双极晶体管总剂量辐射效应及其表征方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双极电路广泛应用于航天、核反应堆等具有辐射性的领域。研究表明,辐射后双极器件参数退化是该类电路稳定性降低的主要因素之一,因此迫切需要对双极晶体管辐射损伤效应进行深入研究,并提出一种表征方法来评价双极晶体管的抗辐射能力。随着对电子元器件低频噪声的深入研究,人们发现低频噪声能更敏感的反映出半导体器件的内部缺陷。理论研究表明,双极晶体管经辐照引起的内部缺陷所导致低频噪声的相对变化量要远远大于其增益的相对变化量。因此本文利用1/f噪声作为分析工具,通过测量双极晶体管的1/f噪声,对器件的质量、可靠性和抗辐照能力进行评估和表征。
     本文首先在研究双极晶体管工作原理和辐射应用环境的基础上,深入分析了双极晶体管辐射损伤的失效模式及失效机理。其次,研究双极晶体管低频噪声测试方法,建立测试低频噪声电路。大量的噪声测试结果(白噪声、1/f噪声和g-r噪声)表明,该测试电路能准确测试并分析双极晶体管低频噪声及其表征参数。第三,基于上述理论研究和测试系统,完成了双极晶体管多次剂量(30krad、90krad、210krad、450krad)辐射试验及其试验结果对比分析,辐射前后器件的常规电参数(电流增益)和低频噪声参数(1/f噪声幅度B,频率指数γ和转折频率fc)的变化趋势表明:随着辐射剂量的增加,双极晶体管的电流增益不断减小,1/f噪声不断增加。第四,基于上述实验结果和理论研究,对比分析了辐照前后电参数和噪声参数的变化规律,优选出了1/f噪声幅值B作为噪声灵敏表征参量,基于双极晶体管1/f噪声模型,引入辐射损伤机制,建立了双极晶体管辐射损伤的噪声表征模型。最后,以辐射损伤噪声表征模型为基础,初步提出了基于敏感参量的双极晶体管抗辐射能力表征方法。
Bipolar circuits are widely used in aerospace, nuclear reactor and other radioactive occasions. I was revealed that the degradation in performance of these bipolar circuits after ionizing radiation is one of the important causes that lead to degradation in reliability or even to failure of these circuits. Therefore, a study of radiation effects on bipolar transistors performance and an effective characterization technique for the evaluation of the anti-radiation capacity of bipolar devices are required urgently. With the advancement in low-frequency noise theory, it was discovered that low-frequency noise pertains a close relation with the microstructures in electronic devics, and therefor can be taken as a sensitive parameter to dignose the quality and reliability of electronic devices. From theoretical studies we know, the relative changes in low-frequency noise parameters are more significant compared with the relative change in the conventional parameters of bipolar transistors, such as current gain, before and after irradiation stress. As a result, 1/f noise was taken as an ideal probing tool to evalute and characterize the quality, reliability and anti-radiation capacity of bipolar transistors in this work.
     The content of this thesis was organized as follows. First, the failure modes and mechanisms of bipolar transistors under radiation stress were analyzed in datail based on the working principle of bipolar transistors and the characteristics of real radiation application environment. Second, the low-frequency noise testing technique of bipolar transistors was explored and a low-freqnecy noise testing system was built. It was validated by a large amount of measured data that, this system can accurately measure and analyze the low-frequency noise signal and extracte related parameters. Third, based on the above mentioned theoretical knowledge and testing system, both parameters of conventional current gains and low-frequency noise (1/f noise amplitude B, exponent coefficientγand conner frequency) was measured bofore and after several doses of (30krad, 90krad, 210krad, 450krad) radiation experiments. It was found that, the gain of the bipolar transistor decreases with radiation dose, whereas, the low-frequency amplitudes increase. Fourth, the gain of the bipolar transistor and the amplitudes of low-frequency noise were chosen as indicators and compared before and after radiation experiments. A new model of low-frequency noise for the characterization of radiation degradation of bipolar transistors was presented with the help of traditional 1/f noise model of bipolar transistors, and based on which a systematic characterization technique for the anti-radiation capacity was brought forward.
引文
[1] Enlow E W, Pease, Combs W E, et al.Response of advanced bipolar processes to ionizing radiation.IEEE Trans Nucl Sci, 1991, 38, p1342-1351.
    [2]宋佑诰.电子、质子、紫外和原子氧空间环境综合效应实验.环境技术.1994年,2期.p14.
    [3]赖祖武,抗辐射电子学-辐射效应及加固原理,北京:国防工业出版杜,1998.
    [4] R.D. Schrimpf .Recent Advances in Understanding Total-Dose Effects in Bipolar Transistors. IEEE Transactions on Nuclear Science, vol. 43, NO. 3, JUNE 1996.p1639-1641.
    [5] A.H.Johnston.R.E.Plaag.Models for total dose degradation of linear integrated circuits.IEEE Transactions on Nuclear Science, vol.ns-34, No.6,December 1987, p1475.
    [6] R.B.Klein, N.S.Saks, Z.Shanfield. Saturation of radiation-induced threshold-voltage shifts in thin-oxide MOSFETs at 80K. IEEE Transactions on Nuclear Science, 1990, vol.37,NO.6: p1690-1695.
    [7]郭红霞.集成电路电离辐射效应数值模拟及X射线剂量增强效应研究.西安:西安电子科技大学,2008年.p1.
    [8] JOSEPH R.SROUR.JAMES M.MCGARRITY.Radiation Effects on Microelectronics in Space. Proceedings of the IEEE, vol. 76, NO. 11, NOVEMBER 1988, p1451.
    [9]陈盘训.半导体器件和集成电路的辐射效应.第一版.北京:国防工业出版社,2005年. p31.
    [10]刘恩科,朱秉升,罗晋生等.半导体物理学.第四版.北京:国防工业出版社,1994年, p146.
    [11] H.J.Barnaby,et al.Analytical model for radiation effects in bipolar devices.IEEE transactions on nuclear science, 2002,Vol.49,No.6: p2643-2649.
    [12]张雪. pn结材料辐射损伤噪声灵敏表征方法研究.西安:西安电子科技大学,2009年. p6-8.
    [13] C.Claeys E.Simoen.先进半导体材料及器件的辐射效应.第一版.北京:国防工业出版社,2008年. p162-163.
    [14] A.H.Johnston.R.E.Plaag.Models for total dose degradation of linear integrated circuits.IEEE Transactions on Nuclear Science, vol.ns-34,No.6,December1987,p1475.
    [15]李志国,李杰,郭春生等.微电子器件多失效机理可靠性寿命外推模型.电子产品可靠性与环境试验.2004年,8月,No.4,p10.
    [16] N.Arpatzanos,et al.Electrical and low frequency noise properties of 4H-SiCp+nn+ junction diodes.Phys.stat.sol,2006,(a)203,No,10:p2551-2557.
    [17]孙青,庄奕琪,王锡吉等,电子元器件可靠性工程,北京:电子工业出版社,2002.
    [18] J.H.Scofield, T.P.Doerr, D.M.Fleetwood. Correlation between preirradiation 1/f noise and postirradiation oxide-trapped charge in MOS transistors. IEEE Transactions on Nuclear Science, 1989, vol.36,No,6: p1946-1953.
    [19]庄奕琪,孙青编著.半导体器件中的噪声及其低噪声化技术.北京:国防工业出版社,1993.p80
    [20]庄奕琪,孙青.双极晶体管表面1/f噪声的研究.半导体学报.1987年,11月,8卷.p618.
    [21]王旭利.集成电路抗辐射筛选技术研究.中国核科技报告.2002年,00期.p18-22.
    [22]庄奕琪,孙青.双极型器件慢界面陷阱能量分布的1/f噪声分析方法.半导体学报.1996年,6月,17卷.p446-448.
    [23]陈伟华.SiO2介质材料辐射损伤噪声灵敏表征技术研究.西安:西安电子科技大学,2009年,p10-12.
    [24] J.M.Benedetto, H.E.Boesch. The Relationship between 60Co and 10-keV X-Ray Damage in MOS Devices. IEEE Transactions on Nuclear Science, 1986,vol.33,No,6: p1317- 1323.
    [25] Sergey N.Rashkeev, Claude R.Cirba. et al.Physical Model for Enhanced Interface-Trap Formation at Low Dose Rates.IEEE Transactions on Nuclear Science, vol. 49, NO. 6, DECEMBER 2002.p2651.
    [26]庄奕琪.微电子器件应用可靠性技术.第一版.北京:电子工业出版社,1996年,p115.
    [27] Yiqi Zhuang, Qing Sun.Correlation Between 1/f Noise and hFE Long-Term Instability in Silicon Bipolar Devices. IEEE Transactions on Electron Devices, 1991, vol.38,No.11:p2540-2547.
    [28] KF KNOTT Study of sudden changes of large amplitude burst noise in bipolar transistors. Solid-state electronics, 1992,35, p1167-1171.
    [29] Pease, R.L.Total-dose issues for microelectronics in space systems.IEEE Transactions on Nuclear Science, vol. 43, NO. 2, APRIL 1996.p446-449.
    [30] Stojadinovic N D.Effect of emitter edge dislocations on the low-frequency noiseof silicon planar n-p-n transistors.Electron.lett.1979, 15.p340-341.
    [31] Bedingfield K, Leach R and Alexander M. Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment.NASA Reference Publication , August 1996, p1390.
    [32]冯彦君,华更新,刘淑芬.航天电子抗辐射研究综述,宇航学报,2007年9月.
    [33]童诗白,华成英.模拟电子技术基础.第四版.北京:高等教育出版社,2006年,p15.
    [34]张雪,杜磊,何亮,陈伟华.基于界面材料损伤的晶体管辐射噪声表征模型,电子科技,2005年,22卷6期,p75-77.
    [35] Jamal Deen, S. L. Rumyantsev, M. Schroter.On the origin of 1/f noise in polysilicon emitter bipolar transistors,J. Appl. Phys. 85, 1192,15 January 1999.
    [36] J. H. Stephen,“Low noise junction field effect transistors exposed to intense ionizing radiation,”IEEE Trans. Nucl. Sci., vol. 33, Dec. 1986. p1465-1470.
    [37] N.Siabi-Shahrivar, W. Redman-White, P. Ashburn and H. A. Kemhadjian.Reduction of 1/f noise in polysilicon emitter bipolar transistors.Solid-StateElectronicsVolume 38, Issue 2, February 1995, p389-400.
    [38] F.N.Hooge. 1/f noise sources. IEEE Transactins on Electron Devices, 1994, 41: p1926-1935.
    [39] Z.?elik-Butler, T.Y.Hsiang. Spectral Dependence of 1/fγNoise on Gate Bias in N-MOSFET. Solid-State Electronics, 1987, 30(4):p419-423.
    [40]曹建中等著.半导体材料的辐射效应.北京:科学出版社,1993.p83-85.
    [41]杜迎,蔡荭,朱卫良.电离辐射对集成电路的影响.电子与封装,2005年7月,vol.5.No.7,p23-27.
    [42] GP Summers, E Burke, CJ Dale, EA Wolicki, Correlation of particle-induced displacement damage in silicon.IEEE Trans Nucl Sci 34,p1134-1139.
    [43] Dale, C. J.; Marshall, P. W.; Summers, G. P.; Wolicki, E. A.; Burke, E. A. Displacement damage equivalent to dose in silicon devices. Applied Physics Letters Vol54, Issue 5, Jan 1989, p451-453.
    [44] Cheryl J. Dale, Paul W. Marshall.Displacement damage in Si imagers for space applications.Proc. SPIE, Vol. 1447, p70-86.
    [45] R.A.schiebel. A model for 1/f noise in diffusion current based on surface recombination velocity fluctuation and insulator trapping.IEEE Transacitions on electron devices,vol.41,NO.5.1994, p768-778.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700