磺酸盐型聚丙烯酰胺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
部分水解聚丙烯酰胺(HPAM)在我国油田聚合物驱中广泛应用,取得了良好的经济和社会效益,但HPAM耐温、抗盐能力较差,不能适用于高温、高盐储层,使其应用范围受到了一定的限制。针对高温高盐油藏对驱油聚合物的要求,设计了丙烯酰胺与四种含磺酸基单体的共聚,优选出一种增粘性能最好的共聚物,采用正交试验法确定了聚合反应的最佳条件,并考察了反应时间、温度、单体加量、单体配比、引发剂加量及烘干温度等条件对聚合物水溶液粘度的影响,优选出磺酸盐型聚丙烯酰胺SPAM;采用红外光谱对SPAM进行了结构表征,用乌式粘度计测定了SPAM的特性粘数,求出了SPAM的粘均相对分子质量为515万;对SPAM的性能进行了综合评价,SPAM在较高温度下不易分解,具有良好的热稳定性,SPAM水溶液性能研究表明,相对于丙烯酰胺均聚物,SPAM水溶液具有良好的溶解、增粘、耐温、抗盐及抗剪切性能,可以满足高温高盐油藏对驱油聚合物的基本要求。为了提高SPAM的相对分子质量,室内用不同交联剂对SPAM进行了适度交联,优选出苯酚/甲醛交联剂体系,采用此交联剂体系的粘度大幅度提高,在60℃下SPAM浓度为500mg·L-1时体系的粘度为172mPa·s,且具有良好的流变性。探讨了磺酸盐型聚丙烯酰胺SPAM分子结构对其耐温抗盐性能的影响,磺酸基团的强阴离子性赋予SPAM优良的耐温与抗盐性能,为磺酸盐型聚丙烯酰胺在聚合物驱中的应用提供了依据和重要的参考数据。
Partially hydrolyzed polyacrylamide (HPAM) is widely used in polymer flooding and got a good economic and social benefit. Due to its poor temperature and salt tolerance, HPAM is not suitable to be used in high-temperature and high-salinity reservoir. In allusion to the characteristics of high-temperature and high-salinity resevior, polymerization of AM and 4 monomers with sulfonic acid group was carried respectively. And the polymer with best viscosity was chosen. Orthogonal test was carried to determine the optimal condition of polymerization. Effects of time, temperature, monomer concentration, monomer compound, the amount of initiator and drying temperature on the polymer’s viscosity were investigated. The Sulfonated polyacrylamide (SPAM) was composed under those conditions. IR spectrums of HPAM and SPAM can explain their structures. Limiting viscosity of SPAM was tested by viscometer, and then its molecular weight was calculated as 5.15×106. Compare to HPAM, the excellent solubility, thickening property, temperature and salt tolerance of SPAM were indicated by experiments. SPAM can satisfy the requirements of high-temperature and high-salinity reservoir. To improve the molecular weight of SPAM, crosslinking of SPAM and different cross Linkers were taken and the proper cross linker was selected. When the polymer addition was 500mg·L-1 and phenol/formaldehyde crosslinker concentration was 1000mg·L-1, the viscosity of crosslinking system increased greatly and reached to 172mPa·s at 60℃with a good rheology. Effect of sulfonated polymer’s structure on its temperature and salt tolerance approved that, the incorporation of the sulfer acid radial in polymer backbone of HPAM results in excellent properties of the copolymers such as improved resistance to temperature and improved salt tolerance. The research provides foundation and important reference database for the application of sulfonated polyacrymides in polymerflooding.
引文
[1]永泽满.高分子水处理剂[M].陈振兴.北京:化学工业出版社,1985:8-12
    [2]韩利娟.油气开采用疏水缔合聚合物的研究[D].四川南充:西南石油学院,2005
    [3]魏莹璐.新型水溶性聚合物溶液性能研究[D].北京:北京科技大学,2004
    [4]罗文利,牛亚斌,孙广华,等.两种驱油用AP型两性聚合物[J].油田化学.2000,17(1):55-57
    [5]黄宁,苏雪霞,史康玲.水溶性聚合物驱油剂国内研究近况[J].精细石油化工.2001,5:53-55
    [6]梁兵,代华.AM-DMAM-AMPS共聚物的合成与结构[A].冈秦麟.化学驱油论文集[C].北京:石油工业出版社.1998:456-460
    [7]朱麟勇,常志英,马昌期,等.部分水解聚丙烯酰胺在水溶液中的氧化降解Ⅲ.高温稳定作用.高分子材料科学与工程[J].2002,18(2):117-120
    [8] Moan M., Omari A.. Polymer Degradation and Stability[J]. 1992, 35:277-281
    [9]王彦玲.新型高效活性聚合物驱油剂的研究[J].精细与专用化学品.2001,(9):45-46
    [10]王玉普.梳形KYPAM抗盐聚合物在油田中的应用[J].化工进展.2003,22(5):509-511
    [11]王玉普.三次采油用耐温抗盐聚合物分析[J].化工进展.2003,22(3):271-274
    [12]王红礼,张莉蓉,朱清泉.金属有机共聚物降滤失剂PAJC的合成及性能[J].油田化学.1995,12(2):154-157
    [13] Audibert A., Lecourtier J.. Stability of Water Soluble Polymers in the Presence of Corrodible Materials [J]. Polym. Deg. Stab. 1993, 40: 151-165
    [14] ChtistineNoik, AnnieAudibert, PhillipsDelaplace, etc. Injectivity of Sulfonated Polymers Under North Sea Field Conditions [J]. SPE/DOE 27769. 1994, 4: 377-386
    [15]谭芳.疏水缔合聚合物磺酸盐的合成及性能评价[D].四川南充:西南石油学院,2003,2-3
    [16]叶林,黄荣华.AM-AMPS-DMDA水溶性疏水两性共聚物溶液性能的研究[J].高分子材料科学与工程.1998,l4(3):67-70
    [17]林芸,李万捷.两性聚丙烯酰胺的絮凝性能研究[J].高分子材料科学与工程.1996,12(4):136-139
    [18]王中华.APDAC/AM/AA三元共聚物的合成与性能[J].油田化学.1993,10(4):291-295
    [19]李季,吕茂森,荆建红.驱油用耐温抗盐三元共聚物ZYS性能评价[J].油田化学.1999,16(3):258-260
    [20]韩大匡,韩冬.胶态分散凝胶驱油技术的研究与进展[J].油田化学.1996,13(3):273-276
    [21]陈哲,杨旭明,王琪.SPS/P(AM-DMDAAC)分子复合型驱油剂的研究[J].高分子材料科学与工程.1998,14(4):128-l30,135
    [22] Shinobu Koda, Tatsumi Amano, Hiroyasu Nomura. Copolymerization of Sodium Styrene Sulphonate and Vinylpyrrolidone under Ultrasonic Irradiation [J]. Ultrasonics Sonochemistry. 1996, 3: S91-S95
    [23]魏莹璐.新型水溶性聚合物溶液性能研究[D].北京:北京科技大学,2004
    [34] Kulkami R.A, Gundiah S. Solution Behavior of Hydrolysed Polyacrylamides in 0.12M NaCl [J]. Makrol Chem, 1984, 185: 957-96
    [25] Lee LT, Lecouriter J, Chaureteau G. Oil Chemistry, 1989, 224
    [26]丁伟.丙烯酰胺类聚合物合成及性能研究[D].黑龙江大庆:大庆石油学院,2005
    [27]刘平德.三次采油用新型耐温、抗盐聚合物的研究[D].北京:中国石油勘探开发研究院,2003
    [28]孙焕泉.聚合物驱油技术[M].北京:石油大学出版社,2002:27-55
    [29]张健,李健,罗平亚.疏水化羟甲基纤维素的水溶性质[M].四川南充:油气藏地质及开发工程国家重点实验室第二次国际学术会议,1999
    [30]武玉民,于跃芹,秦大伟,等.SAMPS/NVP/AM/SAA四元共聚物的制备与表征[J].青岛科技大学学报.2003,24(4):283-286
    [31] Ilipoulous Magny B, Lafuma F, lliopoulous I. Polymer,1992,33: 31-51
    [32]罗开富,叶林,黄荣华.疏水缔合水溶性聚合物的溶液性质[J].油田化学.1999,16(3):286-290
    [33]吕静兰,顾民,李伟,等.甲基丙烯磺酸钠-N,N-二甲基丙烯酰胺-丙烯酰胺耐温抗盐共聚物性能的研究[J].石油化工.2005,34(6):573-577
    [34]杨凤艳,刘昆元,韩淑珍.反相悬浮法合成超高分子量AM/AA/AMPS及盐的共聚物[J].北京化工大学学报(自然科学版).2003,30(2):5-9
    [35] Schutz D N, Kaldas J J, Maurer J J, et al. Copolymers of Acrylamide and Surfactant Macromonomers: Synthesis and Solution Properties [J]. Polymer, 1987, 28: 2110
    [36] Siddiq M, Tam K C Jenkins R D. Dissolution Behavior of Model Alkali-soluble Emulsion Polymers: Effects of Molecular Weight and Ionic Strength [J]. Colloid Polymer Science,1999,277: 1172
    [37]樊剑.耐温耐盐驱油用聚合物的研究[D].北京:中国石油勘探开发科学研究院.2003
    [38] Valint P L Jr, Bock J. Macromolecules [M], 1988
    [39]贺爱民,吕茂森,刘建红等.AMPS/AM二元聚合物耐温抗盐胶态分散凝胶体系研究[J].西部探矿工程.2003,15(7):79-80
    [40]景艳,吕鑫,张士诚.耐温抗盐HPAM/Al3+弱凝胶调剖体系的研制及评价[J].精细化工.2005,22(11):856-859
    [41] R D Sydank. A Newly Developed Chromium (III) Gel Technology [P]. SPE: 19380, 1990
    [42] Yong T S et al. Study of Intramolecular Cross linking of Polyacrylamidein Cr(Ⅲ)Polyacrylamide Gelation by Size exclusion Chromatography, Low angle Laser Light Scrattering, and Visecometry. In: Stahl GAed.Water Soluble Polymers for Petroleum Recovery [M]. New York: Plenum Press, 1988: 329-342
    [43]张艳芳,罗志华,罗跃.有机醛/酚/聚丙烯酰胺弱凝胶体系的室内研究[J].精细石油化工进展.2003,4(6):45-49
    [44]冯玉军,吕永利,张胜,等.阳离子聚丙烯酰胺“水包水乳液”的制备及在油田污水处理中的应用[J].油田化学.2007,24(1):42-47
    [45] Smith J E. The Transition Pressure: A Quick Method for Quatifying Polyacrylamide Gel Strength. SPE 18379, 1989
    [46]孔振兴,刘茂刚,蒋拥华,等.水溶液聚合法合成聚丙烯酰胺的研究进展[J].云南化工.2006,33(4):58-61
    [47]陈铁龙.三次采油概论[M].北京:石油工业出版社,2000,238-240
    [48]肖稳发,徐子成,陈思浩.2-丙烯酰胺基-2-甲基丙磺酸[J].精细与专用化学品.2006,14(1):11-14
    [49] GB 12005.1-1989,聚丙烯酰胺特性粘数测定方法[S].1989
    [50]吴淑云,黄丽.驱油用聚合物溶液粘度测试方法研究[J].大庆石油地质与开发.2006,25(2):84-85
    [51]张科,王展旭.2-丙烯酰胺基-2-甲基丙磺酸共聚物的水溶液性质研究[J].江苏化工.2004,32(6):33-34
    [52]北京大学数学力学系概率统计组编著.正交设计——一种安排多因素试验的数学方法[M].北京:人民教育出版社,1977:77-78
    [53]周云霞.高分子量抗盐聚丙烯酰胺工业化生产技术研究[D].四川南充:西南石油学院,2004.
    [54] AggourY.A. Polymler Degradation and Satbility, 1994, 44:7
    [55]翟广通.水处理用聚合物分子量的测定[J].工业水处理.1994,14(3):32-33
    [56]马俊涛.疏水缔合型聚丙烯酰胺的合成与性能及其与离子型表面活性剂的相互作用[D].四川成都:四川大学,2002
    [57]胡勇.交联聚合物性能及调驱机理研究[D].黑龙江大庆:大庆石油学院,2005
    [58]林尚安,陆耘,梁兆熙.高分子化学[M].2000年.北京:科学出版社,2000:989
    [59]李永太.弱凝胶驱油技术[D].四川南充:西南石油大学,2004
    [60] Akahane T., Takenchi S., Minakata A.. Conductimetric Titration of Polelectrolytes Having Sulfate and Carboxyl Groups[J]. Polymer Bulletin. 1990, 24: 437-444
    [61]李长庆,张夏泽,孙刚.中、低分子抗盐聚合物的评价研究[J].大庆石油地质与开发.2005,24(4):72~74
    [62]王刚,孙刚,刘红兵.超高分子量聚合物性能评价方法研究[J].大庆石油地质与开发.2001,20(4):101-103
    [63]孔柏岭,韩杰,丁荣辉,等.污水配制的有机醛R交联HPAM微凝胶体系研究[J].油田化学.2003,20(2):144~146
    [64]李圣勇.聚合物驱提高采收率发展现状与趋势[J].化工时刊.2005,19(8):40-42
    [65]冯玉军,疏水缔合水溶性聚合物溶液结构及其与溶液流变性关系的研究[D].四川南充:西南石油学院博士学位论文,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700