染色体部分区域遗传变异与江苏汉族人群乳腺癌遗传易感性的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是女性最常见的恶性肿瘤,约占所有女性恶性肿瘤患者的23%。近年来,我国乳腺癌的发病率呈快速增长趋势,乳腺癌的发病率已位于女性恶性肿瘤发病率的首位,成为威胁我国女性健康的重大疾病之一。目前普遍认为乳腺癌的发生发展是基因与环境共同作用的结果,而遗传背景的差异可能影响个体对乳腺癌的易感性。研究表明,在一般人群中,乳腺癌的遗传易感性主要与常见的低共显性基因的变异有关。近年来的全基因组关联(Genome-wide association study,GWAS)研究确定了大量的乳腺癌低共显性遗传易感性位点,但这些研究多集中于欧洲高加索裔人群,在亚洲人群,目前正开展一项包括中国人群的乳腺癌全基因组关联研究,初步筛选出了染色体1p31(rs12041465 C>A)、20q13.3(rs6100755 A>G)、7q33(rs1806667 T>G)、9q33.3(rs3829849 C>T)以及16q12.1(rs4784227 C>T)5个中国人群潜在乳腺癌易感区域,但尚未经过大样本的人群验证和评价。我们假设这些易感区域的基因多态可能与中国汉族人群乳腺癌遗传易感性相关。
     昼夜节律调控机制与肿瘤遗传易感性的关系目前广受关注。昼夜节律主要受到一系列核心生物钟基因调控。神经元PAS域蛋白2(NPAS2)是最大的生物钟基因,它位于2号染色体长臂11.2区域。NPAS2可以与BMAL1形成异二聚体,进而转录激活另外两类生物钟基因,PER和CRY。此外,该异二聚体还可以调控癌基因c-MYC并且抑制它的转录,从而抑制肿瘤的形成。此前的高加索人群研究报道,NPAS2第13外显子上的非同义性多态rs2305160 C>T与乳腺癌危险性的之间存在关联,鉴于NPAS2是调控下游肿瘤相关基因表达的重要转录因子以及其表达水平改变的生物学意义,我们在NPAS2 3’-UTR区发现了一个潜在功能性单核苷酸多态性(SNP)位点(rs3739008 C>T),其多态改变可能影响到多种miRNAs与NPAS2 3’-UTR区的结合,进而可能影响乳腺癌的遗传易感性。
     为了验证上述假设,本研究基于亚洲人群GWAS研究数据,采用病例-对照研究设计,探讨了染色体1p31 rs12041465 C>A、20q13.3 rs6100755 A>G、7q33 rs1806667 T>G、9q33.3 rs3829849 C>T以及16q12.1 rs4784227 C>T基因多态性与中国江苏汉族人群乳腺癌易感性的关系。此外,我们利用细胞转染、荧光素酶报告基因等分子生物学手段,研究2q11.2区域NPAS2 3’-UTR区的潜在功能性多态位点rs3739008C>T的功能学意义,并进一步在中国江苏人群中对rs3739008C>T以及此前报道的rs2305160C>T两位点与乳腺癌危险性关联进行研究。
     第一部分染色体部分区域遗传变异与乳腺癌易感性关联研究
     近年来的全基因组关联研究已经确定了大量的乳腺癌低共显性遗传易感性位点,但这些研究多集中于高加索裔人群,所发现的乳腺癌遗传易感性位点中,只有少数SNPs与乳腺癌的易感性可以在中国人群中得到验证,得到验证的乳腺癌遗传易感性位点在中国人群的效应往往也弱于高加索裔人群。因此,在亚洲人群,尤其是中国人群中寻找更多的乳腺癌遗传易感性位点显得尤为重要。
     最近,Zheng等开展了一项旨在发现亚洲人群乳腺癌遗传易感性位点的全基因组关联研究,该研究Ⅰ期采用Affymetrix Human SNP Assay 6.0以及Human Mapping 500K Array平台对2073例病例和2084例对照检测了684,457个SNP位点,并依据:(i)MAF≥0.05;(ii)基因分型成功且分簇明确;(iii)此前并未被证实为乳腺癌遗传易感性位点或与这些位点间存在高度连锁不平衡(r2≥0.8);(iv)在CGEMS以及SBCS GWA数据库中meta分析的P≤1×10-3,且方向一致的原则,选取了53个SNP位点在iPLEX Sequenom MassArray平台进行Ⅱ期重复验证。我们结合该研究的前期筛检标准,利用HapMap数据库中CHB的人群数据,根据染色体SNPs最小等位基因频率≥0.05的原则,最终筛选出位于染色体1p31(rs12041465 C>A)、20q13.3(rs6100755 A>G)、7q33(rs1806667 T>G)、9q33.3(rs3829849 C>T)以及16q12.1(rs4784227 C>T)5个显著与乳腺癌发病风险相关多态性位点(Ⅰ期Ⅱ期联合趋势性P≤1×10-3)在江苏汉族女性进行验证。本研究采用病例对照研究设计(1006病例和1017对照),应用TaqMan基因分型技术,在江苏汉族人群中对上述位点与乳腺癌发病风险的关联进行验证,结果显示:(1)染色体16q12.1区域rs4784227 C>T多态性改变能够显著增加乳腺癌的发病风险(P=0.008),与携带野生纯合型CC基因型的个体比较,携带变异基因型(CT+TT)的个体发生乳腺癌的风险增加了27%(调整OR=1.27,95%CI=1.06-1.52)。(2)rs3829849 C>T(调整OR=1.13,95%CI=0.90-1.41)、rs12041465 C>A (调整OR=0.97,95%CI=0.81-1.17)、rs6100755 A>G(调整OR=1.10,95%CI=0.90-1.36)和rs1806667 T>G (调整OR=0.99,95%CI=0.82-1.21)多态位点与江苏汉族人群乳腺癌的发病风险不存在显著的统计学关联(P>0.05)。本研究结果显示,染色体16q12.1区域rs4784227 C>T可能是江苏汉族人群乳腺癌的易感位点。
     第二部分染色体2q11.2区域NPAS2功能性遗传变异与乳腺癌易感性研究
     流行病学研究发现,生物钟节律的破坏会增加乳腺癌的发病风险。神经元PAS域蛋白2(NPAS2)编码基因NPAS2位于染色体2q11.2区域,是最大的生物钟基因,主要表达于哺乳动物的前脑区,编码螺旋-环-螺旋-PAS类的转录因子。NPAS2与脑肌类芳香烃受体核转位子蛋白1(BMAL1)形成异二聚体可以调控癌基因c-MYC并且抑制它的转录,从而抑制肿瘤的形成。高加索人群研究报道,NPAS2第13外显子的非同义性多态rs2305160 C>T与乳腺癌发病风险存在关联,表明NPAS2的基因变异可能参与乳腺癌发生发展。鉴于NPAS2是调控下游肿瘤相关基因表达的转录因子以及其表达水平改变的生物学意义,我们系统的筛选了位于5’-侧翼区,5’-非翻译区(5’-UTR)和3’-UTR等区域可能影响基因转录表达或活性的功能性SNPs,新发现了一个位于NPAS2基因3’-UTR区域的功能性SNP位点(rs3739008 C>T),我们通过构建荧光素酶报告基因检测,表明rs3739008 C>T的碱基改变可能影响microRNA- (miR-) 17-5p和miR-519e与NPAS2 3’-UTR区的结合,从而使得NPAS2转录水平显著增加(P<0.05)。通过病例对照研究,我们分析了NPAS2 rs3739008 C>T和rs2305160C>T两位点与江苏汉族人群乳腺癌发病风险的关系。研究结果表明,两位点与乳腺癌的发病风险均未有统计学显著性(显性模型:rs3739008 C>T:调整OR=1.13,95% CI=0.95-1.35;rs2305160 C>T:调整OR=0.99,95% CI=0.82-1.19)。尽管我们未能发现显著的统计学关联,但由于SNP位点rs3739008 C>T基因型与NPAS2表达存在显著相关性,而NPAS2表达与乳腺癌预后有关,进一步的研究将有助于评价该多态在乳腺癌预后转归中的作用。
Breast cancer is the most common cancer and the leading cause of cancer related death among women worldwide, accounting for 23%. Although the incidence rate of breast cancer in China is low, it shows a significantly increasing trend in the last two decades. Breast cancer has already been one of main causes contributing to disease related deaths and a serious one to be resolved in public health. It is well accepted that the etiology of breast cancer appears to entail a complex combination of genetic and environmental. Studies indicate that most of the genetic susceptibility to breast cancer was related to the common low-penetrance genes in general population. Recent genome-wide association (GWAS) studies have identified multiple low-penetrance genetic susceptibility loci for breast cancer. However, most of these GWA studies are conducted among women of European ancestry, it is particular important to find additional genetic risk variants for breast cancer in the Asian population, especially in Chinese population. For this reason, we follwed a genome-wide association study, which aims to the genetic susceptibility to breast cancer locus in Asian population, and selected five promising SNPs that including rs12041465 C>A, rs6100755 A>G, rs1806667 T>G, rs3829849 C>T and rs4784227 C>T, which located in 1p31, 20q13.3, 7q33, 9q33.3and 16q12.1, respectively. We hypothesized that these polymorphisms may be associated with susceptibility to breast cancer risk in Chinese population.
     In addition, the relationship between the circadian rhythm regulatory mechanisms and genetic susceptibility to cancer received wide attention now. Circadian rhythm is mainly driven by a set of core circadian clock genes. Neuronal PAS domain protein 2 (NPAS2), the largest circadian gene, maps on chromosome 2q11.2. NPAS2 forms heterodimers with BMAL1 and then transcriptional activates expression of 2 other circadian genes, PER and CRY. Moreover, NPAS2 has been suggested to be involved in tumorigenesis, by regulating the oncogene c-MYC to suppress its transcription. A previous study in Caucasian population reported that the non-synonymous polymorphism rs2305160 C>T in exon 13 of NPAS2 was associated with susceptibility to breast cancer risk, as NPAS2 is a trans-activator to control the expression of down stream tumor related genes, we searched and found a putative functional SNP (rs3739008 C>T) located at 3’UTR of NPAS2, and hypothesized the polymorphism of this SNP may disrupt the binding of several microRNAs (miRNAs) to the 3’UTR of NPAS2, and may affect the genetic susceptibility to breast cancer in turn. .
     To test these hypotheses, case-control study was performed to detect the association of polymorphisms on chromosomes 1p31, 20q13.3, 7q33, 9q33.3 and 16q12.1 with breast cancer risk in Chinese Jiangsu population, which based on a GWAS research projects. In addition, based on current clock gene research, we used cell transfection, luciferase reporter gene and other molecular biology methods to verify the NPAS2 3'-UTR region of potential functional polymorphism rs3739008 C>T functional significance and further test the association of rs3739008 C>T and rs2305160 C>T polymorphisms on chromosomes 2q11.2 with breast cancer risk in Chinese Jiangsu population.
     PartⅠ: Association study of some regions of chromosomes polymorphisms with the susceptibility of breast cancer
     Recent genome-wide association (GWAS) studies have identified multiple low-penetrance genetic susceptibility loci for breast cancer. However, most of these GWA studies are conducted among women of European ancestry and only few of the SNPs initially identified in European descents can be directly replicated in Chinese. Furthermore, the associations of breast cancer with the replicated SNPs are often weaker in Asian women than those reported initially in studies conducted among European descendants. Therefore, it is particular important to find additional genetic risk variants for breast cancer in the Asian population, especially in Chinese population. Zheng et al, have reported a novel genetic susceptibility locus at 6q25.1 for breast cancer risk in Chinese population in a previous genome-wide association study. Recently, A genome-wide association study, which aims to the genetic susceptibility to breast cancer locus in Asian population was conducted. This study analyzed 684,457 SNPs in 2,073 cases and 2,084 controls in Stage I by using Affymetrix Human SNP Assay 6.0 and Human Mapping 500K Array, and then selected 53 promising SNPs for a fast-track replication in Stage II on iPLEX Sequenom MassArray. Selection criteria for these SNPs were (i) MAF≥5%; (ii) very clear genotyping clusters; (iii) not previously confirmed as breast cancer genetic risk variant or in strong LD (r2≥0.8) with these variants; and (iv) P≤1×10-3 in the meta analyses of CGEMS and SBCS GWA data, having the same direction of the association in both studies. We combined the study of pre-screening criteria, using HapMap database CHB populations of data, according to the chromosome SNPs minior allele frequency≥0.05 in principle, finally selected five promising SNPs that including rs12041465 C>A, rs6100755 A>G, rs1806667 T>G, rs3829849 C>T and rs4784227 C>T, which located in 1p31, 20q13.3, 7q33, 9q33.3and 16q12.1, respectively. We then typed these SNPs in a case-control study, by using TaqMan allelic discrimination techniques to test the putative associations with breast cancer risk in Chinese population. The results showed that: (1) the variant genotype (CT + TT) of the rs4784227 C>T polymorphism on chromosome 16q12.1 was associated with a significantly increased risk of breast cancer (adjusted OR = 1.27, 95% CI = 1.06-1.52, P=0.008), compared with the wild-type CC genotype. (2) we failed to find the rs3829849 C>T (adjusted OR=1.13, 95%CI=0.90-1.41), rs12041465 C>A (adjusted OR=0.97, 95%CI=0.81-1.17), rs6100755 A>G (adjusted OR=1.10, 95%CI=0.90-1.36) and rs1806667 T>G (adjusted OR=0.99, 95%CI=0.82-1.21) polymorphisms significantly associated with breast cancer risk (P>0.05). These results suggest that, the rs4784227 C>T polymorphism on chromosome 16q12.1 may be related to the pathogenesis of breast cancer in Chinese women.
    
     PartⅡ: Association study of 2q11.2 region NPAS2 functional genetic variation with the susceptibility of breast cancer
     Disruption of the circadian rhythm has been reported to increase the risk of breast cancer. Neuronal PAS domain protein 2 (NPAS2) is the largest circadian gene, maps on chromosome 2q11.2, which expressed primarily in the mammalian forebrain and encodes for a member of the basic helix-loop-helix-PAS class of transcription factors. NPAS2 forms heterodimers with brain and muscle ARNT-like-1(BMAL1) and then regulates the oncogene c-MYC to suppress its transcription, which has been suggested to be involved in tumorigenesis. Previous study in Caucasian population reported that the non-synonymous polymorphism rs2305160 C>T in exon 13 of NPAS2 was associated with susceptibility to breast cancer risk, which has shown that the functional genetic variations in NPAS2 might be candidate biomarkers for breast cancer risk, where as NPAS2 expression is a significant biomarker for breast cancer survival. As NPAS2 is a trans-activator to control the expression of down stream tumor related genes, in the current study, we searched potentially functional SNPs in the promoter region, 5’-untranslated region (UTR) and 3’UTR, which may influence gene expression, and found a putative functional SNP (rs3739008 C>T) located at 3’UTR of NPAS2 and the C to T changing of the SNP may disrupt the binding of microRNA- (miR-) 17-5p and miR-519e to the 3’UTR of NPAS2 by constructing luciferase reporter gene assay test, enabling a significant increase in NPAS2 transcription (P<0.05). We then typed NPAS2 rs3739008 C>T and rs2305160 C>T polymorphisms in case-control studies of in Chinese Jiangsu Han population to test their putative associations with breast cancer risk. However, we failed to find any significant associations by different genetic models in both two sites (dominant genetic model: rs3739008 C>T: adjusted OR = 1.13, 95% CI = 0.95-1.35; rs2305160 C>T: adjusted OR = 0.99, 95% CI = 0.82-1.19). Although we did not find any significant associations, due to the functional relevance of rs3739008 C>T on NASP2 expression, it will be promising to investigate the influence of this variant on clinical characteristics of breast cancer and breast cancer survival.
引文
1 Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74-108.
    2 Yang L, Parkin DM, Ferlay J, Li L, Chen Y: Estimates of cancer incidence in china for 2000 and projections for 2005. Cancer Epidemiol Biomarkers Prev 2005;14:243-250.
    3 Fentiman IS: Fixed and modifiable risk factors for breast cancer. Int J Clin Pract 2001;55:527-530.
    4 Coughlin SS, Piper M: Genetic polymorphisms and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 1999;8:1023-1032.
    5 Deng CX: Brca1: Cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res 2006;34:1416-1426.
    6 Garber JE, Goldstein AM, Kantor AF, Dreyfus MG, Fraumeni JF, Jr., Li FP: Follow-up study of twenty-four families with li-fraumeni syndrome. Cancer Res 1991;51:6094-6097.
    7 Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W, et al.: A strong candidate for the breast and ovarian cancer susceptibility gene brca1. Science 1994;266:66-71.
    8 Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G: Identification of the breast cancer susceptibility gene brca2. Nature 1995;378:789-792.
    9 Wooster R, Weber BL: Breast and ovarian cancer. N Engl J Med 2003;348:2339-2347.
    10 de Jong MM, Nolte IM, te Meerman GJ, van der Graaf WT, Oosterwijk JC, Kleibeuker JH, Schaapveld M, de Vries EG: Genes other than brca1 and brca2 involved in breast cancer susceptibility. J Med Genet 2002;39:225-242.
    11 Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, Peters U: Geneticsusceptibility to cancer: The role of polymorphisms in candidate genes. JAMA 2008;299:2423-2436.
    12 Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MW, Pooley KA, Scollen S, Baynes C, Ponder BA, Chanock S, Lissowska J, Brinton L, Peplonska B, Southey MC, Hopper JL, McCredie MR, Giles GG, Fletcher O, Johnson N, dos Santos Silva I, Gibson L, Bojesen SE, Nordestgaard BG, Axelsson CK, Torres D, Hamann U, Justenhoven C, Brauch H, Chang-Claude J, Kropp S, Risch A, Wang-Gohrke S, Schurmann P, Bogdanova N, Dork T, Fagerholm R, Aaltonen K, Blomqvist C, Nevanlinna H, Seal S, Renwick A, Stratton MR, Rahman N, Sangrajrang S, Hughes D, Odefrey F, Brennan P, Spurdle AB, Chenevix-Trench G, Beesley J, Mannermaa A, Hartikainen J, Kataja V, Kosma VM, Couch FJ, Olson JE, Goode EL, Broeks A, Schmidt MK, Hogervorst FB, Van't Veer LJ, Kang D, Yoo KY, Noh DY, Ahn SH, Wedren S, Hall P, Low YL, Liu J, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Sigurdson AJ, Stredrick DL, Alexander BH, Struewing JP, Pharoah PD, Easton DF: A common coding variant in casp8 is associated with breast cancer risk. Nat Genet 2007;39:352-358.
    13 Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661-678.
    14 Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J: Complement factor h polymorphism in age-related macular degeneration. Science 2005;308:385-389.
    15 Ellis NA, Kirchhoff T, Mitra N, Ye TZ, Chuai S, Huang H, Nafa K, Norton L, Neuhausen S, Gordon D, Struewing JP, Narod S, Offit K: Localization of breast cancer susceptibility loci by genome-wide snp linkage disequilibrium mapping. Genet Epidemiol 2006;30:48-61.
    16 Nordgard SH, Johansen FE, Alnaes GI, Bucher E, Syvanen AC, Naume B, Borresen-Dale AL, Kristensen VN: Genome-wide analysis identifies 16q deletionassociated with survival, molecular subtypes, mrna expression, and germline haplotypes in breast cancer patients. Genes Chromosomes Cancer 2008;47:680-696.
    17 Stacey SN, Manolescu A, Sulem P, Thorlacius S, Gudjonsson SA, Jonsson GF, Jakobsdottir M, Bergthorsson JT, Gudmundsson J, Aben KK, Strobbe LJ, Swinkels DW, van Engelenburg KC, Henderson BE, Kolonel LN, Le Marchand L, Millastre E, Andres R, Saez B, Lambea J, Godino J, Polo E, Tres A, Picelli S, Rantala J, Margolin S, Jonsson T, Sigurdsson H, Jonsdottir T, Hrafnkelsson J, Johannsson J, Sveinsson T, Myrdal G, Grimsson HN, Sveinsdottir SG, Alexiusdottir K, Saemundsdottir J, Sigurdsson A, Kostic J, Gudmundsson L, Kristjansson K, Masson G, Fackenthal JD, Adebamowo C, Ogundiran T, Olopade OI, Haiman CA, Lindblom A, Mayordomo JI, Kiemeney LA, Gulcher JR, Rafnar T, Thorsteinsdottir U, Johannsson OT, Kong A, Stefansson K: Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 2008;40:703-706.
    18 Gold B, Kirchhoff T, Stefanov S, Lautenberger J, Viale A, Garber J, Friedman E, Narod S, Olshen AB, Gregersen P, Kosarin K, Olsh A, Bergeron J, Ellis NA, Klein RJ, Clark AG, Norton L, Dean M, Boyd J, Offit K: Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33. Proc Natl Acad Sci U S A 2008;105:4340-4345.
    19 Murabito JM, Rosenberg CL, Finger D, Kreger BE, Levy D, Splansky GL, Antman K, Hwang SJ: A genome-wide association study of breast and prostate cancer in the nhlbi's framingham heart study. BMC Med Genet 2007;8 Suppl 1:S6.
    20 Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, Struewing JP, Morrison J, Field H, Luben R, Wareham N, Ahmed S, Healey CS, Bowman R, Meyer KB, Haiman CA, Kolonel LK, Henderson BE, Le Marchand L, Brennan P, Sangrajrang S, Gaborieau V, Odefrey F, Shen CY, Wu PE, Wang HC, Eccles D, Evans DG, Peto J, Fletcher O, Johnson N, Seal S, Stratton MR,Rahman N, Chenevix-Trench G, Bojesen SE, Nordestgaard BG, Axelsson CK, Garcia-Closas M, Brinton L, Chanock S, Lissowska J, Peplonska B, Nevanlinna H, Fagerholm R, Eerola H, Kang D, Yoo KY, Noh DY, Ahn SH, Hunter DJ, Hankinson SE, Cox DG, Hall P, Wedren S, Liu J, Low YL, Bogdanova N, Schurmann P, Dork T, Tollenaar RA, Jacobi CE, Devilee P, Klijn JG, Sigurdson AJ, Doody MM, Alexander BH, Zhang J, Cox A, Brock IW, MacPherson G, Reed MW, Couch FJ, Goode EL, Olson JE, Meijers-Heijboer H, van den Ouweland A, Uitterlinden A, Rivadeneira F, Milne RL, Ribas G, Gonzalez-Neira A, Benitez J, Hopper JL, McCredie M, Southey M, Giles GG, Schroen C, Justenhoven C, Brauch H, Hamann U, Ko YD, Spurdle AB, Beesley J, Chen X, Mannermaa A, Kosma VM, Kataja V, Hartikainen J, Day NE, Cox DR, Ponder BA: Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007;447:1087-1093.
    21 Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R, Hutchinson A, Wang J, Yu K, Chatterjee N, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Hayes RB, Tucker M, Gerhard DS, Fraumeni JF, Jr., Hoover RN, Thomas G, Chanock SJ: A genome-wide association study identifies alleles in fgfr2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 2007;39:870-874.
    22 Pereira LH, Pineda MA, Rowe WH, Fonseca LR, Greene MH, Offit K, Ellis NA, Zhang J, Collins A, Struewing JP: The brca1 ashkenazi founder mutations occur on common haplotypes and are not highly correlated with anonymous single nucleotide polymorphisms likely to be used in genome-wide case-control association studies. BMC Genet 2007;8:68.
    23 Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J, Gudjonsson SA, Masson G, Jakobsdottir M, Thorlacius S, Helgason A, Aben KK, Strobbe LJ, Albers-Akkers MT, Swinkels DW, Henderson BE, Kolonel LN, Le Marchand L, Millastre E, Andres R, Godino J, Garcia-Prats MD, Polo E, Tres A, Mouy M,Saemundsdottir J, Backman VM, Gudmundsson L, Kristjansson K, Bergthorsson JT, Kostic J, Frigge ML, Geller F, Gudbjartsson D, Sigurdsson H, Jonsdottir T, Hrafnkelsson J, Johannsson J, Sveinsson T, Myrdal G, Grimsson HN, Jonsson T, von Holst S, Werelius B, Margolin S, Lindblom A, Mayordomo JI, Haiman CA, Kiemeney LA, Johannsson OT, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K: Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 2007;39:865-869.
    24 Zheng W, Long J, Gao YT, Li C, Zheng Y, Xiang YB, Wen W, Levy S, Deming SL, Haines JL, Gu K, Fair AM, Cai Q, Lu W, Shu XO: Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet 2009;41:324-328.
    25 Gery S, Koeffler HP: The role of circadian regulation in cancer. Cold Spring Harb Symp Quant Biol 2007;72:459-464.
    26 Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings MH, Reppert SM: Interacting molecular loops in the mammalian circadian clock. Science 2000;288:1013-1019.
    27 Reppert SM, Weaver DR: Coordination of circadian timing in mammals. Nature 2002;418:935-941.
    28 Schibler U, Sassone-Corsi P: A web of circadian pacemakers. Cell 2002;111:919-922.
    29 Ko CH, Takahashi JS: Molecular components of the mammalian circadian clock. Hum Mol Genet 2006;15 Spec No 2:R271-277.
    30 Lie JA, Roessink J, Kjaerheim K: Breast cancer and night work among norwegian nurses. Cancer Causes Control 2006;17:39-44.
    31 Davis S, Mirick DK, Stevens RG: Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 2001;93:1557-1562.
    32 Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Colditz GA: Rotating night shifts and risk of breast cancer in women participating in the nurses' health study. J Natl Cancer Inst 2001;93:1563-1568.
    33 Stevens RG: Circadian disruption and breast cancer: From melatonin to clock genes. Epidemiology 2005;16:254-258.
    34 Zhu Y, Stevens RG, Leaderer D, Hoffman A, Holford T, Zhang Y, Brown HN, Zheng T: Non-synonymous polymorphisms in the circadian gene npas2 and breast cancer risk. Breast Cancer Res Treat 2008;107:421-425.
    35 Yi C, Mu L, de la Longrais IA, Sochirca O, Arisio R, Yu H, Hoffman AE, Zhu Y, Katsaro D: The circadian gene npas2 is a novel prognostic biomarker for breast cancer. Breast Cancer Res Treat 2010;120:663-9
    36 Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS: Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science 1994;264:719-725.
    37 Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA: Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 2000;103:1009-1017.
    38 Dudley CA, Erbel-Sieler C, Estill SJ, Reick M, Franken P, Pitts S, McKnight SL: Altered patterns of sleep and behavioral adaptability in npas2-deficient mice. Science 2003;301:379-383.
    39 Fu L, Pelicano H, Liu J, Huang P, Lee C: The circadian gene period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 2002;111:41-50.
    40 Chen-Goodspeed M, Lee CC: Tumor suppression and circadian function. J Biol Rhythms 2007;22:291-298.
    41 Hoffman AE, Zheng T, Ba Y, Zhu Y: The circadian gene npas2, a putative tumor suppressor, is involved in DNA damage response. Mol Cancer Res2008;6:1461-1468.
    42 Yi CH, Zheng T, Leaderer D, Hoffman A, Zhu Y: Cancer-related transcriptional targets of the circadian gene npas2 identified by genome-wide chip-on-chip analysis. Cancer Lett 2009;284:149-156.
    43 Liang J, Chen P, Hu Z, Zhou X, Chen L, Li M, Wang Y, Tang J, Wang H, Shen H: Genetic variants in fibroblast growth factor receptor 2 (fgfr2) contribute to susceptibility of breast cancer in chinese women. Carcinogenesis 2008;29:2341-2346.
    44 Liang J, Chen P, Hu Z, Shen H, Wang F, Chen L, Li M, Tang J, Wang H: Genetic variants in trinucleotide repeat-containing 9 (tnrc9) are associated with risk of estrogen receptor positive breast cancer in a chinese population. Breast Cancer Res Treat 2010 Mar 9. [Epub ahead of print].
    45 Fu L, Lee CC: The circadian clock: Pacemaker and tumour suppressor. Nat Rev Cancer 2003;3:350-361.
    46 Reick M, Garcia JA, Dudley C, McKnight SL: Npas2: An analog of clock operative in the mammalian forebrain. Science 2001;293:506-509.
    47 Chu LW, Zhu Y, Yu K, Zheng T, Chokkalingam AP, Stanczyk FZ, Gao YT, Hsing AW: Correlation between circadian gene variants and serum levels of sex steroids and insulin-like growth factor-i. Cancer Epidemiol Biomarkers Prev 2008;17:3268-3273.
    48 Zhu Y, Leaderer D, Guss C, Brown HN, Zhang Y, Boyle P, Stevens RG, Hoffman A, Qin Q, Han X, Zheng T: Ala394thr polymorphism in the clock gene npas2: A circadian modifier for the risk of non-hodgkin's lymphoma. Int J Cancer 2007;120:432-435.
    49 Hossain A, Kuo MT, Saunders GF: Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of aib1 mrna. Mol Cell Biol 2006;26:8191-8201.
    50 Yu Z, Wang C, Wang M, Li Z, Casimiro MC, Liu M, Wu K, Whittle J, Ju X, Hyslop T, McCue P, Pestell RG: A cyclin d1/microrna 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol 2008;182:509-517.
    51 Hansen J: Increased breast cancer risk among women who work predominantly at night. Epidemiology 2001;12:74-77.
    52 Stevens RG, Rea MS: Light in the built environment: Potential role of circadian disruption in endocrine disruption and breast cancer. Cancer Causes Control 2001;12:279-287.
    53 Bartel DP: Micrornas: Genomics, biogenesis, mechanism, and function. Cell 2004;116:281-297.
    54 Hu Z, Liang J, Wang Z, Tian T, Zhou X, Chen J, Miao R, Wang Y, Wang X, Shen H: Common genetic variants in pre-micrornas were associated with increased risk of breast cancer in chinese women. Hum Mutat 2009;30:79-84.
    55 Tchatchou S, Jung A, Hemminki K, Sutter C, Wappenschmidt B, Bugert P, Weber BH, Niederacher D, Arnold N, Varon-Mateeva R, Ditsch N, Meindl A, Schmutzler RK, Bartram CR, Burwinkel B: A variant affecting a putative mirna target site in estrogen receptor (esr) 1 is associated with breast cancer risk in premenopausal women. Carcinogenesis 2009;30:59-64.
    56 Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T: A polycistronic microrna cluster, mir-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005;65:9628-9632.
    57 He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM: A microrna polycistron as a potential human oncogene. Nature 2005;435:828-833.
    58 O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT: C-MYC-regulated micrornas modulate e2f1 expression. Nature 2005;435:839-843.
    59 Hampp G, Albrecht U: The circadian clock and mood-related behavior. Commun Integr Biol 2008;1:1-3. 60 Nicholas B, Rudrasingham V, Nash S, Kirov G, Owen MJ, Wimpory DC: Association of per1 and npas2 with autistic disorder: Support for the clock genes/social timing hypothesis. Mol Psychiatry 2007;12:581-592.
    61 Partonen T, Treutlein J, Alpman A, Frank J, Johansson C, Depner M, Aron L, Rietschel M, Wellek S, Soronen P, Paunio T, Koch A, Chen P, Lathrop M, Adolfsson R, Persson ML, Kasper S, Schalling M, Peltonen L, Schumann G: Three circadian clock genes per2, arntl, and npas2 contribute to winter depression. Ann Med 2007;39:229-238.
    62 Johansson C, Willeit M, Smedh C, Ekholm J, Paunio T, Kieseppa T, Lichtermann D, Praschak-Rieder N, Neumeister A, Nilsson LG, Kasper S, Peltonen L, Adolfsson R, Schalling M, Partonen T: Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology 2003;28:734-739.
    1 Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74-108.
    2 Yang L, Parkin DM, Li L, Chen Y: Time trends in cancer mortality in china: 1987-1999. Int J Cancer 2003;106:771-783.
    3 Yang L, Parkin DM, Ferlay J, Li L, Chen Y: Estimates of cancer incidence in china for 2000 and projections for 2005. Cancer Epidemiol Biomarkers Prev 2005;14:243-250.
    4 Gery S, Koeffler HP: The role of circadian regulation in cancer. Cold Spring Harb Symp Quant Biol 2007;72:459-464.
    5 Lie JA, Roessink J, Kjaerheim K: Breast cancer and night work among norwegian nurses. Cancer Causes Control 2006;17:39-44.
    6 Davis S, Mirick DK, Stevens RG: Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 2001;93:1557-1562.
    7 Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Colditz GA: Rotating night shifts and risk of breast cancer in women participating in the nurses' health study. J Natl Cancer Inst 2001;93:1563-1568.
    8 Stevens RG: Circadian disruption and breast cancer: From melatonin to clock genes. Epidemiology 2005;16:254-258.
    9 King DP, Takahashi JS: Molecular genetics of circadian rhythms in mammals. Annu Rev Neurosci 2000;23:713-742.
    10 Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ: Circadian rhythms from multiple oscillators: Lessons from diverse organisms. Nat Rev Genet 2005;6:544-556.
    11 Filipski E, King VM, Li X, Granda TG, Mormont MC, Liu X, Claustrat B, Hastings MH, Levi F: Host circadian clock as a control point in tumor progression. J Natl Cancer Inst 2002;94:690-697.
    12 Badiu C: Genetic clock of biologic rhythms. J Cell Mol Med 2003;7:408-416.
    13 Lowrey PL, Takahashi JS: Mammalian circadian biology: Elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 2004;5:407-441.
    14 Ripperger JA, Schibler U: Circadian regulation of gene expression in animals.Curr Opin Cell Biol 2001;13:357-362.
    15 Langmesser S, Tallone T, Bordon A, Rusconi S, Albrecht U: Interaction of circadian clock proteins per2 and cry with bmal1 and clock. BMC Mol Biol 2008;9:41.
    16 Oklejewicz M, Destici E, Tamanini F, Hut RA, Janssens R, van der Horst GT: Phase resetting of the mammalian circadian clock by DNA damage. Curr Biol 2008;18:286-291.
    17 Fu L, Pelicano H, Liu J, Huang P, Lee C: The circadian gene period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 2002;111:41-50.
    18 Fu L, Lee CC: The circadian clock: Pacemaker and tumour suppressor. Nat Rev Cancer 2003;3:350-361.
    19 Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H: Control mechanism of the circadian clock for timing of cell division in vivo. Science 2003;302:255-259.
    20 Bjarnason GA, Jordan RC, Wood PA, Li Q, Lincoln DW, Sothern RB, Hrushesky WJ, Ben-David Y: Circadian expression of clock genes in human oral mucosa and skin: Association with specific cell-cycle phases. Am J Pathol 2001;158:1793-1801.
    21 Filipski E, Li XM, Levi F: Disruption of circadian coordination and malignant growth. Cancer Causes Control 2006;17:509-514.
    22 Canaple L, Kakizawa T, Laudet V: The days and nights of cancer cells. Cancer Res 2003;63:7545-7552.
    23 Bjarnason GA, Jordan RC, Sothern RB: Circadian variation in the expression of cell-cycle proteins in human oral epithelium. Am J Pathol 1999;154:613-622.
    24 Granda TG, Levi F: Tumor-based rhythms of anticancer efficacy in experimental models. Chronobiol Int 2002;19:21-41.
    25 Smaaland R, Lote K, Sothern RB, Laerum OD: DNA synthesis and ploidy in non-hodgkin's lymphomas demonstrate intrapatient variation depending on circadian stage of cell sampling. Cancer Res 1993;53:3129-3138.
    26 Grundschober C, Delaunay F, Puhlhofer A, Triqueneaux G, Laudet V, Bartfai T, Nef P: Circadian regulation of diverse gene products revealed by mrna expression profiling of synchronized fibroblasts. J Biol Chem 2001;276:46751-46758.
    27 Kita Y, Shiozawa M, Jin W, Majewski RR, Besharse JC, Greene AS, Jacob HJ: Implications of circadian gene expression in kidney, liver and the effects of fasting on pharmacogenomic studies. Pharmacogenetics 2002;12:55-65.
    28 Mints M, Hildenbrand A, Lalitkumar LP, Andersson S, Nielsen S, Gemzell-Danielsson K, Stavreus-Evers A: Expression of aquaporin-1 in endometrial blood vessels in menorrhagia. Int J Mol Med 2007;19:407-411.
    29 Koyanagi S, Kuramoto Y, Nakagawa H, Aramaki H, Ohdo S, Soeda S, Shimeno H: A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells. Cancer Res 2003;63:7277-7283.
    30 Hansen J: Risk of breast cancer after night- and shift work: Current evidence and ongoing studies in denmark. Cancer Causes Control 2006;17:531-537.
    31 Davis S, Mirick DK: Circadian disruption, shift work and the risk of cancer: A summary of the evidence and studies in seattle. Cancer Causes Control 2006;17:539-545.
    32 Megdal SP, Kroenke CH, Laden F, Pukkala E, Schernhammer ES: Night work and breast cancer risk: A systematic review and meta-analysis. Eur J Cancer 2005;41:2023-2032.
    33 Sahar S, Sassone-Corsi P: Circadian clock and breast cancer: A molecular link. Cell Cycle 2007;6:1329-1331.
    34 Zhu Y, Brown HN, Zhang Y, Stevens RG, Zheng T: Period3 structural variation:A circadian biomarker associated with breast cancer in young women. Cancer Epidemiol Biomarkers Prev 2005;14:268-270.
    35 Zhu Y, Leaderer D, Guss C, Brown HN, Zhang Y, Boyle P, Stevens RG, Hoffman A, Qin Q, Han X, Zheng T: Ala394thr polymorphism in the clock gene npas2: A circadian modifier for the risk of non-hodgkin's lymphoma. Int J Cancer 2007;120:432-435.
    36 Chen ST, Choo KB, Hou MF, Yeh KT, Kuo SJ, Chang JG: Deregulated expression of the per1, per2 and per3 genes in breast cancers. Carcinogenesis 2005;26:1241-1246.
    37 Baker FC, Driver HS: Circadian rhythms, sleep, and the menstrual cycle. Sleep Med 2007;8:613-622.
    38 Walisser JA, Bradfield CA: A time to divide: Does the circadian clock control cell cycle? Dev Cell 2006;10:539-540.
    39 Althuis MD, Fergenbaum JH, Garcia-Closas M, Brinton LA, Madigan MP, Sherman ME: Etiology of hormone receptor-defined breast cancer: A systematic review of the literature. Cancer Epidemiol Biomarkers Prev 2004;13:1558-1568.
    40 Sanchez-Barcelo EJ, Cos S, Mediavilla D, Martinez-Campa C, Gonzalez A, Alonso-Gonzalez C: Melatonin-estrogen interactions in breast cancer. J Pineal Res 2005;38:217-222.
    41 Wager-Smith K, Kay SA: Circadian rhythm genetics: From flies to mice to humans. Nat Genet 2000;26:23-27.
    42 Haus E, Smolensky M: Biological clocks and shift work: Circadian dysregulation and potential long-term effects. Cancer Causes Control 2006;17:489-500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700