无序介质中的光波局域与随机激光辐射
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随机激光器是一种非传统的激光器,其基本特点是在具有增益的无序介质中可以形成受激辐射现象。在传统激光器中,反馈机制来源于激光腔对光波的限制作用。然而,在随机激光器中,为系统提供反馈机制的是介质无序性所造成的多重散射。由于其独特的物理机制以及广阔的应用前景,随机激光现象得到了广泛的研究。对于随机激光器的理论研究主要是基于局域化理论和激光物理理论。
     在本论文中,我们利用随机激光的半经典理论对随机激光的辐射光特性进行了以下几个方面的理论研究:
     (1)在随机激光半经典理论的基础上,给出了短脉冲泵浦随机激光器的物理模型。数值模拟的结果表明,此模型能够更加准确地描述短脉冲泵浦情形下的随机激光辐射特性。
     (2)基于短脉冲泵浦随机激光器的物理模型,研究了泵浦光参数对辐射光特性的影响。结果显示,泵浦光脉冲的峰值强度和脉宽对辐射光的时域波形有很大的影响,而泵浦光的脉冲波形对辐射光特性影响甚微。当随机介质在高重复频率的短脉冲序列泵浦下,抽运过程具有累加效应,这就允许我们使用峰值强度很低的激光脉冲序列作为随机激光有效的泵浦源。
     (3)基于短脉冲泵浦随机激光器的物理模型,研究了随机介质的样品参数对辐射光特性的影响。结果表明,随机介质的表面填充率越大,辐射光脉冲的强度越高,脉宽越窄,延迟时间也将缩短。散射颗粒的折射率对辐射光特性也有很大的影响,随着折射率的增大,介质中的光波从扩散态转变成局域态,并伴随着强烈的受激辐射过程。
     (4)利用各向异性随机激光的半经典理论,讨论了各向异性单轴散射颗粒对光波的局域化现象。结果表明,单轴介质中两个主轴折射率之比具有一个特征值,当超过这个特征值之后光波可以形成局域化现象。
     (5)基于各向异性随机激光的理论模型,研究了样品参数对光波局域化的影响,并给出了各种情况下的阈值曲线。结果表明,随机样品的表面填充率越大,局域化程度越高,辐射光的强度也随之增大。样品的面积越大,所能支撑的随机激光模式数量就越多,同时也会降低随机激光器的激发阈值。
     (6)研究了二维随机介质中偏振模式的竞争以及阈值特性。结果表明,在两种偏振模式不共享反转粒子数的情形下,横磁模式比横电模式具有更低的激发阈值。如果两种偏振模式共享上能级的反转粒子数,则横电模式占据着主导作用,而横磁模式几乎被完全压制。
     (7)利用共享反转粒子数情况下的随机激光偏振态竞争模型,讨论了样品参数对两种偏振模式的辐射特性影响。结果表明,增大样品的表面填充率并不能改变横磁模被压制的情况。但是,通过增大样品尺寸可以使横磁模的激发阈值降低,从而实现两种偏振模式的共存。
The random laser represents a non-conventional laser, whose basic property is that the lasing phenomeon can appear in random systerms with gain. In conventional laser systerms, the feedback mechanism comes from the light confinement by the cavity. While in random lasers, the multiple scattering origined from the randomness is the actual lasing feedback mechanism for such systerms. Ramdom lasing phenomeon are studied widely not only for their interesting physical properties, but also for their importance in technological applications. The theoretical investigation on the random lasers is based on the localization theory and laser physics.
     In this thesis, by use of the time-dependment theory of random lasers, we study the emission properties in such systerms as follows:
     (1) We present the physical model in short-pulse pumping regime based on the time-dependent theory of random lasers. Results show that this model can represent the emission properties more accurately in short-pulse regime.
     (2) Based on the physical model of random laser in short-pulse pumping regime, we study the relationship between the parameters of the pumping pulse and the emission light properties. Results show that the peak intensity and width of the pumping pulse have much influence on the emission pulse in temporal regime, while the shape of the pumping pulse can hardly influence the emission light. When the random media is pumped by a pulse train with high repetition rate, the pumping process has an accumulate effect. This will allow us to use the pulse train with low peak intensity as the effective pumping source of the random laser systerms.
     (3) We study how the sample parameters of the random media will influence the emission light properties by use of the physical model of random laser in short-pulse pumping regime. Results show that with the increase of the surface-filling fraction of the random media, the intensity of the emission light becomes higher, at the same time the pulse width becomes narrower and the delay time becomes shorter. The refractive index of the scatterer will also affect the emission light property. The lightwave in the random media behave the transition from diffusion to localization state with the increase the of the refractive index, accompanied by the intensive stimulate emission process.
     (4) The light localization phenomenon originated from the anisotropic uniaxial scatterer is discussed based on the time-dependent theory for the anisotropic regime. There is a characteristic value for the ratio of two principal refractive indexes. The lightwave in the random media can be localized when this ratio exceed a specific value.
     (5) Based on the theoretical model of the anisotropic random laser, we study the relationship between the sample parameters and the lightwave localization. The threshold curves for different conditions are presented. Results show that with the increase of the surface-filling fraction, the localization level becomes higher and the emission light will become more intensive. When the sample size is enlarged, it can support more lasing modes and the lasing threshold will be decreased simultaneously.
     (6) The competition and threshold property between two polarization states in two-dimensional random medium are studied. Results show that the transverse magnetic state has a lower lasing threshold than transverse electric state when they do not share the inverted population. If these two states share the inverted population, the transverse electric state dominates the lasing process while the transverse magnetic state is strongly suppressed.
     (7) By use of the competition model of two polarization states which share the inverted population, we discuss the sample structure dependence of the lasing properties in this two-dimensional medium. Numerical results show that by increasing the surface-filling fraction of the sample, one can hardly change the situation that the transverse magnetic state was suppressed. However, we can decrease the lasing threshold of the transverse magnetic state by enlarging the sample size, which will achieve the coexist of the two polarization states.
引文
[1] 周炳琨,高以智,陈倜嵘等.激光原理.(第四版).北京:清华大学出版社,2000.1-3
    [2] Siegman A E. Lasers. (2nd Edition). California: University Science Books, 1986. 150-455
    [3] Wiersma D S. The smallest random laser. Nature, 2000, 406:132-133
    [4] Letokhov V S. Generation of light a scattering medium with negative resonance absorption. Sov. Phys., 1968, 26(8): 835-840
    [5] Lawandy N M, Salschandran R M, Lgomes A S, et al. Laser action in strongly scattering media. Nature, 1994, 368: 436-439
    [6] Anderson P W. Absence of diffusion in certain random lattices. Phys. Rev., 1958, 109:1492-1505
    [7] He S J, Maynard D. Detailed measurements of inelastic scattering in Anderson localization. PhyS. Rev. Lett,, 1986, 57:3171-3174
    [8] John S. Localization of light. Phy. Tod., 1991, 44:32-40
    [9] Cao H, Zhao Y G, Ong H C, et al. Ultraviolet lasing in resonant formed by scattering in semiconductor polycrystalline films. Appl. Phys. Lett., I998, 73: 3656-3658
    [10] Cao H, Zhao Y G, Ong H C, et al. Far-field characteristics of random lasers. Phys. Rev. B., 1999, 59: 15107-15111
    [11] Cao H, Zhao Y G, Ho S T, et al. Rahdom laser action in semiconductor powder. Phys. Rev. Lett., 1999, 82:2278-2281
    [12] Cao H, Xu J Y, Seelig E W, et al. Microlaser made of disordered media. Appl. Phys. Lett., 2000, 76:2997-2999
    [13] Cao H, Xu J Y, Hang D Z, et al. Spatial confinement of laser light in active media. Phys. Rev. Lett., 2000, 84: 5384-5587
    [14] Cao H. Lasing in random media. Wave in Random Media, 2003, 13: R1-R39
    [15] Noginov M A, Noginova N E; Caulfield H J, et al. Short-pulsed stimulated emission in the powders of NdAl_3(BO_3)_4, NdSc_3(BO_3)_4, and Nd:Sr_5(PO_4)_3F laser crystals. J. Opt. Soc. Am. B, 1996, 13: 2024-2033
    [16] Cao H, Ling Y, Xu J Y, et al. Photon Statistics of lasers with resonant feedback. Phys. Rev. Lett., 2001, 86: 4524-4527
    [17] Cao H. Review on latest developments in random lasers with coherent feedback. J. Phys. A: Math. Gen., 2005, 38: 10497-10535
    [18] Wiersma D S, Cavalieri S. A temperature-tunable random laser. Nature, 2001, 414: 708-709
    [19] Wiersma D S, Colocci M, Righini R. Temperature-control light diffusion in random media. Phys. Rev. A., 2001, 64: 144208
    [20] Gottardo S, Cavalieri S, Yaroshchuk O, et al. Quasi-two-dimensional diffusive random laser action. Phys. Rev. Lett., 2004, 93: 263901
    [21] Zacharakis G, Papadogiannis N A, Papzoglou T G. Random lasing following two-photon excitation of highly scattering gain media. Appl. Phys. Lett., 2002, 81: 2511-2513
    [22] Burin A L, Cao H, Ratner M A. Two-photon pumping of a random laser. IEEE J. Sel. Top. Quantum Electron., 2003, 9: 124-127
    [23] Fujiwara H, Sasaki K. Observation of upconversion lasing within a thulium ion-doped glass powder film containing titanium dioxide particles. Japan. J. Appl. Phys. L., 2004, 43: 1337-1339
    [24] Liu B., Yamilov A., Ling Y. et al. Dynamic nonlinear effect on lasing in a random medium. Phys. Rev. Lett., 2003, 91: 063903
    [25] Mujumdar S, Ricci M, Torre R, et al. Amplified extended modes in random lasers. Phys. Rev. Lett., 2004, 93: 053903
    [26] Poison R C, Vardeny Z V. Random lasing in human tissues. Appl. Phys. Lett., 2004, 85:1289-1291
    [27] Dice G D, Mujumdar S, Elezzabi A Y. Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser. Appl. Phys. Lett., 2005, 86: 131105
    [28] Bertolotti J, Gottardo S, Wiersma D S, et al. Optical necklace states in Anderson localized 1D systems. Phys. Rev. Lett., 2005, 94: 113903
    [29] Bertolotti J, Galli M, Sapienza R, et al. Wave transport in random systems: Multiple resonance character of necklace modes and their statistical behavior. Phys. Rev. E., 2006, 74: 035602
    [30] Quochi F, Cordella F, Mura A, et al. Gain amplification and lasing properties of individual organic nanofibers. Appl. Phys. Lett., 2006, 88:041106
    [31] Wu X, Fang W, Yamilov A, et al. Random lasing in weakly scattering systems. Phys. Rev. A., 2006, 74: 053812
    [32] Song Q H, Liu L Y, Xiao S M, et al. Unidirectional high intensity narrow-linewidth lasing from a planar random microcavity laser. Phys. Rev. Lett., 2006, 96:033902
    [33] Vanneste C, Sebbah P, Cao H. Lasing with resonant feedback in weakly scattering random systems. Phys. Rev. Lett., 2007, 98:143902
    [34] Van der Molen, Tjerkstra R W, Mosk A P, et al. Spatial extent of random laser modes. Phys. Rev. Lett., 2007, 98:143901
    [35] Schwartz T, Bartal G, Fishman S, et al. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature, 2007, 446:52-55
    [36] Ferjani S, Barna v, De Luca A, et al. Random lasing in freely suspended dye-doped nematic liquid crystals. Opt. Lett., 2008, 33:557-559
    [37] Lizarraga N, Puente N P, Chaikina E I, et al. Single-mode Er-doped fiber random laser with distributed Bragg grating feedback. Opt. Express, 2009, 17:395-404
    [38] Wiersma D S, Lagendijk A. Light diffusion with gain and random lasers. Phys. Rev. E., 1996, 54:4256-4261
    [39] Zhang D Z, Cheng B Y, Yang J H, et al. Narrow-bandwidth emission from a suspehsion of dye and scatterers. Opt. Commun., 1995, 118: 462-465
    [40] Van Soest G, Tomita M, Lagendijk A. Amplifying Volume in scattering media. Opt. Lett., 1999, 24: 306-308
    [41] Beckering G, Zilker S J, Haarer D. Spectral measurements of the emission from highly scattering gain media. Opt. Lett., 1997, 22: 1427-1429
    [42] Totsuka K, Van Soest G, Ito T, et al. Amplification and diffusion of spontaneous emission in strongly scattering medium. J. Appl. Phys., 2000, 87: 7623-7628
    [43] Zhang W L, Cue N, Yoo K M. Effect of random multiple light scattering on the laser action in a binary-dye mixture, Opt. Lett., 1995, 20: 1023-1025
    [44] John S, Pang G. Theory of lasing in a multi-scattering medium. Phys. Rev. A., 1996, 54:3642-3650
    [45] Berg G A, Kempe M, Genack A Z. Dynamics of stimulate emission from random media. Phys. Rev..E., 1997, 56:6118-6124
    [46] Van Soest G, Poelwijk F J, Sprik R, et al. Dynamics of a random laser above threshold. Phys. Rev. Lett., 2001, 86:1522-1524
    [47] Van Soest G, Lagendijk A D. β-factor in a random laser. Phys. Rev. E., 2002, 65: 047601
    [48] Alpalkov V M, Raikh M E, Shapiro B. Random resonator and prelocalizated mode in disorder dielectric films. Phys. Rev. Lett., 2002, 189:016802
    [49] Jiang X Y, Soukoulis C M. Time dependent theory for random laser. Phys. Rev. Lett., 2000, 85:70-73
    [50] Hackenbroich G, Viviescas C, Elattari B, et al. Photocount Statistics of Chaotic Lasers. Phys. Rev. Lett., 2001, 86:5262-5265
    [51] Burin A L, Ratner M A, Cao H, et al. Model for a random laser. Phys. Rev. Lett., 2001, 87:215503
    [52] Hackenbroich G, Viviescas C, Haake F. Field quantization for chaotic resonators with overlapping modes. Phys. Rev. Lett., 2002, 89:083902
    [53] Ling Y, Cao H, Burin A L, et al. Investigation of random laser with resonant feedback. Phys. Rev. A., 2001, 64:063808
    [54] Soukoulis C M, Jiang X Y, Xu J Y, et al. Dynamic response relaxation oscillations in random laser. Phys. Rev. B., 2002, 65:R041103
    [55] Vanneste C, Sebbah P. Selective of localized modes in active random media. Phys. Rev. Lett., 2001, 87:183903
    [56] Sebbah P, Vanneste C. Random laser in localized regime. Phys. Rev. B,, 2002, 66: 144202
    [57] Liu J S, Wang C, Lu J T, et al. Morphology dependence of the power spectra from two-dimensional passive random media. Phys. Lett. A., 2004, 333:395-398
    [58] 刘劲松,刘海,王春.二维随机介质中准态模的频谱时间演化特性.物理学报,2005.54:3116-3122
    [59] 刘劲松,王春,王可嘉等.随机激光器的准态模理论.中国激光,2004,31(Z1):26-28
    [60] 刘劲松,刘海,王春.二维随机激光器的模式选择及阈值与饱和特性.物理学报, 2006, 55: 4123-4131
    [61] Liu J S, Liu H. Theoretical investigation on the threshold properties of localized modes in two-dimensional random media. J. Mod. Opt., 2006, 53: 1429-1439
    [62] Liu J S, Xiong Z. Theoretical investigation on the threshold property of localized modes based on spectral width in two-dimensional random media. Opt. Com., 2006, 268: 294-99
    [63] Liu J S, Xiong Z, Wang C. Theoretical investigation on polarization-d(?)pendent laser action in two-dimensional random media. J. Opt. A: Pure Appl., 2007, 9: 658-663
    [64] Wang C, Liu J S. Polarization dependence of lasing modes in two-dimensional random lasers. Phys. Lett. A., 2006, 353:269-272
    [65] Liu J S, Wang C, Xiong Z. Origin of light localization from orientational disorder in one- and two-dimensional random media with uniaxial scatters. Phys. Rev. B., 2006, 73: 195110
    [66] Burin A L, Ratner M A, Cao H, et al. Random laser in one dimension. Phys. Rev. Lett., 2002, 88:093904
    [67] Jiang X Y, Soukoulis C M, Localized random lasing modes and a path for observing localization. Phys. Rev. E., 2002, 65: R025601
    [68] Herrmann J, Wilhelmi B. Mirrorless laser action by randomly distributed feedback in amplifying disordered media with scattering centers. Appl. Phys. B., 1998, 66: 305-312
    [69] Misirpashaev T S, Beenakker C W. Lasing threshold and mode competition in chaotic cavities. Phys. Rev. A., 1998, 57:2041-2045
    [70] Beenakker C W. Thermal Radiation and Amplified Spontaneous Emission from a Random Medium. Phys. Rev. Lett., 1998, 81:1829-1832
    [71] Patra M. Theory for photon statistics of random lasers. Phys. Rev. A. 2002, 65: 043809
    [72] Taflcove A. Computational Electrodynamics: The Finite-Difference Time-Domain Method. (1st Edition). London: Artech House, 1995. 13-192
    [73] 葛德彪,闫玉波.电磁波有限使用差分法.(第二版).西安:西安电子科技大学出版社,2002.1-200
    [74] 王长清,祝西里.电磁场计算中的有限使用差分方法.(第二版).北京:北京大学 出版社,1994.10-178
    [75] 高本庆.时域有限差分法.(第一版).北京:国防工业出版社,1995.5-79
    [76] 王秉中.计算电磁学.(第一版).北京:科学出版社,2002,53-195
    [77] Landau L D, Lifshitz E M. Electrodynamics of Continuous Media. (2nd Edition). New York: Oxford, 1984. 103-156
    [78] Jackson J D. Classical Electrodynamics. (3rd Edition). Singapore: Wiley, 1999. 135-147
    [79] 郭硕鸿.电动力学.(第一版).北京:高等教育出版社,1979.19-32
    [80] Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propagat., 1966, 14: 302-307
    [81] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comp. Phys., 1994, 114:185-200
    [82] Berenger J P. Perfectly matched layer for FDTD solution of wave-structure interaction problems. IEEE Trans. Antennas Propagat., 1996, 51:110-117
    [83] Berenger J P. A perfectly matched layer for free-space simulations in finite-difference comuter codes. Annales des Telecomm., 1996, 51:36-46
    [84] Wang K J, Liu J S, Lu J T, et al. Theoretical investigation on the saturation effects in two-photon pumping random lasers. Opt. Quant. Electro., 2005, 37: 1001-1009
    [85] Feng Y, Ueda K. One-mirror random laser. Phys. Rev. A., 2003, 68:025803
    [86] Zacharakis G, Heliotis G, Filippidis G, et al. Investigation of the laserlike behavior of polymeric scattering gain media under subpicosecond laser excitation. Appl. Opt., 1999, 38: 6087-6092
    [87] Zacharakis G, Papadogiannis N A, Filippidis G, et al. Photon statistics of laserlike emission from polymeric scattering gain media. Opt. Lett., 2000, 25:923-925
    [88] Anglos D, Stassinopoulos A, Das R N, et al. Random laser action in organic-inorganic nanocomposites. J. Opt. Soc. Am. B, 2004, 21:208-213
    [89] Milner V, Genack A Z. Photon Localization Laser: Low-Threshold Lasing in a Random Amplifying Layered Medium viaWave Localization. Phys. Rev. Lett., 2005, 94:073901
    [90] Johnson P M, Imhof A, Bert B P J, et al. Time-resolved pulse propagation in a strongly scattering material. Phys. Rev. E., 2003, 68:016604
    [91] Calba C, Mees L, Roze C, et al. Ultrashort pulse propagation through a strongly scattering medium: simulation and experiments. J. Opt. Soc. Am. A, 2008, 25: 1541-1550
    [92] Conti C, Angelani L, Ruocco G. Light diffusion and localization in three-dimensional nonlinear disordered media. Phys. Rev. A., 2007, 75:033812
    [93] Gentilini s, Fratalocchi A, Angelani L, et al. Ultrashort pulse propagation and the Anderson localization. Opt. Lett., 2009, 34: 130-132
    [94] Ferjani S, Barna V, Luca A D, et al. Thermal behavior of random lasing in dye doped nematic liquid crystals. Appl. Phys. Lett., 2006, 89: 121109
    [95] Born M, Wolf E. Principles of optics. (5th Edition). Oxford: Pergamon, 1975.13-79
    [96]廖延彪.偏振光学.(第二版).北京:科学出版社,2003.5-18
    [97] Ito T, Tomita M. Polarization-dependent laser action in a two-dimensional random medium. Phys. Rev. B., 2002, 66: 027601
    [98] 王春.随机激光辐射特性理论研究:[博士学位论文].武汉:华中科技大学,2006
    [99] Wirsma D S. Light in strongly scattering And Amplifing Random Media: [Ph.D. dissertation]. Amsterdam: Institute for Atomic and Molecular Physics, 1995
    [100] Williams G R, Bayram S B, Rand S C. Laser action in strongly scattering rare-earth-metal-doped dielectric nanophosphors. Phys. Rev. A., 2001, 65: 013807
    [101] Wirsma D S. The physics and applications of random lasers. Nature Physics, 2008, 4: 359-367

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700