PDK4基因在骨骼肌发育中功能的初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物体的一切生命活动的本质是新陈代谢。能量和物质在生物体内不断流动,并通过化学反应网络系统为各种生命活动提供能量。而生物体内的新陈代谢并不是完全自发进行的,而是靠生物催化剂—酶来催化的。本研究以肉鸡和蛋鸡作为模式生物,对我室使用芯片在肉鸡和蛋鸡骨骼肌中发现的一个差异表达基因进行了验证,并对该差异基因进行初步的功能研究,为解释蛋鸡肉鸡巨大表型差异提供线索。
     PDK4在骨骼肌糖代谢中发挥重要功能。本室芯片结果显示PDK4在肉鸡和蛋鸡骨骼肌中差异表达。Real-Time PCR进一步验证了芯片的结果,PDK4在蛋鸡和肉鸡出生后发育过程中呈动态表达。并且,我们发现PDK4表达水平变化与肉鸡的出生后骨骼肌快速生长曲线呈负相关,但在蛋鸡中并未发现这一现象。PDH酶活性在蛋鸡和肉鸡的出生后发育过程中的变化趋势的研究表明,PDH酶活性与肉鸡的生长曲线相一致而在蛋鸡中不符。这更进一步证明了,PDK4在肉鸡的快速生长中发挥了一定的作用。在鸡骨骼肌原代细胞分化过程中,PDK4表达水平和PDH酶活性在一定程度上揭示了PDK4在肉鸡的出生后发育中的作用。过表达PDK4并不能影响鸡骨骼肌原代细胞的增殖,这一结果提示PDK4单独作用并不足以促进肉鸡的出生后快速增长。
     综上,本研究发现一个糖代谢过程中的酶—PDK4,与肉鸡出生后的骨骼肌快速增长密切相关。在能量代谢水平上,本研究为蛋鸡和肉鸡骨骼肌的差异生长提供了部分解释。
The essential characteristic of biological life is metabolism. It is the incessant flow of energy and matter through a network of chemical reactions that enable the living organism to generate all kinds of activities. The metabolism is not a spontaneous reaction and is catalyzed by the enzymes. To give an insight into the molecular mechanism of postnatal development, broiler and layer chicken have been utilized as animal model because of their significant difference in skeletal muscle growth rate. So broiler needs much more energy to maintain the high muscle growth rate. Some metabolic enzyme must be differentially expressd between broiler and layer. Our lab used microarray data to analysis the differential muscle growth of broiler and layer after hatch.
     Pyruvate dehydrogenase kinase 4 (PDK4) plays an important role in the glycolysis. The regulation of PDC activity by PDK determines and reflects substrate preference and is critical to the 'glucose-fatty acid cycle' to maintain glucose homoeostasis. Real-time PCR demonstrated that PDK4 was differentially expressed between layer and broiler, which were consistent with the result of microarray. We have identified a negative correlation for muscular PDK4 gene expression with the postnatal rapid growth of broiler and the Pyruvate dehydrogenase (PDH) activity during the post-hatch development is coincident with its mRNA expression pattern, but not in layer. The PDK4 expression pattern and the PDH enzyme activity during the muscle cells differentiation in vitro indicated that PDK4 gene was partially involved in the broiler rapid growth. Finally, to assess whether PDK4 is the direct regulator of broiler postnatal muscle growth, we investigated whether PDK4 could affect the cell cycle. Our data demonstrate that PDK4 itself was not enough to initiate the rapid muscle growth of broiler. However, the correlation between the PDK4 expression level of broiler and its growth rate also told us that PDK4 was the genetics selected gene which contributed to the broiler postnatal growth.
     Overall, our results first indicate that PDK4 gene expression is correlated to the broiler muscle growth. Our researches try to elucidate the possible role of PDK4 in the broiler muscle rapid growth. And the researches would help to explain the big difference between broiler and layer postnatal muscle development.
引文
1. Brand-Saberi B. Vertebrate myogenesis. Springer. 2002.
    2. Hofmann C. Somite and axial development in vertebrate. In: Tickle C, ed. Patterning in vertebrate development. New York: Oxford University Press, 2003: 48-89.
    3. Buckingham M. et al. The formation of skeletal muscle: from somite to limb. J Anat. 2003, 202:59 - 68.
    4. Munsterbeg AE. et al (1995) Combinatorial signaling by Soic hedgehog and wnt family members induces myogenic bHLH gene expression in the somite. Genes Dev, 9: 2911-2922.
    5. Tajbakhsh S. et al (1998) Differential activation of myf-5 and myoD by different wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of myf5, Development, 125: 4155-4162.
    6. Maura H. Parker et al. Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nature Reviews. 2003,4(7): 497-507.
    7. Amthor H. et al. (1999) A molecular mechanism enabling continuous embryonic muscle growth- a balance between proliferation and differentiaton. Development, 126: 1041-1053.
    8. Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C(1995) Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376, 768-771.
    9. Dietrich S, Abou-Rebyeh F, Brohmann H, Bladt F, Sonnenberg-Riethmacher E, Yamaai T, et al. (1999) The role of SF/HGF and c-Met in the development of skeletal muscle. Development 126, 1621-1629.
    10. Epstein JA, Shapiro DN, Cheng J, Lam PY, Maas RL (1996) Pax3 modulates expression of the c-met receptor during limb muscle development. Proc. Natl. Acad. Sci. USA 93, 4213-4218.
    11. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, et al. (1995) Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373, 699-702.
    12. Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997)Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and myf-5 act upstream of Myod. Cell 89,127-138.
    13. Fan C-M, Lee SC, Tessier-Lavigne M (1997) A role for Wnt proteins in induction of dermomyotome. Dev. Biol. 191, 160-165.
    14. Sch(?)er K, Braun T (1999) Early specification of limb muscle precursor cells by the homeobox gene Lbx1h. Nat. Genet. 23, 213-216.
    15. Mankoo BS, Collins NS, Ashby P, Grigorieva E, Pevny LH, Candia A, et al. (1999) Mox2 is a component of the genetic hierarchy controlling limb muscle development. Nature 400, 69-73.
    16. Gibson-Brown JJ, Agulnik SI, Chapman DL, Alexiou M, Garvey N, Silver LM, et al. (1996) Evidence of a role for T-box genes in the evolution of limb morphogenesis and the specification of forelimb/hindlimb identity. Mech. Dev. 56, 93-101.
    17. Rudnicki MA, Schneglesberg PNJ, Stead RH, Braun T, Arnold H-H, Jaenisch R (1993) MyoD or myf-5 is required for the formation of skeletal muscle. Cell 75, 1351-1359.
    18. Delfini M, Hirsinger E, Pourquie O, DupreZ. D (2000) Delta 1-activated notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis. Development 127, 5213-5224.
    19 Houzelstein D, Auda-Boucher G, Ch(?)aud Y, Rouaud T, Blanc I, Tajbakhsh S, et al. (1999) The homeobox gene Msx1 is expressed in the lateral dermomyotome of a subset of somites, and in muscle progenitor cells migrating into the forelimb. Development 126, 2689-2701.
    20 Odelberg SJ, Kolhoff A, Keating MT (2000) Dedifferentiation of mammalian myotubes induced by msxl. Cell 103, 1099-1109.
    21 Relaix F, Buckingham M (1999) From insect eye to vertebrate muscle: redeployment of a regulatory network. Genes Dev. 13, 3171-3178.
    22 Hirsinger E, Malapert P, Dubrulle J, et al (2001) Notch signaling acts in postmitotic avian myogenic cell to control MyoD activation. Development, 128: 107-116.
    23 Niswander L, Martin GR(1992) Fgf4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114: 755-768.
    24 Han J-K, Martin GR(1993) Embryonic expression of FGF-6 is restricted to the skeletal muscle lineage. Dev Biol 158 : 549-554.
    25 Sakuma K, Watanabe K, Sano M, Uramoto I, Totsuka T(2000) Differential adaption of growthfactor and differentiation factor 8/myostatin, fibroblast growth 6 and leukemia inhibitory factor in overloaded, regenerating and denervated rat muscles. Biochim Biophys Acta 1479: 77-88.
    26 Pena TL, Chen SH, Konieczny SF, Rane SG. Ras/MEK/ERK Up-regulation of the fibroblast KCa channel FIK is a common mechanism for basic fibroblast growth factor and transforming growth factor-beta suppression of myogenesis. J Biol Chem. 2000 275(18): 13677-82.
    27 Li L, Zhou J, James G, Heller-Harrison R, Czech MP, Olson EN.FGF inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein kinase C site in their DNA-binding domains.Cell. 1992;71(7):1181-94.
    28 De Angelis L, Borghi S, Melchionna R, Berghella L, Baccarani-Contri M, Parise F, Ferrari S, Cossu G. Inhibition of myogenesis by transforming growth factor beta is density-dependent and related to the translocation of transcription factor MEF2 to the cytoplasm. Proc Natl Acad Sci U S A. 1998; 95(21): 12358-63.
    29 Marics I, Padila F, Guillemot J-F, Scaal M, Marcelle C. FGFR4 signalling is a necessary step in limb muscle differentiation. Development. 2002; 129(19):4559-69.
    30 Ontell M, Kozeka K. (1984) The organogenesis of murine striated muscle: a cytoarchitectural study. Am. J. Anat. 171, 13-148.
    31 Stockdale FE. Mechanisms of formation of muscle fiber types. Cell Struct Funct. 1997; 22(1):37-43.
    32 Stockdale FE. Myogenic cell lineages. Dev Biol. 1992;154(2):284-98.
    33 Feldman JL, Stockdale FE. Temporal appearance of satellite cells during myogenesis. Dev Biol. 1992; 153(2):217-26.
    34 Miller JB, Stockdale FE. Developmental regulation of the multiple myogenic cell lineages of the avian embryo. J Cell Biol. 1986;103(6 Pt 1):2197-208.
    35 Miller JB, Stockdale FE. Developmental origins of skeletal muscle fibers: clonal analysis of myogenic cell lineages based on expression of fast and slow myosin heavy chains.Proc Natl Acad Sci U S A. 1986;83(11):3860-4.
    36 De Angelis L, Berghella L, Coletta M, Lattanzi L, Zanchi M, Cusella-De Angelis MG, et al. (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J. Cell Biol. 147, 869-877.
    37 Pirskanen A, Kiefer JC, Hauschka SD. IGFs, insulin, Shh, bFGF, and TGF-betal interact synergistically to promote somite myogenesis in vitro. Dev Biol. 2000; 224(2): 189-203.
    38 Hannon K, Kudla AJ, McAvoy MJ, Clase KL, Olwin BB.Differentially expressed fibroblast growth factors regulate skeletal muscle development through autocrine and paracrine mechanisms. J Cell Biol. 1996; 132(6): 1151-9.
    39 Flanagan-Steet H, Hannon K, McAvoy MJ, Hullinger R, Olwin BB. Loss of FGF receptor 1 signaling reduces skeletal muscle mass and disrupts myofiber organization in the developing limb. Dev Biol. 2000 ;218(1):21-37.
    40 Mauro A (1961) Satellite cells of skeletal muscle fibres. J. Biophys. Biochem. Cytol. 9, 493-496.
    41 Yang Q, Bassel-Duby R, Williams RS. Transient expression of a winged-helix protein, MNF-beta, during myogenesis. Mol Cell Biol. 1997;17(9):5236-43.
    42 Garry DJ, Meeson A, Elterman J, Zhao Y, Yang P, Bassel-Duby R, Williams RS.Myogenic stem cell function is impaired in mice lacking the forkhead/winged helix protein MNF. Proc Natl Acad Sci U S A. 2000; 97( 10):5416-21.
    43 Garry DJ, Yang Q, Bassel-Duby R, Williams RS. Persistent expression of MNF identifies myogenic stem cells in postnatal muscles. Dev Biol. 1997;188(2):280-94.
    44 Cusella-De Angelis MG, Molinari S, De Donne A, Coletta M, Vivarelli E, Bouche M, et al. (1994) Differential response of embryonic and fetal myoblasts to TGF beta: a possible regulatory mechanism of skeletal muscle histogenesis. Development 120, 925-933.
    45 Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309-313.
    46 Alison MR, Poulsom R, Jeffery R, Dhillon AP, Quaglia A, Jacob J, Novelli M, Prentice G, Williams J, Wright NA.(2000) Hepatocytes from non-hepatic adult stem cells. Nature 406:257.
    47 Bittner RE, Sch(?)er C, Weipoltshammer K, Ivanova S, Streubel B, Hauser E, Freilinger M, H(?)er H, Elbe-B(?)ger A, Wachtler F. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol 199:391-396.
    48 Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, et al. (1998) Muscle regeneration by bone marrow derived myogenic progenitors. Science 279, 1528-1530.
    49 Gussoni E, Soneoka Y, Strickland C D, Buzney EA, Khan MK, Flint AF, et al. (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390-394.
    50 Duxson MJ, Usson Y, Harris AJ.The origin of secondary myotubes in mammalian skeletal muscles: ultrastructural studies. Development. 1989; 107(4):743-50.
    51 Duxson MJ, Usson Y. Cellular insertion of primary and secondary myotubes in embryonic rat muscles. Development. 1989; 107(2):243-51.
    52 Duxson MJ, Sheard PW. Formation of new myotubes occurs exclusively at the multiple innervation zones of an embryonic large muscle. Dev Dyn. 1995; 204(4): 391-405.
    53 Cusella-De Angelis MG, Molinari S, Le Donne A, Coletta M, Vivarelli E, Bouche M, Molinaro M, Ferrari S, Cossu G. Differential response of embryonic and fetal myoblasts to TGF beta: a possible regulatory mechanism of skeletal muscle histogenesis. Development. 1994; 120(4):925-33.
    54 Olson EN, Sternberg E, Hu JS, Spizz G, Wilcox C.Regulation of myogenic differentiation by type beta transforming growth factor. J Cell Biol. 1986; 103(5): 1799-805.
    55 McLennan IS, Poussart Y, Koishi K.Development of skeletal muscles in transforming growth factor-beta 1 (TGF-betal) null-mutant mice. Dev Dyn. 2000; 217(3): 250-6.
    56 McPherron, A.C., Lawler, A.M., Lee, S.J., 1997a. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387, 83-90.
    57 W.S. Kunz, Control of oxidative phosphorylation in skeletal muscle, Biochimica et biophysica acta 1504 (2001) 12-19.
    58 J. Lexell, D. Downham, M. Sjostrom, Distribution of different fibre types in human skeletal muscles. A statistical and computational study of the fibre type arrangement in m. vastus lateralis of young, healthy males, Journal of the neurological sciences 65 (1984) 353-365.
    59 J.D. McGarry, N.F. Brown, The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis, European journal of biochemistry / FEBS 244 (1997) 1-14.
    60 N.J. Rothwell, M.E. Saville, M.J. Stock, Brown fat activity in fasted and refed rats, Bioscience reports 4 (1984) 351-357.
    61 C. Fleury, M. Neverova, S. Collins, S. Raimbault, O. Champigny, C. Levi-Meyrueis, F. Bouillaud, M.F. Seldin, R.S. Surwit, D. Ricquier, C.H. Warden, Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia, Nature genetics 15 (1997) 269-272.
    62 H. Oberkofler, Y.M. Liu, H. Esterbauer, E. Hell, F. Krempler, W. Patsch, Uncoupling protein-2 gene: reduced mRNA expression in intraperitoneal adipose tissue of obese humans, Diabetologia 41 (1998)940-946.
    63 L. Nordfors, J. Hoffstedt, B. Nyberg, A. Thorne, P. Arner, M. Schalling, F. Lonnqvist, Reduced gene expression of UCP2 but not UCP3 in skeletal muscle of human obese subjects, Diabetologia 41 (1998)935-939.
    64 A. Negre-Salvayre, C. Hirtz, G. Carrera, R. Cazenave, M. Troly, R. Salvayre, L. Penicaud, L. Casteilla, A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation, Faseb J 11 (1997) 809-815.
    65 D.W. Gong, Y. He, M. Karas, M. Reitman, Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin, The Journal of biological chemistry 272 (1997) 24129-24132.
    66 P. Schrauwen, H. Hoppeler, R. Billeter, A.H. Bakker, D.R. Pendergast, Fiber type dependent upregulation of human skeletal muscle UCP2 and UCP3 mRNA expression by high-fat diet, Int J Obes Relat Metab Disord 25 (2001) 449-456.
    67 D.W. Gong, Y. He, M.L. Reitman, Genomic organization and regulation by dietary fat of the uncoupling protein 3 and 2 genes, Biochemical and biophysical research communications 256 (1999)27-32.
    68 O. Boss, S. Samec, D. Desplanches, M.H. Mayet, J. Seydoux, P. Muzzin, J.P. Giacobino, Effect of endurance training on mRNA expression of uncoupling proteins 1, 2, and 3 in the rat, Faseb J 12(1998)335-339.
    69 P. Schrauwen, G. Schaart, W.H. Saris, L.J. Slieker, J.F. Glatz, H. Vidal, E.E. Blaak, The effect of weight reduction on skeletal muscle UCP2 and UCP3 mRNA expression and UCP3 protein content in Type II diabetic subjects, Diabetologia 43 (2000) 1408-1416.
    70 V.P. Skulachev, Uncoupling: new approaches to an old problem of bioenergetics, Biochimica et biophysica acta 1363 (1998) 100-124.
    71 A.J. Vidal-Puig, D. Grujic, C.Y. Zhang, T. Hagen, O. Boss, Y. Ido, A. Szczepanik, J. Wade, V. Mootha, R. Cortright, D.M. Muoio, B.B. Lowell, Energy metabolism in uncoupling protein 3 gene knockout mice, The Journal of biological chemistry 275 (2000) 16258-16266.
    72 J.C. Clapham, J.R. Arch, H. Chapman, A. Haynes, C. Lister, G.B. Moore, V. Piercy, S.A. Carter, I. Lehner, S.A. Smith, L.J. Beeley, R.J. Godden, N. Herrity, M. Skehel, K.K. Changani, P.D. Hockings, D.G. Reid, S.M. Squires, J. Hatcher, B. Trail, J. Latcham, S. Rastan, A.J. Harper, S. Cadenas, J.A. Buckingham, M.D. Brand, A. Abuin, Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean, Nature 406 (2000) 415-418.
    73 O. Boss, S. Samec, F. Kuhne, P. Bijlenga, F. Assimacopoulos-Jeannet, J. Seydoux, J.P. Giacobino, P. Muzzin, Uncoupling protein-3 expression in rodent skeletal muscle is modulated by food intake but not by changes in environmental temperature, The Journal of biological chemistry 273 (1998) 5-8.
    74 V. Emilsson, J. O'Dowd, S. Wang, Y.L. Liu, M. Sennitt, R. Heyman, M.A. Cawthorne, The effects of rexinoids and rosiglitazone on body weight and uncoupling protein isoform expression in the Zucker fa/fa rat, Metabolism: clinical and experimental 49 (2000) 1610-1615.
    75 S.A. Kliewer, H.E. Xu, M.H. Lambert, T.M. Willson, Peroxisome proliferator-activated receptors: from genes to physiology, Recent progress in hormone research 56 (2001) 239-263.
    76 B. Desvergne, W. Wahli, Peroxisome proliferator-activated receptors: nuclear control of metabolism, Endocrine reviews 20 (1999) 649-688.
    77 E.D. Rosen, B.M. Spiegelman, PPARgamma : a nuclear regulator of metabolism, differentiation, and cell growth, The Journal of biological chemistry 276 (2001) 37731-37734.
    78 O. Barbier, I.P. Torra, Y. Duguay, C. Blanquart, J.C. Fruchart, C. Glineur, B. Staels, Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis, Arteriosclerosis, thrombosis, and vascular biology 22 (2002) 717-726.
    79 O. Braissant, F. Foufelle, C. Scotto, M. Dauca, W. Wahli, Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat, Endocrinology 137 (1996) 354-366.
    80 F. Djouadi, C.J. Weinheimer, J.E. Saffitz, C. Pitchford, J. Bastin, F.J. Gonzalez, D.P. Kelly, A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator-activated receptor alpha- deficient mice, The Journal of clinical investigation 102 (1998) 1083-1091.
    81 C. Keller, A. Steensberg, H. Pilegaard, T. Osada, B. Saltin, B.K. Pedersen, P.D. Neufer, Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content, Faseb J 15 (2001) 2748-2750.
    82 D.M. Muoio, J.M. Way, C.J. Tanner, D.A. Winegar, S.A. Kliewer, J.A. Houmard, W.E. Kraus, G.L. Dohm, Peroxisome proliferator-activated receptor-alpha regulates fatty acid utilization in primary human skeletal muscle cells, Diabetes 51 (2002) 901-909.
    83 D.M. Muoio, P.S. MacLean, D.B. Lang, S. Li, J.A. Houmard, J.M. Way, D.A. Winegar, J.C. Corton, G.L. Dohm, W.E. Kraus, Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) alpha knock-out mice. Evidence for compensatory regulation by PPAR delta, The Journal of biological chemistry 277 (2002) 26089-26097.
    84 N.M. Lapsys, A.D. Kriketos, M. Lim-Fraser, A.M. Poynten, A. Lowy, S.M. Furler, D.J. Chisholm, G.J. Cooney, Expression of genes involved in lipid metabolism correlate with peroxisome proliferator-activated receptor gamma expression in human skeletal muscle, The Journal of clinical endocrinology and metabolism 85 (2000) 4293-4297.
    85 D.G. Hardie, S.A. Hawley, J.W. Scott, AMP-activated protein kinase--development of the energy sensor concept, The Journal of physiology 574 (2006) 7-15.
    86 S.A. Hawley, J. Boudeau, J.L. Reid, K.J. Mustard, L. Udd, T.P. Makela, D.R. Alessi, D.G. Hardie, Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade, Journal of biology 2 (2003) 28.
    87 K. Sakamoto, E. Zarrinpashneh, GR. Budas, A.C. Pouleur, A. Dutta, A.R. Prescott, J.L. Vanoverschelde, A. Ashworth, A. Jovanovic, D.R. Alessi, L. Bertrand, Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKalpha2 but not AMPKalphal, American journal of physiology 290 (2006) E780-788.
    88 J.M. Lizcano, O. Goransson, R. Toth, M. Deak, N.A. Morrice, J. Boudeau, S.A. Hawley, L. Udd, T.P. Makela, D.G Hardie, D.R. Alessi, LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1, The EMBO journal 23 (2004) 833-843.
    89 I. Irrcher, P.J. Adhihetty, T. Sheehan, A.M. Joseph, D.A. Hood, PPARgamma coactivator-1 alpha expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations, Am J Physiol Cell Physiol 284 (2003) C1669-1677.
    90 P. de Lange, P. Farina, M. Moreno, M. Ragni, A. Lombardi, E. Silvestri, L. Burrone, A. Lanni, F. Goglia, Sequential changes in the signal transduction responses of skeletal muscle following food deprivation, Faseb J 20 (2006) 2579-2581.
    91 Y.C. Long, B.R. Barnes, M. Mahlapuu, T.L. Steiler, S. Martinsson, Y. Leng, H. Wallberg-Henriksson, L. Andersson, J.R. Zierath, Role of AMP-activated protein kinase in the coordinated expression of genes controlling glucose and lipid metabolism in mouse white skeletal muscle, Diabetologia 48 (2005) 2354-2364.
    92 S.I. Itani, A.K. Saha, T.G. Kurowski, H.R. Coffin, K. Tornheim, N.B. Ruderman, Glucose autoregulates its uptake in skeletal muscle: involvement of AMP-activated protein kinase, Diabetes 52 (2003) 1635-1640.
    93 J. Lin, P.H. Wu, P.T. Tarr, K.S. Lindenberg, J. St-Pierre, C.Y. Zhang, V.K. Mootha, S. Jager, C.R. Vianna, R.M. Reznick, L. Cui, M. Manieri, M.X. Donovan, Z. Wu, M.P. Cooper, M.C. Fan, L.M. Rohas, A.M. Zavacki, S. Cinti, G.I. Shulman, B.B. Lowell, D. Krainc, B.M. Spiegelman, Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-lalpha null mice, Cell 119(2004) 121-135.
    94 A. Sriwijitkamol, J.L. Ivy, C. Christ-Roberts, R.A. DeFronzo, L.J. Mandarino, N. Musi, LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training, American journal of physiology 290 (2006) E925-932.
    95 Y. Liu, Q. Wan, Q. Guan, L. Gao, J. Zhao, High-fat diet feeding impairs both the expression and activity of AMPKa in rats' skeletal muscle, Biochemical and biophysical research communications 339 (2006) 701-707.
    96 A.A. Gonzalez, R. Kumar, J.D. Mulligan, A.J. Davis, R. Weindruch, K.W. Saupe, Metabolic adaptations to fasting and chronic caloric restriction in heart, muscle, and liver do not include changes in AMPK activity, American journal of physiology 287 (2004) E1032-1037.
    97 P. de Lange, M. Ragni, E. Silvestri, M. Moreno, L. Schiavo, A. Lombardi, P. Farina, A. Feola, F. Goglia, A. Lanni, Combined cDNA array/RT-PCR analysis of gene expression profile in rat gastrocnemius muscle: relation to its adaptive function in energy metabolism during fasting, Faseb J 18(2004)350-352.
    98 T. Furuyama, K. Kitayama, H. Yamashita, N. Mori, Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation, The Biochemical journal 375 (2003) 365-371.
    99 K. Tsintzas, K. Jewell, M. Kamran, D. Laithwaite, T. Boonsong, J. Littlewood, I. Macdonald, A. Bennett, Differential regulation of metabolic genes in skeletal muscle during starvation and refeeding in humans, The Journal of physiology 575 (2006) 291-303.
    100 Linn TC, Pelley JW, Pettit FH, Hucho F, Randall DD, Reed LJ: -Keto acid dehydrogenase complexes. XV. Purification and properties of the component enzymes of the pyruvate dehydrogenase complexes from bovine kidney and heart. Archives of biochemistry and biophysics 1972, 148(2):327-342.
    101 Yeaman SJ, Hutcheson ET, Roche TE, Pettit FH, Brown JR, Reed LJ, Watson DC, Dixon GH: Sites of phosphorylation on pyruvate dehydrogenase from bovine kidney and heart. Biochemistry 1978, 17(12):2364-2370.
    102 Teague WM, Pettit FH, Yeaman SJ, Reed LJ: Function of phosphorylation sites on pyruvate dehydrogenase. Biochemical and biophysical research communications 1979, 87(1):244-252.
    103 Sale GJ, Randle PJ: Analysis of site occupancies in [32P]phosphorylated pyruvate dehydrogenase complexes by aspartyl-prolyl cleavage of tryptic phosphopeptides. European journal of biochemistry / FEBS 1981, 120(3):535-540.
    104 Korotchkina LG, Patel MS: Mutagenesis studies of the phosphorylation sites of recombinant human pyruvate dehydrogenase. Site-specific regulation. J Biol Chem 1995, 270(24): 14297-14304.
    105 Popov KM, Hawes JW, Harris RA: Mitochondrial alpha-ketoacid dehydrogenase kinases: a new family of protein kinases. Advances in second messenger and phosphoprotein research 1997,31:105-111.
    106 Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM: Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. The Biochemical journal 1998, 329 ( Pt 1):191-196.
    107 Sugden MC, Bulmer K, Augustine D, Holness MJ: Selective modification of pyruvate dehydrogenase kinase isoform expression in rat pancreatic islets elicited by starvation and activation of peroxisome proliferator-activated receptor-alpha: implications for glucose-stimulated insulin secretion. Diabetes 2001, 50(12):2729-2736.
    108 Peters SJ, Harris RA, Heigenhauser GJ, Spriet LL: Muscle fiber type comparison of PDH kinase activity and isoform expression in fed and fasted rats. American journal of physiology 2001, 280(3):R661-668.
    109 Kolobova E, Tuganova A, Boulatnikov I, Popov KM: Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites. The Biochemical journal 2001, 358(Pt 1):69-77.
    110 Korotchkina LG, Patel MS: Site specificity of four pyruvate dehydrogenase kinase isoenzymes toward the three phosphorylation sites of human pyruvate dehydrogenase. J Biol Chem 2001, 276(40):37223-37229.
    111.Sugden MC, Holness MJ: Effects of re-feeding after prolonged starvation on pyruvate dehydrogenase activities in heart, diaphragm and selected skeletal muscles of the rat. The Biochemical journal 1989, 262(2):669-672.
    112 Kerbey AL, Randle PJ, Cooper RH, Whitehouse S, Pask HT, Denton RM: Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide. The Biochemical journal 1976, 154(2):327-348.
    
    113 Ravindran S, Radke GA, Guest JR, Roche TE: Lipoyl domain-based mechanism for the integrated feedback control of the pyruvate dehydrogenase complex by enhancement of pyruvate dehydrogenase kinase activity. J Biol Chem 1996, 271(2):653-662.
    
    114 Roden M, Krssak M, Stingl H, Gruber S, Hofer A, Furnsinn C, Moser E, Waldhausl W: Rapid impairment of skeletal muscle glucose transport/phosphorylation by free fatty acids in humans. Diabetes 1999, 48(2):358-364.
    
    115 Sugden MC, Bulmer K, Holness MJ: Fuel-sensing mechanisms integrating lipid and carbohydrate utilization. Biochemical Society transactions 2001, 29(Pt 2):272-278.
    
    116 Huang B, Wu P, Bowker-Kinley MM, Harris RA: Regulation of pyruvate dehydrogenase kinase expression by peroxisome proliferator-activated receptor-alpha ligands, glucocorticoids, and insulin. Diabetes 2002, 51(2):276-283.
    
    117 Sugden MC, Bulmer K, Gibbons GF, Holness MJ: Role of peroxisome proliferator-activated receptor-alpha in the mechanism underlying changes in renal pyruvate dehydrogenase kinase isoform 4 protein expression in starvation and after refeeding. Archives of biochemistry and biophysics 2001, 395(2):246-252.
    
    118 Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, Schneider JG, Coleman T, Turk J, Semenkovich CF: "New" hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell metabolism 2005, l(5):309-322.
    
    119 Augustus A, Yagyu H, Haemmerle G, Bensadoun A, Vikramadithyan RK, Park SY, Kim JK, Zechner R, Goldberg IJ: Cardiac-specific knock-out of lipoprotein lipase alters plasma lipoprotein triglyceride metabolism and cardiac gene expression. J Biol Chem 2004, 279(24):25050-25057.
    
    120 Sugden MC, Langdown ML, Harris RA, Holness MJ: Expression and regulation of pyruvate dehydrogenase kinase isoforms in the developing rat heart and in adulthood: role of thyroid hormone status and lipid supply. The Biochemical journal 2000, 352 Pt 3:731-738.
    
    121 Muoio DM, MacLean PS, Lang DB, Li S, Houmard JA, Way JM, Winegar DA, Corton JC, Dohm GL, Kraus WE: Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) alpha knock-out mice. Evidence for compensatory regulation by PPAR delta. J Biol Chem 2002, 277(29):26089-26097.
    122 Lee FN, Zhang L, Zheng D, Choi WS, Youn JH: Insulin suppresses PDK-4 expression in skeletal muscle independently of plasma FFA. American journal of physiology 2004, 287(1):E69-74.
    123 Kwon HS, Harris RA: Mechanisms responsible for regulation of pyruvate dehydrogenase kinase 4 gene expression. Advances in enzyme regulation 2004,44:109-121.
    124 Furuyama T, Kitayama K, Yamashita H, Mori N: Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. The Biochemical journal 2003, 375(Pt 2):365-371.
    
    125 Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP: Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. The Journal of clinical investigation 2000, 106(7):847-856.
    126 Ma K, Zhang Y, Elam MB, Cook GA, Park EA: Cloning of the rat pyruvate dehydrogenase kinase 4 gene promoter: activation of pyruvate dehydrogenase kinase 4 by the peroxisome proliferator-activated receptor gamma coactivator. J Biol Chem 2005, 280(33):29525-29532.
    127 Wende AR, Huss JM, Schaeffer PJ, Giguere V, Kelly DP: PGC-1 alpha coactivates PDK4 gene expression via the orphan nuclear receptor ERRalpha: a mechanism for transcriptional control of muscle glucose metabolism. Molecular and cellular biology 2005, 25(24): 10684-10694.
    128 Sugden MC, Holness MJ: Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. American journal of physiology 2003, 284(5):E855-862.
    129 Wu P, Sato J, Zhao Y, Jaskiewicz J, Popov KM, Harris RA: Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. The Biochemical journal 1998, 329 ( Pt 1): 197-201.
    130 Wu P, Inskeep K, Bowker-Kinley MM, Popov KM, Harris RA: Mechanism responsible for inactivation of skeletal muscle pyruvate dehydrogenase complex in starvation and diabetes. Diabetes 1999,48(8): 1593-1599.
    131 Yamagishi S, Nakamura K, Matsui T, Takenaka K, Jinnouchi Y, Imaizumi T: Cardiovascular disease in diabetes. Mini reviews in medicinal chemistry 2006, 6(3):313-318.
    132 Holness MJ, Sugden MC: The impact of increased dietary lipid on the regulation of glucose uptake and oxidation by insulin in brown- and a range of white-adipose-tissue depots in vivo. Int J Obes Relat Metab Disord 1999, 23(6):629-638.
    133 Sugden MC, Holness MJ: Therapeutic potential of the mammalian pyruvate dehydrogenase kinases in the prevention of hyperglycaemia. Current drug targets 2002, 2(2): 151 -165.
    134 Stacpoole PW, Henderson GN, Yan Z, James MO: Clinical pharmacology and toxicology of dichloroacetate. Environmental health perspectives 1998, 106 Suppl 4:989-994.
    135 Smith MK, Randall JL, Read EJ, Stober JA: Developmental toxicity of dichloroacetate in the rat. Teratology 1992, 46(3):217-223.
    136 Morrell JA, Orme J, Butlin RJ, Roche TE, Mayers RM, Kilgour E: AZD7545 is a selective inhibitor of pyruvate dehydrogenase kinase 2. Biochemical Society transactions 2003, 31(Pt 6):1168-1170.
    137 Mayers RM, Leighton B, Kilgour E: PDH kinase inhibitors: a novel therapy for Type II diabetes? Biochemical Society transactions 2005, 33(Pt 2):367-370.
    138 Debard C, Laville M, Berbe V, Loizon E, Guillet C, Morio-Liondore B, Boirie Y, Vidal H: Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of Type 2 diabetic patients. Diabetologia 2004, 47(5):917-925.
    139 Bajotto G, Murakami T, Nagasaki M, Tamura T, Tamura N, Harris RA, Shimomura Y, Sato Y: Downregulation of the skeletal muscle pyruvate dehydrogenase complex in the Otsuka Long-Evans Tokushima Fatty rat both before and after the onset of diabetes mellitus. Life sciences 2004, 75(17):2117-2130.
    140 Sugden MC, Fryer LG, Orfali KA, Priestman DA, Donald E, Holness MJ: Studies of the long-term regulation of hepatic pyruvate dehydrogenase kinase. The Biochemical journal 1998, 329 (Pt 1):89-94.
    141 Emilsson V, O'Dowd J, Wang S, Liu YL, Sennitt M, Heyman R, Cawthorne MA: The effects of rexinoids and rosiglitazone on body weight and uncoupling protein isoform expression in the Zucker fa/fa rat. Metabolism: clinical and experimental 2000,49( 12): 1610-1615.
    142 Dailey GE, 3rd, Noor MA, Park JS, Bruce S, Fiedorek FT: Glycemic control with glyburide/metformin tablets in combination with rosiglitazone in patients with type 2 diabetes: a randomized, double-blind trial. The American journal of medicine 2004, 116(4):223-229.
    143 Bersin RM, Stacpoole PW: Dichloroacetate as metabolic therapy for myocardial ischemia and failure. American heart journal 1997, 134(5 Pt 1):841-855.
    144 Terrand J, Papageorgiou I, Rosenblatt-Velin N, Lerch R: Calcium-mediated activation of pyruvate dehydrogenase in severely injured postischemic myocardium. American journal of physiology 2001, 281(2):H722-730.
    145 Clarke B, Spedding M, Patmore L, McCormack JG: Protective effects of ranolazine in guinea-pig hearts during low-flow ischaemia and their association with increases in active pyruvate dehydrogenase. British journal of pharmacology 1993, 109(3): 748-750.
    146 Clarke B, Wyatt KM, McCormack JG: Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism. Journal of molecular and cellular cardiology 1996, 28(2):341-350.
    147 Randle PJ: Fuel selection in animals. Biochemical Society transactions 1986, 14(5):799-806.
    148 Chandler MP, Kerner J, Huang H, Vazquez E, Reszko A, Martini WZ, Hoppel CL, Imai M, Rastogi S, Sabbah HN et al: Moderate severity heart failure does not involve a downregulation of myocardial fatty acid oxidation. American journal of physiology 2004, 287(4):H1538-1543.
    149 Schoder H, Knight RJ, Kofoed KF, Schelbert HR, Buxton DB: Regulation of pyruvate dehydrogenase activity and glucose metabolism in post-ischaemic myocardium. Biochimica et biophysica acta 1998, 1406(1 ):62-72.
    150 Kobayashi K, Neely JR: Effects of ischemia and reperfusion on pyruvate dehydrogenase activity in isolated rat hearts. Journal of molecular and cellular cardiology 1983, 15(6):359-367.
    151 Bunger R, Mallet RT: Mitochondrial pyruvate transport in working guinea-pig heart. Work-related vs. carrier-mediated control of pyruvate oxidation. Biochimica et biophysica acta 1993, 1151(2):223-236.
    152 Lloyd S, Brocks C, Chatham JC: Differential modulation of glucose, lactate, and pyruvate oxidation by insulin and dichloroacetate in the rat heart. American journal of physiology 2003, 285(1):H163-172.
    153 Huang B, Wu P, Popov KM, Harris RA: Starvation and diabetes reduce the amount of pyruvate dehydrogenase phosphatase in rat heart and kidney. Diabetes 2003, 52(6): 1371-1376.
    154 Denton RM, McCormack JG: Ca2+ as a second messenger within mitochondria of the heart and other tissues. Annual review of physiology 1990, 52:451-466.
    155 Hiraoka T, DeBuysere M, Olson MS: Studies of the effects of beta-adrenergic agonists on the regulation of pyruvate dehydrogenase in the perfused rat heart. J Biol Chem 1980, 255(16):7604-7609.
    156 McCormack JG, Denton RM: Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes by increasing the intramitochondrial concentration of Ca~(2+). The Biochemical journal 1984, 218(1):235-247.
    157 Wallace DC: Mitochondria and cancer: Warburg addressed. Cold Spring Harbor symposia on quantitative biology 2005, 70:363-374.
    158 Ristow M: Oxidative metabolism in cancer growth. Current opinion in clinical nutrition and metabolic care 2006, 9(4):339-345.
    159 Pouyssegur J, Dayan F, Mazure NM: Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 2006, 441(7092):437-443.
    160 Maxwell PH: The HIF pathway in cancer. Seminars in cell & developmental biology 2005, 16(4-5):523-530.
    161 Kim JW, Tchernyshyov I, Semenza GL, Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell metabolism 2006, 3(3): 177-185.
    162 Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC: HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell metabolism 2006, 3(3): 187-197.
    163 F.P. Moss, C.P. Leblond, Satellite cells as the source of nuclei in muscles of growing rats, The Anatomical record 170 (1971) 421-435.
    164 E.D. Aberle, T.S. Stewart, Growth of fiber types and apparent fiber number in skeletal muscle of broiler- and layer-type chickens, Growth 47 (1983) 135-144.
    165 M.P. Richards, Genetic regulation of feed intake and energy balance in poultry, Poultry science 82 (2003)907-916.
    166 W.J. Kuenzel, Central neuroanatomical systems involved in the regulation of food intake in birds and mammals, The Journal of nutrition 124 (1994) 1355S-1370S.
    167 F.J. Vaccarino, F.E. Bloom, J. Rivier, W. Vale, G.F. Koob, Stimulation of food intake in rats by centrally administered hypothalamic growth hormone-releasing factor, Nature 314 (1985) 167-168.
    168 S. Harvey, C.G. Scanes, A. Chadwick, N.J. Bolton, Growth hormone and prolactin secretion in growing domestic fowl: influence of sex and breed, British poultry science 20 (1979) 9-17.
    169 E. Decuypere, F.R. Leenstra, J. Buyse, L.M. Huybrechts, F.C. Buonomo, L.R. Berghman, Plasma levels of growth hormone and insulin-like growth factor-I and -II from 2 to 6 weeks of age in meat-type chickens selected for 6-week body weight or for feed conversion and reared under high or normal environmental temperature conditions, Reproduction, nutrition, development 33 (1993) 361-372.
    170 A. Guernec, C. Berri, B. Chevalier, N. Wacrenier-Cere, E. Le Bihan-Duval, M.J. Duclos, Muscle development, insulin-like growth factor-I and myostatin mRNA levels in chickens selected for increased breast muscle yield, Growth Horm IGF Res 13 (2003) 8-18.
    171 S.M. Rosenthal, Z.Q. Cheng, Opposing early and late effects of insulin-like growth factor I on differentiation and the cell cycle regulatory retinoblastoma protein in skeletal myoblasts, Proceedings of the National Academy of Sciences of the United States of America 92 (1995) 10307-10311.
    172 D.J. Glass, Skeletal muscle hypertrophy and atrophy signaling pathways, The international journal of biochemistry & cell biology 37 (2005) 1974-1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700