p38在体外培养的鸡胚胎晶状体半乳糖性白内障中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     白内障是多因素引起的晶状体混浊,是第一位致盲眼病。丝裂原激活蛋白激酶(MAPK)信号通路参与多种应激反应, p38是其家族成员之一,它主要参与高渗透压、高糖、炎症等引起的细胞应激反应。凋亡是各种非先天性白内障共同的细胞基础。虽然有研究显示凋亡存在于半乳糖性白内障的晶状体上皮细胞中,半乳糖激活p38,尚没有研究证实半乳糖诱导的p38激活与凋亡直接相关。
     目的
     本研究将利用体外培养的胚胎鸡晶状体培养系统,建立半乳糖性白内障模型,探讨p38激活与晶状体上皮细胞凋亡的关系,及其在白内障形成中的作用。
     方法
     用30mmol/L半乳糖在体外培养的鸡胚胎晶状体上诱导半乳糖性白内障模型(对照组),在培养的10天里,通过每日观察、照相、计算晶状体的混浊面积,并用Western Blot检测晶状体中磷酸化p38的表达;用p38特异性抑制剂SB203580抑制p38活性,观察其对晶状体混浊程度的影响;通过对晶状体细胞膜(WGA)及细胞核(DAPI)染色,观察晶状体纤维结构和分布变化;利用TUNEL凋亡细胞染色法观察白内障发生中晶状体切片上的凋亡细胞的数量变化,并检测晶状体上皮细胞内caspase-3活性变化。
     结果
     30 mmol/L半乳糖能诱导体外培养的鸡胚胎晶状体产生周边部皮质性混浊,随着半乳糖暴露时间的延长,晶状体的混浊面积增加,p38抑制剂SB203580能有效减轻半乳糖性晶状体的混浊。半乳糖性白内障晶状体切片显示赤道部晶状体纤维结构紊乱、晶状体纤维细胞分化异常,而p38抑制剂能够减轻这些组织学改变。TUNEL原位凋亡细胞检测显示,在半乳糖处理的d2、d5和d10天,晶状体凋亡细胞比例明显增加,分别为1.7%、4.5%和12%,而SB203580明显阻止晶状体细胞的凋亡,在相应时间点凋亡细胞比例降至0.7%、1.5%和1.4%。与此结果对应,caspase-3活性在半乳糖性白内障发生中明显升高,在培养的第d2,d5和d10天,分别是胚胎10天正常晶状体(E10)的8.5,19.5和41.9倍,而抑制P38的活性后caspase-3活性明显减低,为E10的3,7.8和26.9倍。
     结论
     抑制p38的激活能减轻半乳糖性白内障的发生。p38诱导caspase-3激活的细胞凋亡途径参与半乳糖性白内障的形成。
Background
     Cataract characterized by opacification of lens is caused by multi-factors. MAPK participate in many signaling pathways of stress. P38, a member of MAPK, mediates in the signaling pathways in various cells induced by osmotic stress, high glucose, and inflammation and so on. Apoptosis of lens epithelial cell is considered a common cellular basis for non-congenital cataract development in humans and animals. Although it has shown that activation of p38 and apoptosis of lens epithelial cells appeared in galactose cataracts, there is no direct evidence to show that P38 involves in signaling pathway of apoptosis in galactose cataract.
     Aim
     The goal of this study is to determine the signaling pathway of apoptosis mediated by p38 in formation of galactose cataract, developed by chicken embryonic lenses culture system in vitro.
     Methods
     The cataract model was developed by 30mmol/L galactose in cultured chicken embryonic lenses. To examine the role of P38 in formation of cataract, lenses were grown for ten days with or without inhibitor of p38, SB203580. Lens was observed and photographed daily, and the degree of opacification was quantified by using imagine software. Phospho-p38 in the lenses treated with or without p38 inhibitor was determined by western blot assay. Histomorphological changes of the cultured lenses were observed after immunostaining with WGA for cellular membrane and DAPI for cellular nucleus in the frozen sections. Apoptosis in the sections was examined by TUNEL assay and the activity of caspase-3 in lens epithelium of cultured lens was measured by CaspACETM Assay System.
     Results
     p38 activation was found in cultured lens treated with 30mmol/L galactose during the 10-day-culture period, and inhibited by SB203580. The cultured lens developed opacification at the periphery cortex, the degree of opacification increased with time during ten-day-culture period. SB203580-treated lenses developed similar cortical opacity, but the degree of opacification was attenuated. By immunostaining with WGA and DAPI, we found the lens opacities appeared to result from gross abnormalities in the shape and organization of cells in the equatorial and cortical fiber zones. Culturing the lenses in the presence of SB203580 prevented these lens cell aberrations as well as the development of lens opacity. In the section of galactose cataract lenses, the percentage of apoptotic cells was 1.7%, 4.5% and 12% at cultured day 2, 5 and 10, but in SB203580-treated lenses it was decreased dramatically to 0.7%, 1.5% and 1.4% respectively. Further more, the activity of caspase-3 in galactose cataract lenses increased to 8.5,19.5 and 41.9 folds to E10 lens at culture day 2, 5 and 10, while in SB203580-treated lenses, caspase-3 activity was inhibited to 3,7.8 and 26.9 folds to E10 lens, respectively. It suggested that activation of p38 participated in the signaling pathway of apoptosis in lens epithelial cells.
     Conclusion
     The activation of p38 may involve in formation of galactose cataract by mediating the signaling pathway of apoptosis in lens epithelial cell. Inhibition of p38 activity can inhibit the activation of the caspase-3, prevent the lens epithelial cells from apoptosis and attenuate formation of cataract.
引文
1. Spector A, W.G., Wang RR ,et al. The prevention of cataract caused by oxidative stress in cultured rat lenses. I. H2O2and photochemically induced cataract. Curr Eye Res. 1993; 12:163–179.
    2. Lou MF, X.G., Cui XL. Further studies on the dynamic changes of glutathione and protein-thiol mixed disulfides in H2O2 induced cataract in rat lenses: distributions and effect of aging. Curr Eye Res. 1995;14: 951–958.
    3. Hightower KR, M.P. The relationship between osmotic stress and calcium elevation: in vitro and in vivo rat lens models. Exp Eye Res. 1998; 66: 775–781.
    4. Marcantonio JM, D.G., Rink H. Calcium-induced opacification and loss of protein in the organ-cultured bovine lens. Exp Eye Res. 1986; 42: 617–630.
    5. Oriowo OM, C.A., Chou BR. Action spectrum and recovery for in vitro UV-induced cataract using whole lenses. Invest Ophthalmol Vis Sci. 2001; 42: 2596–2602.
    6. Congdon NT, W.S., Duncan DT, et al. The effect of pantethine and ultraviolet-B radiation on the development of lenticular opacity in the emory mouse. Curr Eye Res. 2000;20: 17–24.
    7. Nadkarni V, G.K., Bohren KM, et al .Osmotic response element enhancer activity. J Biol Chem. 1999;274(29): 20185–20190.
    8. Igarashi M, W.H., Takahara N, et al. Glucose or diabetes activates P38 mitogen-activated protein kinase via different pathways. J Clini Invest. 1999; 103(2): 185-195.
    9. Volonte D, G.F., Pestelli RG, et al. Cellular stress induces the tyrosine phosphorylation of caveolin-1 ( Tyr14 ) via activation of P38 mitogen-activated protein kinase and c-Src kinase. J Biol Chem. 2001;276(11): 8094–8103.
    10. Steven D, Z.J., Lou MF. Studies of the mitogen_activated protein kinases and phosphatidylinositol-3 kinase in the lens 1.The mitogenic and stress responses. Exp Eye Res.2002;74: 703-717.
    11. Manabe SI, S.A. Lipton divergent NMDA signals leading to proapoptotic and antiapoptotic pathways in the rat retina. Invest Ophthalmol Vis Sci. 2003;44: 385-392.
    12. Li WC, K.J., Dunn K, et al. Lens epithelial cell apoptosis appears to be a common cellular basis for non-congenital cataract eevelopment in humans and animals. J Cell Biol. 1995;130: 169-181.
    13. Hegde KR, V.S. Morphogenetic and apoptotic changes in diabetic cataract: Prevention by pyruvate. Mol Cell Biochem. 2004;262: 233-237.
    14. 李爽乐,罗清礼,李正时等. 银杏叶提取物对 H2O2 诱导的晶状体上皮细胞 Bcl-2 和 Bax 表达的影响. 国际眼科杂志. 2007;7(4): 787-789.
    15. Pladzyk, -.A.R., -K-V; Ansari,-N-H; Srivastava,-S-K. Aldose reductase prevents aldehyde toxicity in cultured human lens epithelial cells. Exp-Eye-Res. 2006, Aug; 83(2): 408-416.
    16. Kinoshita, J.H..Mechanisms initiating cataract formation. Invest. Ophthalmol Vis Sci. 1974; 13: 713-24.
    17. Hightower, K.R.a.M., J. P. Selenite induced damage to lens membranes. Exp. Eye Res. 1994; 58(2):225-229
    18. Jacob, T.J.C.a.D. Osmotic in uences on lens membrane characteristics. Exp. Eye Res; 1980; 31: 505-512.
    19. Kinoshita JH, L.O., Merola Lo. Osmotic changes in esperimental galactose cataracts. Exp Eye Res.1962; 1: 405-410.
    20. Azuma M, T.R., Shearer TR. Calpain in two in vivo odels of sugar cataract. Exp Eye Res. 1990 ;51:393-401
    21. 王凤翔,何守志,李楠. 半乳糖对离体晶状体上皮细胞游离钙影响的实验研究. Chin Ophthal Res. 2004; 22(2 ): 152-154.
    22. McComb, J.B.M.F.N.R.-C.J.G.. Galactose-Induced Cataract Formation in Guinea Pigs:Morphologic Changes and Accumulation of Galactitol. Investigative Ophthalmology & Visual Science. March 1994;35(3):804-810
    23. HOWARD M. JERNIGAN, J., b, J. SAMUEL ZIGLER. Effects of Xylose on Monkey Lenses in Organ Culture: A Model for Study of Sugar Cataracts in a Primate Jrc. Exp. Eye Res. 1998; 67: 61-71.
    24. Srivastava, S.K., Ramana, K.V., Bhatnagar, A. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr. Rev. 2005;26: 380-392.
    25. Meyer-Schwickerath R, P.A., Blum WF, Freyberger H, Klein M, Losche C, Rollmann R, Schatz H. Vitreal levels of the insulin-like growth factors I and II, and the insulin-like growth factor binding proteins 2 and 3, increase in neovascular eye disease: studies in nondiabetic and diabetic subjects. J Clin Invest. 1993; 92: 2620–2625.
    26. Gilbert RE, V.D., Berka JL, Kelly DJ, Cox A, Wu LL, Stacker SA, Cooper ME. Vascular endothelial growth factor and its receptors in control and diabetic rat eyes. Lab Invest .1998;.78:1017-1027
    27. Duncan G, W.M., Riach RA. Calcium cell signaling and cataract. Elsevier Science. 1994; 623–625.
    28. Chamberlain CG, M.J., Richardson NA. The effects of insulin and basicfibroblast growth factor on fibre differentiation in rat lens epithelial explants. Growth Factors. 1991; 4: 183–188.
    29. Kumar S, M.P., Gum RJ, Hand AT, Lee JC, Young PR. Novel homologs of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem Biophys Res Commun.1997;35: 533-538.
    30. Cuenda A, R.J., Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC. SB203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 1995; 364: 229-233.
    31. Gum RJ, M.M., Kumar S, Wang Z, Bower MJ, Lee JC, Adams JL, Livi GP, Goldsmith EL,Young PR. Acquisition of sensitivity of stress-activated protein kinases to the p38 inhibitor, SB203580, by alteration of one or more amino acids within the ATP binding pocket. J Bio Chem. 1998;273: 15605-15610.
    32. Foltz IN, L.J., Young PR, Schrader JW. Hemopoietic growth factors with the exception of interleukin-4 activate the p38 mitogen-activated protein kinase pathway. J Biol Chem. 1997; 272: 3296-3301.
    33. Woodgett JR, A.J., Kyriakis J. The stress activated protein kinase pathway. Cancer Surv, 1996;27: 127-138.
    34. Zhou, A.S.M.a.J. Coordinate Signaling by Src and p38 Kinases in the Induction of Cortical Cataracts. Investigative Ophthalmology & Visual Science July 2004; 45(7):2314-2323.
    35. Ichijo H, N.E., Irie K,et a1.Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK / JNK and p38 signaling pathways. Science.1997. 275: 90—94.
    36. Schwenger P, B.P., Victor I,et a1. Sodium salicylate induces apoptosis via p38 mitogen—activated protein kinase but inhibits tumor necrosis factor-induced c-Jun N.terminal kinase/stress—activated protein kinase activation. Proe Natl Acad Sci USA. 1997; 94(7): 2869-2873
    37. Kerr, J.F.R., A. H. Wyllie, and A. R. Currrie. Apoptosls: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J Cancer. 1972;26: 239-257.
    38. Raft, M.C. Social controls on cell survival and cell death. Nature (Lond). 1992;356: 397-400.
    39. Wyllie, A.H.. Glucocorticoid-induced thymocyte apoptosis is associatedwith endogenous endonuclease activation. Nature(Lond.). 1980; 284: p. 555-556.
    40. Strasser, A., A. W. Harris, and S. Cory. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell .1991;67: 889-899.
    41. Williams, G.T., C. A. Smith, E. Spooncer, T. M. Dexter, and D. R, Taylor. Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature (Lond). 1990;343: 76-79.
    42. Cowan, W.M., J. W. Fawcett, D. D. M. O'Leary, and B. B. Stanfield. Regressive events in neurogenesis. Science (Wash. DC). 1984; 225: 1258-1265
    43. Carson, D.A., and J. M. Ribeiro. Apoptosis and disease. Lancet. 1993;341: 1251-1254.
    44. Wan-Cheng Li , A.S. Lens epithelial cell apoptosis is an early event in the development of uve-induced cataract. Free Radical Biology & Medicine. 1996; 20(3): 301-311.
    45. Kato K, K.D. Nagamoto T.v Apoptotic cell death in rabbit lens after lensextraction. Invest Ophthalmol Vis Sci. 1997 Oct; 38(11): 2322-30.
    46. Gonzalez K, M.S., Cunnick J, Udovichenko IP, Takemoto DJ. Acridine orange differential staining of total DNA and RNA in normal and galactosemic lens epithelial cells in culture using flow cytometry .Curr Eye Res. 1995 Apr; 14(4): 269-73.
    47. Murata M, O.N., Sakurai S, Alam S, Tsai J, Kador PF, Sato S. The role of aldose reductase in sugar cataract formation: aldose reductase plays a key role in lens epithelial cell death (apoptosis). Chem Biol Interact. 2001 Jan;130-132(1-3): 617-25.
    48. Dvornik E, S.-D.N., Krami M, Sestanj K, Gabbay KH, Kinoshita JH, Varma SD, Merola LO. Polyol accumulation in galactosemic and diabetic rats: control by an aldose reductase inhibitor. Science. 1973 Dec;182(117): 1146-8.
    49. Datiles M, F.H., Kuwabara T, Kinoshita JH.. Galactose cataract prevention with sorbinil, an aldose reductase inhibitor: a light microscopic study. Invest Ophthalmol Vis Sci. 1982 Feb;22(2): 174-179.
    50. Akagi Y, K.P., Kinoshita JH. Immunohistochemical localization for aldose reductase in diabetic lenses. Invest Ophthalmol Vis Sci. 1987 Jan;28(1): 163-167
    51. Robison WG Jr, H.N., Kinoshita JH. The role of lens epithelium in sugar cataract formation. Exp Eye Res. 1990 Jun; 50(6): 641-6.
    52. Yoshihiro Takamura, E.K., Shousai Tsuzuki, Yoshio Akagi. Apoptotic cell death in the lens epithelium of rat sugar cataract. Experimental Eye Research .2003; 77: 51–57.
    53. Kota V. Ramana, B.F., Aruni Bhatnagar, and Satish K. Srivastava. Aldose reductase mediates cytotoxic signals of hyperglycemia and TNF-α inhuman lens epithelial cells .The FASEB Journal. 2003 Feb; 17(2): 315-317
    54. David Wan-Cheng Li, J.-P.L. Ying-Wei Mao.Calcium-activated RAF/MEK/ERK Signaling Pathway Mediates p53-dependent Apoptosis and Is Abrogated by B-Crystallin through Inhibition of RAS Activation. Molecular Biology of the Cell. September 2005; 16: 4437-4453.
    55. Barbara Nebe, F.K. Annelie Peters,Joachim Rychly,Thomas Noack,Ria Beck. Induction of apoptosis by the calcium antagonist mibefradil correlates with depolarization of the membrane potential and decreased integrin expression in human lens epithelial cells. Graefe’s Arch Clin Exp Ophthalmol. 2004; 242:597–604.
    56. Andley, U.P.C., B. A. The effects of near-UVB radiation on human lens/3-crystallins: Protein structural changes and production of O- and H202. Photochem. Photobiol. 1989;50: 97-105.
    57. lnoue, K.M., T.; Saito, I. Photogeneration of superoxide ion and hydrogen peroxide from tryptophan and its photooxidation products: The role of 3 ot-hydroperoxypyrrolidoindole. Photochem.PhotobioL. 1982; 35:133-139
    58. McCormick, J.P.F, J.R.; Pachlatko, J, P.; Eisenstark, A. Characterization of a cell-lethal product from the photooxidationof tryptophan: Hydrogen peroxide. Science. 1976; 198: 468-469.
    59. McCormick, J.P.T., T. Near-ultraviolet photooxidationof tryptophan: Proof of formation of superoxide ion. J. Am. Chem. Soc.1978; 100: 312-313.
    60. Hightower, K.H. The role of the lens epithelium in development of UV cataract. Curr. Eye Res.1995;14:71-78.
    61. Walker, G.C. Inducible DNA repair systems. Annu Rev Biochem.1985; 54: 425-457.
    62. Devary, Y.G., R. A.; Smeal, T.; Karin, M. The mammalian ultravioletresponse is triggered by activation of src tyrosine kinases. Cell. 1992;71: 1081-1091.
    63. Mai, S.S., B.; van den Berg, S.; Kaina, B.; Lucke-Huhle, C.; Ponta, H., et al. Mechanisms of the ultraviolet light response in mammalian cells. J. Cell Sci.1989; 94:609-615
    64. Sachsenmaier, C.R.-P., A.; Zinck, R.; Nordheim, A.; Herrlich, P.; Rahmsdorf, H. J. Involvement of growth factor receptors in the mammalian UVC response. Cell. 1994;78: 963-972.
    65. Liu, -.J.-P.S., -R; Ma,-W-Y; Dong,-Z; Feng,-H; Lui,-L; Huang,-X-Q; Liu,-Y; Li,-D-W. Human alphaA- and alphaB-crystallins prevent UVA-induced apoptosis through regulation of PKCalpha, RAF/MEK/ERK and AKT signaling pathways. Exp Eye Res .2004; 79:393-403
    66. YAO Ke , W.K.X.W.e. Caspase-3 and its inhibitor Ac-DEVD-CHO in rat lens epithelial cell apoptosis induced by hydrogen in vutro. Chinese Medical Journal. 2003; 116(7): 1034-1038.
    67. Agnieszka Pladzyk, K.V.R.. Aldose reductase prevents aldehyde toxicity in cultured human lens epithelial cells. Experimental Eye Research. 2006. 83: 408-416.
    68. Zhou J, M.A.. The Role of Src Family Kinases in Cortical Cataract Formation. Invest Ophthalmol Vis Sci .2002;43:2293-2300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700