2006, 23:43–54.
    [45]Waters SL, Miller GW, Aleo MD, Schnellmann RG. Neurosteroid inhibition of cell death. Am. J. Physiol., 1997, 273:F869–F876.
    [46]Charalampopoulos I, Tsatsanis C, Dermitzaki E, Alexaki VI, Castanas E, Margioris AN, Gravanis A. Dehydroepiandrosterone and allopregnanolone protect sympathoadrenal medulla cells against apoptosis via antiapoptotic Bcl-2 proteins. Proc. Natl. Acad. Sci. U. S. A., 2004, 101:8209–8214.
    [47]Charalampopoulos I, Alexaki VI, Lazaridis I, Dermitzaki E, Avlonitis N, Tsatsanis C, Calogeropoulou T, Margioris AN, Castanas E, Gravanis A. G protein-associated, specific membrane binding sites mediate the neuroprotective effect of dehydroepiandrosterone. FASEB J., 2006, 20:577–579.
    [48]Djebaili M, Guo Q, Pettus EH, Hoffman SW, Stein DG. The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats. J. Neurotrauma, 2005, 22:106–118.
    [49]Swaab DF, Raadsheer FC, Endert E, Hofman MA, Kamphorst W, Ravid R. Increased cortisol levels in aging and Alzheimer’s disease in postmortem cerebrospinal fluid. J. Neuroendocrinol., 1994, 6:681–687.
    [50]Umegaki H, Ikari H, Nakahata H, Endo H, Suzuki Y, Ogawa O, Nakamura A, Yamamoto T, Iguchi A. Plasma cortisol levels in elderly female subjects with Alzheimer’s disease: a cross-sectional and longitudinal study. Brain Res., 2000, 881:241–243.
    [51]Karishma K.K., Herbert J. Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression. Eur. J. Neurosci., 2002, 16:445–453.
    [52]Suzuki M, Wright LS, Marwah P, Lardy HA, Svendsen CN. Mitotic and neurogenic effects of dehydroepiandrosterone (DHEA) on human neural stem cell cultures derived from the fetal cortex. Proc. Natl. Acad. Sci. U. S. A., 2004, 101:3202–3207.
    [53]Zhang L, Li B, Ma W, Barker JL, Chang YH, Zhao W, Rubinow DR. Dehydroepiandrosterone (DHEA) and its sulfated derivative (DHEAS) regulate apoptosis during neurogenesis by triggering the Akt signaling pathway in opposing ways. Brain Res. Mol. Brain Res., 2002, 98:58–66.
    [54]Mirescu C, Peters JD, Gould E. Early life experience alters response of adult neurogenesis to stress. Nat. Neurosci., 2004, 7:841–846.
    [55]Wang JM, Johnston PB, Ball BG, Brinton RD. The neurosteroid allopregnanolone promotes proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and protein expression. J. Neurosci., 2005, 25:4706–4718.
    [56]Wang JM, Liu L, Irwin RW, Chen S, Brinton RD. Regenerative potential of allopregnanolone. Brain Res. Rev., 2008, 57:398–409.
    [57]Keller EA, Zamparini A, Borodinsky LN, Gravielle MC, Fiszman ML. Role of allopregnanolone on cerebellar granule cells neurogenesis. Brain Res. Dev. Brain Res., 2004, 153:13–17.
    [58]Langmade SJ, Gale SE, Frolov A, Mohri I, Suzuki K, Mellon SH, Walkley SU, Covey DF, Schaffer JE, Ory DS. Pregnane X receptor (PXR) activation: a mechanism for neuroprotection in a mouse model of Niemann-Pick C disease. Proc. Natl. Acad. Sci. U. S. A., 2006, 103:13807–13812.
    [59]Sapolsky R.M. Cortisol concentrations and the social significance of rank instability among wild baboons. Psychoneuroendocrinology, 1992, 17:701–709.
    [60]Esler M, Hastings J, Lambert G, Kaye D, Jennings G, Seals DR. The influence of aging on the human sympathetic nervous system and brain norepinephrine turnover. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2002, 282:R909–R916.
    [61]Bastianetto S, Ramassamy C, Poirier J, Quirion R. Dehydroepiandrosterone (DHEA) protects hippocampal cells from oxidative stress-induced damage. Brain Res. Mol. Brain Res., 1999, 66:35–41.
    [62]Lapchak PA, Chapman DF, Nunez SY, Zivin JA. Dehydroepiandrosterone sulfate is neuroprotective in a reversible spinal cord ischemia model: possible involvement of GABA(A) receptors. Stroke, 2000, 31:1953–1956.
    [63]D'Astous M, Morissette M, Tanguay B, Callier S, Di Paolo T. Dehydroepiandrosterone (DHEA) such as 17beta-estradiol prevents MPTP-induced dopamine depletion in mice. Synapse, 2003, 47:10–14.
    [64]Tomas-Camardiel M, Sanchez-Hidalgo MC, Sanchez del Pino MJ, Navarro A, Machado A, Cano J. Comparative study of the neuroprotective effect of dehydroepiandrosterone and 17betaestradiol against 1-methyl-4-phenylpyridium toxicity on rat striatum. Neuroscience, 2002, 109:569–584.
    [65]Charalampopoulos I, Dermitzaki E, Vardouli L, Tsatsanis C, Stournaras C, Margioris AN, Gravanis A. Dehydroepiandrosterone sulfate and allopregnanolone directly stimulate catecholamine production via induction of tyrosine hydroxylase and secretion by affecting actin polymerization. Endocrinology, 2005, 146:3309–3318.
    [66]Weill-Engerer S, David JP, Sazdovitch V, Liere P, Eychenne B, Pianos A, Schumacher M, Delacourte A, Baulieu EE, Akwa Y. Neurosteroid quantification in human brain regions: comparison between Alzheimer’s and nondemented patients. J. Clin. Endocrinol. Metab., 2002, 87:5138–5143.
    [67]Schumacher M, Weill-Engerer S, Liere P, Robert F, Franklin RJ, Garcia-Segura LM, Lambert JJ, Mayo W, Melcangi RC, Parducz A, Suter U, Carelli C, Baulieu EE, Akwa Y. Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog. Neurobiol., 2003, 71:3–29.
    [68]Griffin LD, Gong W, Verot L, Mellon SH. Niemann-Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nat. Med., 2004, 10:704–711.
    [69]Forman MS, Trojanowski JQ, Lee VM. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat. Med., 2004, 10:1055–1063.
    [70]Hagg T. Molecular regulation of adult CNS neurogenesis: an integrated view. Trends Neurosci., 2005, 28:589–595.
    [71]Wegner M. Secrets to a healthy Sox life: lessons for melanocytes. Pigment Cell Res., 2005, 18:74–85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700