p38和JNK在缺氧诱导体外培养人视网膜色素上皮细胞凋亡中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景缺血缺氧是众多视网膜脉络膜疾病的关键始发因素。缺氧不仅诱导视网膜色素上皮(retinal pigment epithelium, RPE)细胞的增生,而且通过影响相关细胞因子(如VEGF、PEDF等)的分泌水平间接参与了眼底新生血管性疾病的发生发展。近十年来,缺氧下RPE细胞的相关研究已逐步成为学术界热点之一。有研究表明,在多种眼底疾病中(年龄相关性黄斑变性(age related macular degeneration, AMD)、遗传性外层视网膜营养不良和增生性玻璃体视网膜病变(proliferative vitreoretinopathy, PVR)等)均可观察到RPE细胞凋亡,而且部分证实了凋亡参与了疾病的发生发展。但人们对缺氧下RPE细胞凋亡的发生机制和特征却了解甚少。
     JNK和p38属于丝裂素活化蛋白激酶(mitogen activated protein kinasea, MAPKs)家族,两者通常由紫外线、渗透压变化、细胞因子和生理激活因素所启动,又被称作MAPK应激信号通路。已有证据表明ERK通路参与了RPE细胞的增生。对于大多数细胞来说,ERK1/2和JNK、p38在对细胞凋亡的调控中作用相反。因此有理由推测p38和JNK亦可能参与了缺氧导致的RPE细胞凋亡。
     本研究旨在探讨JNK和p38通路在缺氧诱导的RPE凋亡中的调控作用,为临床防治缺血缺氧性眼内疾病提供实验依据。
     目的观察p38和JNK信号通路在缺氧诱导的体外培养人RPE细胞凋亡中可能的调控作用。
     方法(1)将培养的人RPE细胞置于含体积分数为1%O_2、5%CO_2和94%N2的培养箱内建立缺氧模型。于缺氧后1、3、6、12和24h,用光镜、扫描电镜、Annexin-V-FITC/PI染色流式细胞术(FCM)及TUNEL法检测凋亡,于缺氧后1、2、3和4d后用四甲基偶氮唑蓝(MTT)比色法检测RPE细胞的增生;(2)于缺氧后1,3,6,12和24h,用Western blot检测RPE细胞内p38蛋白的表达;以及用免疫组化及免疫荧光观察p38和p-p38蛋白在RPE细胞内的定位。用p38途径抑制剂预处理RPE细胞30分钟后置于缺氧孵箱内培养3小时。Western blot检测p38信号阻断前后RPE细胞内p38蛋白的表达。(3)用p38通路抑制剂SB203580和JNK通路抑制剂SP600125预处理RPE细胞30分钟,将RPE细胞置于缺氧孵箱内培养3小时。用光镜、透射电镜、FCM及TUNEL法检测对细胞凋亡的影响;用MTT比色法检测抑制剂对细胞增生的影响。
     结果(1)缺氧可致RPE细胞凋亡,凋亡细胞数随缺氧时间延长而增加( P< 0. 01),在3小时达高峰;MTT显示,缺氧处理后的RPE细胞增生较快,缺氧后2、3和4d时,缺氧组较对照组A值显著增大(P< 0.01);(2) Western blot显示缺氧1、3、6、12和24h时,均有磷酸化p38蛋白表达,3h水平最高,持续至24h。经p38抑制剂处理后细胞中磷酸化p38蛋白水平降低,表明SB203580能有效抑制p38的磷酸化;免疫组化显示,常氧状态下p38蛋白在RPE细胞胞浆和胞核中均有分布。缺氧后,细胞浆内棕色强度减弱,胞核颜色明显加深,提示p38蛋白由胞浆向胞核内转位。免疫荧光证实,常氧条件下p-p38蛋白荧光仅在RPE细胞胞浆内有微量表达,胞核内无表达。随缺氧时间的延长,p38蛋白的磷酸化水平逐渐增高,细胞核荧光强度明显增强,至3h表达最强,24h开始下降。(3)缺氧3小时时RPE细胞凋亡明显;经p38和JNK抑制剂处理的细胞凋亡水平明显下降(P < 0.01);MTT未显示抑制剂对细胞增生有影响(P > 0.05)。
     结论缺氧不仅能诱导RPE细胞增生,亦能诱导凋亡。p38和JNK转导通路参与了缺氧诱导人RPE细胞的凋亡。通过本课题的初步研究,有理由推测缺氧通过激活p38和JNK转导途径调控体外培养的人RPE细胞的凋亡。本研究为下一步通过信号转导通路调控缺氧下RPE凋亡提供了试验证据,亦为临床防治缺血缺氧性眼内疾病提供了新思路。
Backgruoud: Hypoxia and ischemia are etiological factors in fundus oculi diseases. A great quantity of research prove that hypoxia induces the proliferation of retinal pigment epithelial cells(RPE) and plays a important part in the pathogenesis of fundus neovascular diseases. More and more evidence support that the apoptosis of RPE is a key facor in many funds diseases (for example: age related macular degeneration, hereditary malnutrition in outer layer of retina and proliferative vitreoretinopathy). However, there has been few study about the character of apoptosis RPE cells induced by hypoxia so far. Accordingly, it’s important for us to investigate the information about apoptosis of RPE induced by hypoxia and its relative signal paths.
     AIM:(1) To establish the model of RPE cells in hypoxia status, and observe the gowth situation of them; (2) Study the role of p38 in the process of apoptosis of RPE cells induced by hypoxia; (3) Block the p38 and JNK pathway, and observe the influence in apoptosis of RPE cells in the hypoxia status.
     METHODS:(1) To set up the hypoxia model, human REP cells were cultured in a special incubator containing volume fraction of 1%O_2, 5% CO_2 and 94% N2 for 0h, 1h, 3h, 6h, 12h and 24h. The level of apoptosis was individually measured with scanning and transmission electron microscopy, terminal deoxynucleotidyl transferase mediated nick end labeling(TUNEL) and flow cytometry(FCM).Meanwhile, the proliferation of RPE cells were also measured with MTT. The contrast was RPE cells cultured in a normoxic incubator(5% CO_2, 95% O_2). (2) After hypoxia 1, 3, 6, 12 and 24 h, western blot analysis was performed to detect the expression of phosphorylated p38. The methods of immunohistochemisty and immunofluorescence were also used to fix the position of p38 and p-p38 protein in the RPE cell. blocking the p38 path with SB203580, detect the expression of phosphorylated p38 by western blot (3) After blocking the p38 and JNK path with SB203580 and SP600125, the level of apoptosis of RPE cultured in hypoxia incubator for 3 hours was individually measured with scanning and transmission electron microscopy, TUNEL and FCM.
     RESULTS: (1) Hypoxia can induce proliferation and apoptosis in the cultured RPE cells. Compared to the control group, the apoptosis of RPE cells was significantly activated and peaked at 3h in the cultured RPE cells under hypoxia. (2) Western blot showed that the expression of phosphorylated p38 increased gradually and peaked at 3h in the cultured RPE cells treated by hypoxia.The level of phospho-p38 of hRPE in the group treated with SB203580 was decreased. Immunohistochemistry staining proved that p38 protein located in the cytoplasm and nucleus in the cultured RPE cells under normoxic conditions. Under hypoxic conditions, the brown intensity decreased within the cytoplasm and increased in the nucleus. In normoxic surrounding, there was no expression of p-p38 in nucelus. However, the fluorescence intensity in the nucleus increased under hypoxic conditions. (3) After blocking the p38 and JNK path, the level of apoptosis of RPE induced by hypoxia decreased.
     CONCLUSION: Hypoxia can induce proliferation and apoptosis in the cultured RPE cells; According to this study, it was suggested that p38 and JNK path were involved in RPE apoptosis induced by hypoxia. And it’s maybe the basis of possible new therapy for intraocular diseases.
引文
1. 陈松, 韩梅. 老年性黄斑变性黄斑部脉络膜血循环研究. 中华眼底病杂志, 2002;18(2):116-118.
    2. 张鹏, 王雨生, 张星, 惠延年, 胡丹, 马吉献. 缺氧对人视网膜色素上皮细胞增生和VEGF表达的影响. 眼科新进展, 2004;24(1):6-8.
    3. Hecquet C, Lefevre G, Valtink M, Engelmann K, Mascarelli F, Activation and role of MAP kinase-dependent pathways in retinal pigment epithelial cells: ERK and RPE cell proliferation. Invest Ophthalmol Vis Sci, 2002; 43(9):3091-3098.
    4. Xia Z, Dickens M, Raingeaud, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science,1995; 270(5240): 1326-1331.
    5. Chen G, Hitomi M, Han J, Stacey DW. The p38 pathway provides negative feedback for Ras proliferative signaling. J Biol Chem, 2000,275(50): 38973- 38980.
    6. Goldsmith EJ, Cobb MH, Chang CI. Structure of MAPKs. Methods Mol Biol, 2004,250:127-144.
    7. Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal, 2000,12(1):1–13.
    8. Raff MC. Social controls on cell survival and cell death. Nature, 1992,356 (6368):397-400.
    9. Osborne NN, Nash MS, Wood JP. Melatonin counteracts ischemia-induced apoptosis in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci, 1998; 39(12):2374-2383.
    10. Jin M, Yaung J, Kannan R, Kannan R, He S, Ryan SJ, Hinton DR. Hepatocyte growth factor protects RPE cells from apoptosis induced by glutathione depletion. Invest Ophthalmol Vis Sci, 2005;46(11):4311-4319.
    11. Buchi ER. Cell death in the rat retina after a pressure-induced ischaemia reperfusion insult: an electron microscopic study. I. Ganglion cell layer and inner nuclear layer. Exp Eye Res, 1992;55(4):605-613.
    12. Buchi ER, Szczesny PJ. Necrosis and apoptosis in neuroretina and pigment epithelium after diffuse photodynamic action in rats: a light and electron microscopic study. Jpn J ophthalmol, 1996;40(1):1-11.
    13. 王雨生, 惠延年. 柔红霉素引发培养的人视网膜色素上皮细胞凋亡的透射电镜观察.中华眼底病杂志, 1998;14(4):228-229.
    14. Barak A, Morse LS, Goldkorn T. Ceramide: a potential mediator of apoptosis in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci, 2001;42(1):247-254.
    15. Boulton M, Roanowska M, Wess T. Ageing of the retinal pigment epithelium: implications for transplantation. Graefes Arch Clin Exp Ophthalmol, 2004;242(1):76-84.
    16. Suter M, Remé C, Grimm C, Wenzel A, J??ttela M, Esser P, Kociok N, Leist M, Richter C. Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem, 2000;275(50):39625-39630.
    17. Tate DJ Jr, Miceli MV, Newsome DA. Phagocytosis and H2O2 induce catalase and metallothionein gene expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci, 1995;36(7):1271-1279.
    18. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med, 1991;11(1):81-128.
    19. 鹿庆, 马丽萍. 人参皂甙Rg1、Rb1和维生素E对氧化损伤的牛视网膜色素上皮细胞bcl-2表达的影响. 中华眼底病杂志, 2000;16(2):122-122.
    20. Frambach DA, Valentine JL, Weiter JJ. furosemide-sensitive Cl transport inbovine retinal pigment epithelium. Invest Ophthalmol Vis Sci,1989; 30(10): 2271-2274.
    21. Cai J, Nelson KC, Wu M, Sternberg P Jr, Jones DP. Oxidative Damage and Protection of the RPE. Prog Retin Eye Res, 2000;19(2):205-221.
    22. Noell WK. Possible mechanisms of photoreceptor damage by light in mammalian eyes. Vision Res, 1980;20(12):1163-1171.
    23. Ham WT Jr, Ruffolo JJ Jr, Mueller HA, Clarke AM, Moon ME. Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length light. Invest Ophthalmol Vis Sci, 1978;17(10):1029- 1035.
    24. Busch EM, Gorgels TG, Van Norren D. Temporal sequence of changes in rat retina after UV-A and blue light exposure. Vision Res,1999;39(7):1233 -1247.
    25. Putting BJ, Van Best JA, Vrensen GF,Oosterhuis JA. Blue-light-induced dysfunction of the blood-retina barrier at the pigment epithelium in albino versus pigmented rabbits. Exp Eye Res,1994;58(1):31-40.
    26. Pautler EL, Morita M, Beezley D. Reversible and irreversible blue light damage to the isolated, mammalian pigment epithelium. Prog Clin Biol Res, 1989;314:555-567.
    27. Gaillard ER, Atherton SJ, Eldred G,Dillon J. Photophysical studies on human retinal lipofuscin. Photochem Photobiol, 1995;61(5):448-453.
    28. Nicotera P, Leist M, Single B, Volbracht C. Execution of apoptosis:converging or diverging pathways? Biol Chem,1999;380(9): 1035 -1040.
    29. Ferrington DA, Tran TN, Lew KL, Van Remmen H, Gregerson DS. Different death stimuli evoke apoptosis via multiple pathways in retinalpigment epithelial cells. Exp Eye Res, 2006;83(3):638-650.
    30. Wood JP, Osborne NN. The Influence of Zinc on Caspase-3 and DNA Breakdown in Cultured Human Retinal Pigment Epithelial Cells. Arch Ophthalmol, 2001;119(1):81-88.
    31. 王智, 陈雯, 张缨. 锌盐对培养的人视网膜色素上皮细胞增生的影响. 华中科技大学学报(医学版), 2004;33(1):85-87.
    32. Song J, Lee SC, Kim SS, Koh HJ, Kwon OW, Kang JJ, Kim EK, Shin SH, Lee JH. Zn2+-induced cell death is mediated by the induction of intracellular ROS in ARPE-19 cells. Curr Eye Res, 2004;28(3):195-201.
    33. Osborne NN, Wood JP. The beta-adrenergic receptor antagonist metipranolol blunts zinc-induced photoreceptor and RPE apoptosis. Invest Ophthalmol Vis Sci, 2006;47(7):3178-3186.
    34. Sumbayev VV, Yasinska IM. Regulation of MAP kinase-dependent apoptotic pathway:implication of reactive oxygen and nitrogen species. Arch Biochem Biophys , 2005;436(2):406-412.
    35. Rong Zhang, Rafia Al-Lamki, Lanfang Bai, Jeffrey W. Streb, Joseph M. Miano, John Bradley, Wang Min. Thioredoxin-2 inhibits mitochondria located ASK1-mediated apoptosis in a JNK-independent manner. Circ Res,2004; 94 (11):1483–1491.
    36. Matsukawa J, Matsuzawa A, Takeda K, Ichijo H. The ASK1-MAP kinase cascades in mammalian stress response. J Biochem, 2004;136(3):261–265.
    37. Achison M, Hupp TR. Hypoxia attenuates the p53 response to cellular damage. Oncogene, 2003;22(22):3431–3440.
    38. Bardos JI, Ashcroft M. Hypoxia-inducible factor-1 and oncogenic signalling. Bioessays, 2004;26(3):262–269.
    39. Chen D, Li M, Luo J, Gu W. Direct interactions between HIF-1 alpha andMdm2 modulate p53 function. J Biol Chem, 2003;278(16):13595–13598.
    40. 王雨生, 惠延年. 视网膜色素上皮细胞凋亡中bax和bcl-2的表达. 中华眼底病杂志, 1999;15(3):153-156.
    41. Yang P, Wiser JL, Peairs JJ, Ebright JN, Zavodni ZJ, Bowes Rickman C, Jaffe GJ. Human RPE Expression of Cell Survival Factors. Invest Ophthalmol Vis Sci, 2005;46(5):1755-1764.
    42. Liang YG, Jorgensen AG, Kaestel CG, Wiencke AK, Lui GM, la Cour MH, R?pke CH, Nissen MH. Bcl-2, Bax, and c-Fos expression correlates to RPE cell apoptosis induced by UV-light and daunorubicin. Curr Eye Res, 2000; 20(1):25–34.
    43. Bazan NG. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends in Neurosci, 2006;29(5):263- 271.
    44. Goldberg MA, Dunning SP, Bunn HF. regulation of the erythropoietin gene:evidence that the oxygen sensor is a heme protein. Science, 1988; 242 (4884):1412-1415.
    45. Huang LE, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia-inducible transcription factor depends primarily upon redox sensitive stabilization of its alpha subunit. J Biol Chem, 1996;271(50): 32253-32259.
    46. Semenza GL. Perspectives on oxygen sensing. Cell, 1999;98(3):281-284.
    47. Catherine S, Charles Y, Richard M, Antonia M. Intrachoroial neovascularization in transgenic mice overexpressing vascular endothelial growth factor in the retinal pigment epithelium. Am J pathol,2001;158: 1161-1172.
    48. Baysal BE.On the association of succinate dehydrogenase mutations withhereditary paraganglioma. Trends Endocrinol Metab 2003;14:453-459.
    49. Sandner P, Gess B, Wolf K, Wolf K, Kurtz A. Divergent regulation of vascular endothelial growth factor and of erythropoietin gene expression in vivo. Pflugers Arch, 1996,431(6):905-912.
    50. Schlingemann RO. Role of growth factors and the wound healing response in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol, 2004,242:91-101.
    51. 张鹏, 惠延年, 王雨生, 张星, 刘少山, 王海燕. PKC信号传导通路对缺氧人视网膜色素上皮细胞表达VEGF的作用. 第四军医大学学报, 2003;24(21):1933-1934.
    52. Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis. Cancer Biology 1999;9(3):211-220.
    53. 张鹏, 王雨生, 惠延年, 白建伟, 胡丹. 缺氧诱导因子1与眼内新生血管.眼科新进展, 2004;24(3):224-226.
    54. Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res. 2003,22(1):1-29.
    55. Bicknell R, Harris AL. Novel angiogenic signaling pathways and vascular targets. Annu Rev Pharmacol Toxicol, 2004;44:219-238.
    56. Berra E, Milanini J, Richard DE, Le Gall M, Vi?als F, Gothié E, Roux D, Pagès G, Pouysségur J. Signaling angiogenesis via p42/p44 MAP kinase and hypoxia. Biochem Pharmacol. 2000;60(8):1171-1178.
    57. Mazure NM, Brahimi-Horn MC, Pouyssegur J. Protein kinase and the Hypoxia-Inducible Factor-1, two switches in angiogenesis. Curr Pharm Des. 2003;9(7):531-541.
    58. Minet E, Michel G, Mottet D, Raes M, Michiels C. Transduction pathwaysinvolved in hypoxia-inducible factor-1 phosphorylation and activation. Frec Radic Biol Med, 2001;31(7):847-855.
    59. Roberts DM, Kearney JB, Johnson JH, Rosenberg MP, Kumar R, Bautch VL. The vascular endothelial growth factor (VEGF) receptor Flt-1 (VEGFR-1) modulates Flk-1 (VEGFR-2) signaling during blood vessel formation. Am J Pathol, 2004;164(5):1531-1535.
    60. Martin G, Schlunck G, Hansen LL, Agostini HT. Differential expression of angioregulatory factors in normal and CNV-derived human retinal pigment epithelium. Graefe′s Arch Clin Exp Ophthalmol, 2004;242(4):321-326.
    61. Ohno-Matsui K. Molecular Mechanism for Choroidal Neovascularization in Age-related Macular Degeneration. Nippon Ganka Gakkai Zasshi, 2003; 107(11):657-673.
    62. Ohno-Matsui K, Yoshida T, Uetama T, Mochizuki M, Morita I. Vascular endothelial growth factor upregulates pigment epithelium-derived factor expression via VEGFR-1 in human retinal pigment epithelial cells. Biochem Biophys Res Commun, 2003;303(3):962-967.
    63. Ohno-Matsui K, Morita I, Tombran-Tink J, Mrazek D, Onodera M, Uetama T, Hayano M, Murota SI, Mochizuki M. Novel mechanism for age-related macular degeneration: an equilibrium shift between the angiogenesis factors VEGF and PEDF. J Cell Physiol, 2001;189(3):323-333.
    64. Renno RZ, Youssri AI, Michaud N, Gragoudas ES, Miller JW. Expression of pigment epithelium-derived factor in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci, 2002;43(5):1574-1580.
    65. Holekamp NM, Bouck N, Volpert O. Pigment epithelium-derived factor is deficient in the vitreous of patients with choroidal neovascularization due to age-related macular degeneration. Am J Ophthalmol, 2002;134(2):220- 227.
    66. Mori K, Gehlbach P, Yamamoto S, Duh E, Zack DJ, Li Q, Berns KI, Raisler BJ, Hauswirth WW, Campochiaro PA. AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci, 2002;43(6):1994-2000.
    67. Green WR, McDonnell PJ, Yeo JH. Pathologic features of senile macular degeneration. Ophthalmology, 1985;92(5):615-627.
    68. Ohno-Matsui K. Molecular Mechanism for Choroidal Neovascularization in Age-related Macular Degeneration. Nippon Ganka Gakkai Zasshi. 2003; 107(11):657-673.
    69. Ishibashi T, Sorgente N, Patterson R, Ryan SJ. Pathogenesis of drusen in the primate. Invest Ophthalmol Vis Sci, 1986;27(2):184-93.
    70. Seko Y, Pang J, Tokoro T, Ichinose S, Mochizuki M. Blue light-induced apoptosis in cultured retinal pigment epithelium cells of the rat. Graefe′s Arch Clin Exp Ophthalmol, 2001;239(1):47-52.
    71. Suter M, Remé C, Grimm C, Wenzel A, J??ttela M, Esser P, Kociok N, Leist M, Richter C. Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem, 2000;275(50):39625-39630.
    72. Renno RZ, Delori FC, Holzer RA, Gragoudas ES, Miller JW. Photodynamic therapy using Lu-Tex induces apoptosis in vitro, and its effect is potentiated by angiostatin in retinal capillary endothelial cells. Invest Ophthalnlol Vis Sci, 2000;41(12):3963-3671.
    73. Wiezorrek R, Sch?fer H, Bialasiewicz AA, Richard G. Programmed cell death (apoptosis) in excised subretinal neovascularization. Ophthalmologe, 2000;97(2):79-83.
    74. Hinton DR, He S, Lopez PF. Apoptosis in surgically excised choroidal neovascular membranes in age-related macular degeneration. Arch Ophthalmol, 1998,116(2):203-209.
    75. Esser P, Heimann K, Bartz-schmidt KU, Fontana A, Schraermeyer U, Thumann G, Weller M. apoptosis in proliferative vitreoretinal disorders: possible involvement of TGF-beta- induced RPE cell apoptosis. Exp Eye Res, 1997;65(3):365-378.
    76. 刘兵, 惠延年, 黄蔚. 增生性玻璃体视网膜病变切割液内的视网膜凋亡.中华眼底病杂志, 1999;15(2):78-80.
    77. 杜红俊, 惠延年, 王雨生, 韩泉红, 马吉献. 柔红霉素和Bax过表达对培养人视网膜色素上皮细胞凋亡的影响. 第四军医大学学报, 2002;23 (19):1783-1786.
    78. Blum S, Moore AN, Adams F. A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for longterm spatial memory. J Neurosci, 1999;19(9):3535-3544.
    79. Cowan KJ, Storey KB. Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol, 2003;206(Pt 7):1107-1115.
    80. Karandikar NJ, Crawford MP, Yan X, Ratts RB, Brenchley JM, Ambrozak DR, Lovett-Racke AE, Frohman EM, Stastny P, Douek DC, Koup RA, Racke MK. Glatiramer acetate (Copaxone) therapy induces CD8(+) T cell responses in patients with multiple sclerosis. J Clin Invest, 2002;109(5): 641-649.
    81. Horstman S, Kahle PJ, Borasio GD. Inhibitors of p38 mitogen-activated protein kinase promote neuronal survival in vitro. J Neurosci, 1998;52 (4): 483-485.
    82. Yang DD, Kuan CY, Whitmarsh AJ, Rincón M, Zheng TS, Davis RJ, Rakic P, Flavell RA. Absence of excitotoxicity induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature, 1997;389(6653):865- 870.
    83. Kumagae Y, Zhang Y, Kim OJ, Miller CA. Human c-Jun N-terminal kinase expression and activation in the nervous system. Brain Res Mol Brain Res. 1999;67(1):10-17.
    84. Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Dérijard B, Davis RJ. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J, 1996;15(11):2760-2770.
    85. Camps M, Nichols A, Arkinstall S. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 2000;14(1):6-16.
    86. Zhan XL, Wishart MJ, Guan KL. Nonreceptor tyrosine phosphatases in cellular signaling: regulation of mitogen-activated protein kinases. Chem Rev, 2001;101(8):2477-2496.
    87. Matsuguchi T, Musikacharoen T, Johnson TR, Kraft AS, Yoshikai Y. A novel mitogen-activated protein kinase phosphatase is an important negative regulator of lipopolysaccharide-mediated c-Jun N-terminal kinase activation in mouse macrophage cell lines. Mol Cell Biol, 2001; 21 (20): 6999-7009.
    88. Camps M, Nichols A, Gillieron C, Antonsson B, Muda M, Chabert C, Boschert U, Arkinstall S. Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science, 1998;280(5367):1262- 1265.
    89. Slack DN, Seternes OM, Gabrielsen M, Keyse SM. Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. J BiolChem, 2001;276(19):16491-16500.
    90. Chen YR, Shrivastava A, Tan TH. Down-regulation of the c-Jun N-terminal kinase (JNK) phosphatase M3/6 and activation of JNK by hydrogen peroxide and pyrrolidine dithiocarbamate. Oncogene, 2001;20(3):367-374.
    91. Theodosiou A, Ashworth A. Differential effects of stress stimuli on a JNK-inactivating phosphatase. Oncogene, 2002;21(15):2387-2397.
    92. Abraham D, Podar K, Pacher M, Kubicek M, Welzel N, Hemmings BA, Dilworth SM, Mischak H, Kolch W, Baccarini M. Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. J Biol Chem, 2000;275(29):22300-22304.
    93. Dhillon AS, Meikle S, Yazici Z, Eulitz M, Kolch W. Regulation of Raf-1 activation and signalling by dephosphorylation. EMBO J, 2002;21(1-2):64 -71.
    94. Graves JD, Draves KE, Craxton A, Saklatvala J, Krebs EG, Clark EA. Involvement of stress-activated protein kinase and p38 mitogen-activated protein kinase in mIgM-induced apoptosis of human B lymphocytes. Proc Natl Acad Sci U S A, 1996;93(24):13814-13818.
    95. Park R, Kim MS, So HS, Jung BH, Moon SR, Chung SY, Ko CB, Kim BR, Chung HT.Activation of c-jun N-terminal kinase 1(JNK1) in mistletoe lectin Ⅱ-induced apoptosis of human myeloleukemic U937 cells. Biochem Pharmacol, 2000;60(11):1685-1691.
    96. Kang CD, Yoo SD, Hwang BW, Kim KW, Kim DW, Kim CM, Kim SH, Chung BS. The inhibition of ERK/MAPK not the activation of JNK/SAPK is primarily required to induce apoptosis in chronic myelogenous leukemic K562 cells.Leuk Res, 2000;24(6):527-534.
    97. Chen YR, Wang X, Templeton D, Davis RJ, Tan TH.The role of c-junN-terminal kinase(JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J Biol Chem, 1996;271(50):31929-31936.
    98. Franklin CC, Strikanth S, Kraft AS. Conditional expression of mitogen activated protein kinase phosphatase-1, MKP-1, is cytoprotective against UV-induced apoptosis. Proc Natl Acad Sci USA, 1998;95(6):3014- 3019.
    99. Zanke BW, Lee C, Arab S, Tannock IF. Death of tumor cells after intracellular acidification is dependent on stress activated protein kinases(SAPK/JNK) pathway activation and can not be inhibited by Bcl-2 expression or interleukin 1 beta-converting enzyme inhibition. cancer Res, 1998;58(13):2801-2808.
    100. Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC. An osmosensing signal transduction pathway in yeast. Science,1993;259 (5102):1760-1763.
    101. Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science, 1994; 265 (5173):808- 811.
    102. Wang XS, Diener K, Manthey CL, Wang S, Rosenzweig B, Bray J, Delaney J, Cole CN, Chan-Hui PY, Mantlo N, Lichenstein HS, Zukowski M, Yao Z. Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J Biol Chem, 1997; 272(38):23668- 23674.
    103. Obata T, Brown GE, Yaffe MB. MAP kinase pathways activated by stress: the p38 MAPK pathway. Crit Care Med, 2000;28(4 Suppl):N67-77.
    104. Chakravortty D, Kato Y, Koide N, Sugiyama T, Kawai M, Fukada M, Yoshida T, Yokochi T. Extracellular matrix components preventlipopolysaccharide induced bovine arterial endothelial cell injury by inhibiting p38 mitogen-activated protein kinase. Thromb Res, 2000;98 (2): 187-193.
    105. Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y, Kyuuma M, Takeshita T, Flavell RA, Davis RJ. Mechanism of p38 MAP kinase activation in vivo. Genes Dev, 2003;17(16):1969-1978.
    106. Ketam S, John F, Brion N. Inhibition of p38 mitogen activated protein kinase increases LPS induced inhibition of apoptosis in neutrophils by activating extracellular signal regulated kinase.Surgery, 2001;130(2):242- 247.
    107. Frasch SC, Nick JA, Fadok VA, Bratton DL, Worther GS, Henson PM. p38 mitogen-activated protein kinase-dependent and independent intracellular signal transduction pathways leading to apoptosis in human neutrophils. J Biol Chem, 1998;273(14):8389-8397.
    108. Franklin CC, Kraft AS. Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38MAPK and stress-activated protein kinase in U937 cells. J Biol Chem, 1997; 272 (27):16917-16923.
    109. Graves JD, Draves KE, Craxton A, Krebs EG, Clark EA. A comparison of signaling requirements for apoptosis of human B lymphocytes induced by the B cell receptor and CD95/Fas.J Immunol, 1998;161(1):168-174.
    110. Kwon YW, Ueda S, Ueno M, Yodoi J, Masutani H. Mechanism of p53-dependent apoptosis induced by 3-methylcholanthrene:involvement of p53 phosphorylation and p38MAPK. J Biol Chem, 2002;277(3):1837- 1844.
    111. Juo P, Kuo CJ, Reynolds SE, Konz RF, Raingeaud J, Davis RJ, BiemannHP, Blenis J. Fas activation of the p38 mitogen activated protein kinase signaling pathway requires ICE/CED-3 family proteases. Mol cell Biol, 1997;17(1):24-35.
    112. Wang S, Nath N, Minden A, Chellappan S. Regulation of Rb and E2F by signal transduction cascades: divergent effects of JNK1 and P38 kinase. EMBO J, 1999;18(6):1559-1570.
    113. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1.EMBO J, 1998; 17 (9):2596-2606.
    114. Yoshino T, Kishi H, Nagata T, Tsukada K, Saito S, Muraguchi A. Differential involvement of p38 MAP kinase pathway and Bax translocation in the mitochondria-mediated cell death in TCR- and dexamethasone stimulated thymocytes.Eur J Immunol, 2001;31(9):2702-2708.
    115. Ghatan S, Larner S, Kinoshita Y, Hetman M, Patel L, Xia Z, Youle RJ, Morrison RS. p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons. EMBO J, 1998;17(9):2596-2606.
    116. Andoh T. Signal transduction pathways leading to cell cycle arrest and apoptosis induced by DNA topoisomerase poisons.Cell Biochem Biophys, 2000;33(2):181-188.
    117. Molnar A, Theodoras AM, Zon LI, Kyriakis JM. Cdc42Hs, but not Rac 1,inhibits serum-stimulated cell cycle progression at G1/S through a mechanism requiring p38/RK.J Biol Chem, 1997;272(20):13229-13235.
    118. Lavoie JN, L′Allemain G, Brunet A, Müller R, Pouysségur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem, 1996;271(34):20608-20616.
    119. 王雨生, 严密, 杨抚华. 视网膜色素上皮细胞培养技术及其应用. 中华眼底病杂志, 1994;10(2):124-128.
    120. Broker LE, Kruyt FA, Giaccone G. Cell death independent of caspases: a review. Clin Caner Res, 2005;11(9):3155-3162.
    121. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol, 2004;5(11):897-907.
    122. Buchi ER. Cell death in the rat retina after a pressure induced ischaemia reperfusion insult: an electron microscopic study. I. Ganglion cell layer and inner nuclear layer. Exp Eye Res, 1992;55(4):605-613.
    123. Zhang JP, Ying X, Chen Y, Yang ZC, Huang YS. Inhibition of p38 MAP kinase improves survival of cardiac myocytes with hypoxia and burn serum challenge. Burns, 2008;34(2):220-227.
    124. Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 2004;23(16):2838-2849.
    125. Osborne NN, Cazevieille C, Pergande G, Wood JP. Induction of apoptosis in cultured human retinal pigment epithelial cells is counteracted by flupirtine. Invest Ophthalmol Vis Sci, 1997;38(7):1390-1400.
    126. Sparrow JR, Cai B. Blue light-induced apoptosis of A2E containing RPE: involvement of caspase-3 and protection by Bcl-2. Invest Ophthalmol Vis Sci, 2001;42(6):1356-1362.
    127. 刘洪雷, 王雨生, 惠延年. Bcl-2表达降低对柔红霉素诱导人视网膜色素上皮细胞凋亡的影响. 眼科新进展, 2004;24(3):165-168.
    128. 庞东渤, 洪晶. 视网膜色素上皮细胞凋亡途径的研究.眼科新进展, 2007;27(6):405-407.
    129. Ishizuka T, Okajima F, Ishiwara M, Iizuka K, Ichimonji I, Kawata T, Tsukagoshi H, Dobashi K, Nakazawa T, Mori M. Sensitized mast cellsmigrate toward the antigen: a response regulated by p38 mitogen activated protein kinase and Rho associated coiled coil forming protein kinase.J Immunol, 2001;167(4):2298-2304.
    130. Kampen GT, Stafford S, Adachi T, Jinquan T, Quan S, Grant JA, Skov PS, Poulsen LK, Alam R. Eotaxin induces degranulation and chemotaxis of eosinophils through the activation of ERK2 and p38 mitogen-activated protein kinases. Blood, 2000;95(6):1911-1917.
    131. Mulroy T, Sen J. p38 MAP kinase activity modulates alpha beta T cell development. Eur J Immunol, 2001;31(10):3056-3063.
    132. Tong L, Pav S, White DM, Rogers S, Crane KM, Cywin CL, Brown ML, Pargellis CA. A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Nat Struct Biol, 1997;4(4):311-316.
    133. Sharma GD, He J, Bazan HE. p38 and ERK1/2 coordinate cellular migration and proliferation in epithelial wound healing: evidence of cross-talk activation between MAP kinase cascades. J Biol Chem, 2003; 278(24):21989 -21997.
    134. Shen YH, Godlewski J, Zhu J, Sathyanarayana P, Leaner V, Birrer MJ, Rana A, Tzivion G. Cross-talk between JNK/SAPK and ERK/MAPK pathways: sustained activation of JNK blocks ERK activation by mitogenic factors. J Biol Chem, 2003;278(29):26715-26721.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700