黄河口水体生物光学性质逐时变化的静止海洋水色卫星遥感探测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以黄河口海域浑浊水体为重点研究区域,利用丰水期(调水调沙期间)和枯水期(含大风过程)时间序列观测数据,开展了水色组分浓度和水体光学性质逐时变化特征与驱动机制研究;利用大气辐射传输理论,研究了大气光学性质以及观测几何等的变化对静止海洋卫星水色遥感探测的影响;利用世界首颗静止轨道海洋水色卫星数据,开展了浑浊水体光学性质以及水色组分浓度的逐时变化监测,分析了风浪以及潮汐等的影响。
     基于现场定点连续观测数据的分析研究发现,黄河口海域水体光学性质具有不同程度的逐时变化特征,这种差异性是由径流输入和风浪等驱动机制的不同导致的,具体如下:(1)水体总吸收系数的逐时变化主要集中在蓝、绿光波段,颗粒物吸收是该波段水体总吸收系数的主要来源;(2)颗粒物吸收光谱呈现出独特的e指数衰减趋势,主要原因是非藻类颗粒物吸收在颗粒物吸收中占主导(绝大部分波段可达80%);(3)非藻类颗粒物吸收系数ad光谱斜率Sd的逐时变化约2.7-3.7%,逐时变幅在0.0011-0.0016之间;ad(440)的逐时变化约56.3~(-1)08.5%,逐时变幅为0.9-20.6m~(-1)。非藻类颗粒物吸收与悬浮物浓度具有显著的正相关关系,相关系数大于0.75;(4)黄色物质吸收系数ag光谱斜率Sg的逐时变化约11.8-23.1%,逐时变幅在0.008-0.010nm~(-1)之间;ag(440)的逐时变化约38.8-67.9%,逐时变幅为0.183-0.633m~(-1);在径流影响显著的海域,ag(440)与盐度之间存在负相关关系;(5)漫衰减系数Kd(490)逐时变化约10.6-39.5%,逐时变幅为1.66-4.39m~(-1)。漫衰减系数与颗粒物吸收和水体后向散射系数之间具有较高的相关性,而与黄色物质的相关性较差;(6)遥感反射率逐时变化是水体光学性质中最复杂的,其主要的驱动因素是悬浮物浓度。
     通过静止海洋卫星水色遥感探测影响因素的研究发现:(1)对于泥沙主导的逐时变化显著的水体,静止海洋卫星接收到的总辐射信号中水体信号所占的百分比在412nm波段小于12%,在660nm和680nm波段高于50%,最高可达80%以上,在745nm和865nm波段在15-80%之间。静止海洋水色卫星逐时观测数据可反映绝大部分的海面光谱逐时变化信息;(2)卫星观测信号随着气溶胶光学厚度的逐时变化线性变化。在干净大气条件下(AOT≤0.1),仅进行瑞利散射校正得到的Rrs(555)、Rrs(660)和Rrs(680)反演值与实测值的相对误差分别为14%、14%和15%;(3)当太阳天顶角小于50°时,卫星观测信号对太阳天顶角的变化不敏感,除745nm和865nm波段之外的其它波段相对偏差均小于5%,当太阳天顶角大于50°时敏感性显著增加。针对GOCI卫星太阳天顶角实际变化情形(太阳天顶角年变化范围为:13.7°~78.4°),夏季太阳天顶角较小,由此引起的误差可忽略,冬季太阳天顶角较大,其变化对光学量逐时变化卫星观测的影响需引起重视;(4)当卫星天顶角小于40°时,卫星观测信号对卫星天顶角的变化不敏感,当卫星天顶角大于40°时敏感性显著增加。由于GOCI卫星天顶角实际变化最大不超过5°,所以卫星天顶角对GOCI卫星光学量逐时变化探测的影响较小,745nm和865nm波段引起的相对偏差小于2.1%,其它波段均小于1%。
     基于GOCI影像的黄河口海域光学性质和悬浮物浓度逐时变化研究取得以下结论:(1)对于悬浮物主导的浑浊水体,其光谱逐时变化以660nm和680nm波段最为显著;(2)建立了基于单波段和波段比相结合的悬浮物浓度反演模型,采用了555nm、680nm和745nm波段,在4个量级的悬浮物浓度变化范围内模型精度可达30%;(3)Rrs(680)和悬浮物浓度逐时变化的空间分布呈现出近岸高、离岸低的态势,与水体浑浊度的空间分布基本一致;(4)大风过程可导致莱州湾和渤海湾等浅海海域Rrs(680)和悬浮物浓度明显升高,逐时变幅增加,深水海域受其影响相对较弱;(5)通过分析潮汐与悬浮物浓度逐时变化的相互关系,发现两者之间不存在一致的变化规律,可能的原因是弱潮海区潮汐引起的潮流不足以掀起底沙,从而影响悬浮物浓度。
The turbid water of the Yellow River Estuary was taken as the study area in this paper. Theresearch on hourly variability of water component concentrations and optical properties and theirdriving mechanism was carried out using the data collected during wet (water and sedimentregulation period) and dry season. Then we used the radiative transfer model to study theinfluence of atmospheric optical properties as well as observation geometry on the world's firstgeostationary satellite ocean color Images (GOCI) data. Based on these the hourly variability ofthe water component concentration and optical properties were monitored and the impact of windsand tides was studied.
     The results of in situ continuous observation data analysis indicate that the hourly variabilityof the optical properties of Yellow River Estuary have different degrees which contribute to thevariation of the river discharge, winds and tides.(1) The hourly variability of total absorptioncoefficient focus at blue and green bands of which the absorption of particulate matter is the mainresource.(2) The particulate matter absorption spectra show natural exponential trend. The reasonis that the total absorption of water dominated by the non-algae particulate matter (about80%atmost bands).(3) The hourly variability of the spectra slope of absorption coefficient of thenon-algae particulate matter was in the range of2.7-3.7%(0.0011-0.0016). ad(440) changedbetween56.3~(-1)08.5%(0.9-20.6m~(-1)). Absorption of non-algal particulate matter and suspendedparticulate matter concentration has a significant positive correlation (>0.75).(4) The spectraslope of the absorption coefficient of yellow substance changed about11.8-23.1%with the hourlyrange between0.008-0.010nm. ag(440) changed about38.8-67.9%with the hourly variability of0.183-0.633m~(-1). In the river discharge waters, ag(440) negatively correlated with salinity.(5) Thediffuse attenuation coefficient changed about10.6-39.5%with the hourly variability of1.66-4.39m~(-1). The diffuse attenuation coefficient and the absorption of particulate matter, as wellas the backscattering coefficient, has a higher correlation. However it was poor for yellowsubstance.(6) The hourly variability of remote sensing reflectance is the most complex in theoptical properties of the water body. The main driving factor is the suspended particulate matterconcentration.
     The research on the influencing factors of geostationary orbit satellite ocean color data foundthat:(1) in the sediment suspended matter dominant water, the water signal to the satellite is lowerthan12%at412nm band, higher than50%at660nm and680nm bands (up to80%), and between15-80%at at745nm and865nm bands. The GOCI data can detect the most hourly variability of above-water spectral information.(2) The satellite signal changes linearly with the hourlyvariability of aerosol optical thickness. At the clean atmospheric conditions (AOT≤0.1), theerrors between the retrieved Rrs(555), Rrs(660) and Rrs(680) from Rayleigh scattering correctionand their measured values were14%,14%and15%.(3) When the solar zenith angle was less than50°, the satellite signal is not sensitive to the changes of solar zenith angle (the relative differenceis less than5%at most bands besides745nm and865nm). When the zenith angle is greater than50°, the sensitivity was significantly increased. GOCI satellite solar zenith angle (solar zenithangle range:13.7~78.4°) is small in summer and large in winter. So its influence on the opticalproperties is of importance and can not be ignored.(4) When the satellite zenith angle less than40°, the satellite signal is not sensitive to the changes of satellite zenith angle. However, itincreased significantly when the satellite zenith angle was greater than40°. GOCI satellite zenithangle does not exceed5°, so its influence on hourly variability of the optical properties isrelatively small. The differences at45nm and865nm bands were less than2.1%, and less than1%at other bands.
     Through the study of the optical properties and hourly variability of CSPMwithin the YellowRiver Estuary based on the GOCI images, it is found that:(1) bands of660nm and680nmpresentthe most significant hourly variability of spectral property for SPM-dominant turbid water;(2) according to the regression model based on single band values and band ratios of555nm,680nm and745nm, the precision of the model achieves30%within the range of change ofconcentration of spm of4magnitudes;(3) the spatial distributions of hourly variability of Rrs(680)and CSPMcoincide with turbidity, which is higher onshore and lower offshore;(4) storm will causedramatic rise of Rrs(680), CSPMand extent of hourly variability in shallow areas, such as LaizhouBay and Bohai Bay, while the deep sea is less affected;(5) it is also found that tide and hourlyvariability of CSPMdo not change concurrently base on the analysis of their relation. One possiblereason is the incapability of the current from weak-tide areas to raise the bottom sand and to affectCSPM。
引文
[1] Austin R W, Petzold T J. Spectral dependence of the diffuse attenuation coefficient of lightin ocean waters a reexamination using new data[J]. SPIE: Ocean Optics VII,1990,1302.
    [2] Atsushi Matsuoka, Victoria Hill, Yannick Huot, Marcel Babin, and Annick Bricaud,Seasonal variability in the light absorption properties of western Arctic waters:Paramterization of the individual components of absorption for ocean color applications,Journal of Geophysical Research,2011,116(C02007), dio:10.1029/2009JC005594.
    [3] Babin M, Stramski D, Ferrari G M, et a1. Variations in the light absorption coefficients ofphytoplankton, nonalgal particles, and dissolved organic matter in coastal waters aroundEurope[J]. J Geophys Res,2003,108:3211-3230.
    [4] Baker K S, Smith R C. Quasi-inherent characteristics of the diffuse attenuation coefficientfor irradiance[J]. SPIE: Ocean Optics VI,1979,208:60-63.
    [5] Belousov Y I. Optical characteristics of the radiation of targets and backgrounds-thephysical basis for creating optoelectronic apparatus[J]. Opt Technol,2006,73(10):734-738.
    [6] Berk A,Bernstein L S,Robertson D C. MODTRAN:a moderate resolution model forLOWTRAN7[M]. GL-TR-89-0122,Air Force Geophysics Laboratory,Hanscom AFB,MA01731-5000,1989.
    [7] Berk,Alexander et al MODTRAN5:a reformulated atmospheric band model with auxiliaryspecies and practical multiple scattering options.Proceedings of the SPIE,2004Volume5425, pp.341-347.
    [8] Biggar S F. In-flight methods for satellite sensor absolute radiometric calibration[D].Tucson: T he University of Arizona,1990:1-54.
    [9] Boss, E., W.S. Pegau, J.R.V. Zaneveld, and A.H. Barnard.Spatial and temporal variabilityof absorption by dissolved material at a continental shelf. Journal of Geophysical Research,2001,106(C5):9499-9507.
    [10] Boss, E., Stramski, D. and Bergmann, T. et al. Why should we measure the opticalbackscattering coefficient [J]. Oceanography,2004,17(2):44-49.
    [11] Bowers D G, Harker G E L, Stephan B. Absorption spectra of inorganic particles in theIrish Sea and their relevance to remote sensing of chlorophyll[J]. Im J Remote Sens,1996,17:2449-2460.
    [12] Bricaud, A.,A. Morel,and Prieur.Absorption by dissolved organic matter of the sea (yellowsubstance)in the UV and visible domains. Limnology and Oceanography,1981,26:43-53.
    [13] Bricaud A, Roesler C S, Parslow J S, et al. Bio-optical studies during the JGOFS-equatorialPacific program: A contribution to the knowledge of the equatorial system. Deep-SeaResearch II,2002,49:2583-2599.
    [14] Bricaud A, Marcel Babin, Andre Morel, Herve Claustre. Variability in thechlorophyll-specific absorption coefficients of natural phytoplankton: Analysis andparameterization[J], Journal of Geophysical Research,1995,100(C7):13321-13332
    [15] Bricaud A, André Morel, Marcel Babin, Karima Allali, and Hervé Claustre, Variations oflight absorption by suspended particles with chlorophyll a concentration in oceanic (case1)waters: Analysis and implications for bio-optical models, Journal of Geophysical Research,1998,103(C13):31033-31044.
    [16] Bricaud A, Herve Claustre, Josephine Ras, Kadija Oubelkheir. Natural variability ofphytoplanktonic absorption in oceanic waters: Influence of the size structure of algalpopulations[J]. Journal of Geophysical Research,2004,109:C11010
    [17] Brown OB, Jacobs MM. Computed Relationships between the Inherent and ApparentOptical Properties of a Flat Homogenous Ocean. Applied Optics,1975,14(2):417-427
    [18] Gagosian R R, Stuermer D H. The cycling of biogenic compounds and their diageneticallytransformed products in seawater [J]. Marine Chemistry,1977,5(4-6):605-632.
    [19] Carder, K.L., G.R. Steward, G.R. Harvey, and P.B. Ortner.Marine humic and fulvic acids:their effects on remote sensing of ocean chlorophyll. Limnology and Oceanography,1989,34:68-81.
    [20] Carder K L, Chen F R, Lee Z P, et al. Semianalytic moderate resolution imagingspectrometer algorithms for chlorophyll a and absorption with bio-optical domains basedon nitrate depletion temperatures [J]. J Geophys Res,1999,104:5403-5421.
    [21] Chami M, Robilliard D. Inversion of oceanic constituents in Case I and II waters withgenetic programming algorithms. Applied Optics,2002,41(30):6260-6275.
    [22] Ding K. and H. R. Gordon. Analysis of the influence of O2A-band absorption onatmospheric correction of ocean color imagery. Appl. Opt.,1995(12):2068-2080.
    [23] Doxaran, D., Froidefond, J.M., Lavender, S.J., Castaing, P. Spectral signature of highlyturbid waters. Application with SPOT data to quantify suspended particulate matterconcentrations. Remote Sensing of Environment,2002,81,149-161.
    [24] Doxaran, D., Froidefond, J.M., Castaing, P. Remote sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illuminationconditions effects using reflectance ratios. Applied Optics,2003,42,2623–2634.
    [25] Doxaran, D., Cherukuru, R.C.N., Lavender, S.J. Inherent and apparent optical properties ofturbid estuarine waters: measurements, modelling and application to remote sensing.Applied Optics,2006,45,2310-2324.
    [26] Evans,K.F.,The spherical harmonic discrete ordinate method for three-dimensionalatmospheric radiative transfer.J.Atmos.Sci.,199855,429-446
    [27] Ferrari, G.M, and S.Tassan. Evaluation of the influence of yellow substance absorption onthe remote sensing of water quality in the Gulf of Naples: a case study. InternationalJournal of Remote Sensing,1992,13(12):2177-2189.
    [28] Ferraria G.M, M.D. Dowell. CDOM Absorption Characteristics with Relation toFluorescence and Salinity in Coastal Areas of the Southern Baltic Sea[J]. Estuarine,Coastal and Shelf Science.1998,47(1):91–105.
    [29] Frank E Hoge, Anthony Vodacek. Inherent optical properties of the ocean: retrieval of theabsorption coefficient of chromophoric dissolved organic matter from fluorescencemeasurements[J]. Limnology and Oceanogrophy,1993,38(7):1394-1402.
    [30] Frank F, Fischer J. Numerical simulation of the light field in the atmosphere-ocean systemusing the matrix-operator method. J Quant Spect Rad Trans,2001,69:351-388.
    [31] Gagosian R R, Stuermer D H. The cycling of biogenic compounds and their diageneticallytransformed products in seawater [J]. Marine Chemistry,1977,5(4-6):605-632.
    [32] Gordon H. R., J. W. Brown, and R. H. Evans. Exact Rayleigh scattering calculation for usewith the Nimbus-7Coastal Zone Color Scanner. Appl. Opt.,1988(5):862-871.
    [33] Gordo H. R. and M Wang. Surface roughness considerations for atmospheric correction ofocean color sensors: I. Rayleigh scattering component. Appl. Opt., l992(2l):4247-4260.
    [34] Gordon H. R. O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K.Clark,“A semi-analytic radiance model of ocean color,” J. Geophys. Res.1988,93,10909–10924.
    [35] Hale, G. M., and M. R. Query. Optical constants of water in the200μm wavelength region.Appl. Opt.,1973,12,555-563.
    [36] Hurbert Loisel, Dariusz Stramski, B.Greg Mitchell, Frank Fell, Vincent Fournier-Scicre,Bertand Lemasle, and Marcel Babin, Comparison of the ocean inherent optical propertiesobtained from measurements and inverse modeling, Applied Optics,2001,40(15):2384-2397.
    [37] Hurbert Loisel, Dariusz Stramski, Estimation of the inherent optical properties of naturalwaters from the irradiance attenuation coefficient and reflectance in the presence of Ramanscattering, Applied Optics,2000,39(18):3001-3011.
    [38] Jin Z H, Stamnes K. Radiative transfer in nonuniformly refracting layered media:Atmosphere-ocean system. Appl Opt,1994,33:431-442.
    [39] Kalle, K.The problem of the gelbstoff in the Sea.Oceanography and Marine Biology anAnnual Review4,1996,4:91-104.
    [40] Kneizys F X,Shettle E P,Abreu L W,et al. User guide to LOWTRAN7[M].AFGL-TR-88-0177. Air Force Geophysics Laboratory,Hanscom AFB,MA01731,1988
    [41] Kopelevich, O. V., S. V. Lutsarev, and V. V. Rodionov. Light spectral absorption by yellowsubstance of ocean water [J]. Oceanology,1989,29,409–414.
    [42] Kratzer S,Sahlin B H.Assessing secchi and photic zone depth in the baltic sea fromsatellite date[J].Ambio,2003,32(8):572.579.
    [43] Keith, D.J., J.A. Yoder, and S.A. Freeman. Spatial and temporal distribution of coloureddissolved organic matter (CDOM) in Narragansett Bay, Rhode Island: Implications forphytoplankton in coastal waters. Estuarine, Coastal and Shelf Science,2002,55,705-717.
    [44] Kiefer D. A. and J. B. SooHoo.1982. Spectral absorption by marine particles of coastalwaters of Baja California. Limnol. Oceanogr.27:492-499.
    [45] Lee,Z.P., Carder, R.G., Steward, Peacock, T.G., An empirical algorithm for light absorptionby ocean water based on color, Journal of Geophysical Research,1998,103(C12):27967-27978;
    [46] Lee Zhongping, Carder K. L., Arnone R. A.. Deriving inherent optical properties fromwater color: a multiband quasi-analytical algorithm for optically deep waters[J]. AppliedOptics,2002,41(27):5755-5772
    [47] Maritorena S, Siegel DA, Peterson AR. Optimization of a semianalytical ocean colormodel for global-scale applications. Applied Optics,2002,41(15):2705-2714.
    [48] Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans. Journal ofGeology,1983,91:1~21.
    [49] Mitchell B G. Algorithms for determining the absorption coefficient of aquatic particulatesusing the quantitative filter technique (QFT).Ocean Optics X.1990:137-148.
    [50] Mitchell B. G. and D. A. Kierer. Determination of absorption and fluorescence excitationspectra for phytoplankton. In: Marine phytoplankton and productivity, O. HOLM-HANsEN, L. BOLLS and R. GILES, editors, Springer-Verlag, Berlin,1984, pp.157-169.
    [51] Mobley, C. D. Light and Water-Radiative Transfer in Natural Water[M]. San Diege:Academic Press,1994.
    [52] Morel A. Optical properties of pure water and pure sea water. In optical Aspects ofOceanography, Ed. N. G. Jerlov and E. S. Nielsen. New York: Academic Press,1974.1-24.
    [53] Morel A Y, Prieur L. Analysis of variations in ocean color[J]. Limnology andOceanography,1977,22(4):709-722.
    [54] Morel A Y, Antoine D. Heating rate with in the upper ocean in relation to its bio-opticalstate[J]. J Phys Oceanogr,1994,24:1652-1665.
    [55] Mitchell, B.G., A. Bricaud, K. Carder, J. Cleveland, et al. Determination of spectralabsorption coefficients of particles, dissolved material and phytoplankton for discrete watersamples. IN: Fargion, G.S., J.L. Mueller, C.R. McClain, eds. Ocean Optics Protocols ForSatellite Ocean Color Sensor Validation, Revision2, NASA Technical Memorandum2000-209966, Chapter12, p.125-153.
    [56] Marcel Babin, Dariusz Stramski, Giovanni M. Ferrari, Herve Claustre, Annick Bricaud,Grigor Obolensky, and Nicolas Hoepffner, Variations of light absorption coefficients ofphytoplankton, nonalgal particles, and dissolved organic matter in coastal waters aroundEurope, Journal of Geophysical Research,2003,108(C7),3211, dio:10.1029/2001JC000882.
    [57] Morel A Y, Antoine D. Heating rate within the upper ocean in relation to its bio-opticalstate [J]. J Phys Oceanogr,1994,24:1652-1665.
    [58] Mueller J L. SeaWiFS algorithm for the diffuse attenuation coefficient, Kd(490), usingwater-leaving radiances at490and555nm, Chapter3of SeaWiFS Post launch Calibrationand Validation Analyses, Part3. NASA T M-2000-206892, Vol.11[M]. Greenbelt M D:NASA GSFC,24-27.
    [59] Neumann A, Krawczyk H, Walzel T. A complex approach to quantitative interpretation ofspectral high resolution imagery. Third Thematic Conference on Remote Sensing forMarine and Coastal Environments, Seattle, USA,1995: II-641-II-652.
    [60] Nieke B, Reuter R, et al. Light absorption and fluorescence of chromophoric dissolvedorganic matter (CDOM), in the St. Lawrence Estuary (Case2waters). Continental ShelfResearch,1997,7(3):235-252.
    [61] Niklas Strombeck, Donald C Pierson. The Effects of Variability in the Inherent OpticalProperties on Estimations of Chlorophyll a by Remote Sensing in Swedish Fresh waters [J].The Science of Total Environment.2001,268:123-137.
    [62] Ozesmi S L,Bauer M E.Satellite remote sensing of wetlands [J].Wetland E(ology andManagement,2002,10:381-402.
    [63] Paul Ricchiazzi,et al SBDART:A Research and Teaching Software Tool for Plane-ParallelRadiative Transfer in the Earth’s Atmosphere.1998Bulletin of the AmericanMeteorological Society,vol.79,Issue10,pp.2101-2114.
    [64] Pegau S, Zaneveld JRV, Mitchell BG.‘Ocean Optics Protocols for Satellite Ocean ColorSensor Validation, Revision4, Volume IV: Inherent Optical Properties: Instruments,Characterizations, Field Measurements and Data Analysis Protocols’, NASA Tech. Memo,2003-211621, Rev.4, Vol. IV, Greenbelt: NASA Goddard Space Flight Center.
    [65] Phinn S R, Dekker A G, Brando V E et al. Mapping water quality and substrate cover inoptically complex coastal and reef waters: an integrated approach. Marine PollutionBulletin,2005,51:459-469.
    [66] Pope, R.M. and E.S. Fry. Absorption spectrum (380-700nm) of pure water. II. Integratingcavity measurements. Appl. Opt.1997,36:8710-8723.
    [67] Prieur L. and S. Sathyendranath. An optical classification of coastal and oceanic watersbased on the specific spectral absorptioin curves of phytoplankton pigments, dissolvedorganic matter and other particulate materials. Limnol. Oceanogy.,1981(4):671-689.
    [68] Roderick, E.W., W.W.C. Gieskes, and S.Van Laar. Regional and seasonal differences inlight absorption by yellow substance in the southern bight of the North Sea. Journal of SeaResearch,1999,42:169-178.
    [69] Rochelle-Newall, E.J., and T.R. Fisher. Chromophoric dissolved organic matter anddissolved organic carbon in Chesapeake Bay. Marine Chemistry,2002,77:23-41.
    [70] Roesler, C.S., M.J. Perry, and K.L. Carder. Modeling in situ phytoplankton absorption fromtotal absorption spectra in productive inland marine waters. Limnology and Oceanography,1989,34:1510-1523.
    [71] Sathyendranat H S, PLATT T, Caverhill C M, et al. Remote sensing of oceanic primaryproduct ion: computations using a spectral model [J]. Deep-Sea Res,1989,36:431-453.
    [72] Sarangi R K, Chauhan Prakash, Nayak S R. Vertical diffuse attenuation coefficient (Kd)based optical classification of IRS-P3MOS-B satellite ocean color data[J]. Journal ofEarth System Science,2002,111(3):237-245.
    [73] Schiller H, Doerffer R. Neural Network for Emulation of an Inverse Model-OperationalDerivation of Case II Water Properties from MERIS data. Int Journal of Remote Sensing,1999,20(9):1735-1746.
    [74] Schwarz, J.N., P. Kowalcazuk, S. Kaczmarek, et al. Two models for absorption by coloureddissolved organic matter. Oceanologia,2002,44(2):209-241.
    [75] Seelye Martin.海洋遥感导论[M].蒋兴伟等译.北京:海洋出版社,2005.
    [76] Smith R. C. and K. S. Baker. Optical properties of the clearst natural waters. Appl. Opt.,1981(2):177-184.
    [77] Stamnes K, Tsay S C, Wiscombe W, et al. Numerically stable algorithm for discreteordinate-method radiative transfer in multiple scattering and emitting layered media. ApplOpt,1988,27:2502-2509.
    [78] Vermote, E. F., El Saleous, N. Z., Justice, C. O., Kaufman,Y. J., Privette, J. L., Remer, L.,Roger, J. C.,&Tanre, D.(1997). Atmospheric correction of visible to middle-infraredEOS-MODIS data over land surfaces: background, operational algorithm and validation.Journal of Geophysical Research-Atmosphere,102(D14),17131–17141.
    [79] Vemote E. and D. Tanre. Analytical expressions for radiative properties of planar Rayleighscattering media including polarization contributions. Journal of Quantitative Spectroscopyand Radiative Transfer,1992(4):305-314.
    [80] Vemrote E, D. Tanre, J, L et al,.6SUser Guide Version2.1997.
    [81] Wang M. The Rayleith lookup tables for the SeaWiFS data processing: accounting for theeffect of ocean surface roughness. Int, J. Remote Sens,2002(13):2693-2702.
    [82] Wang Xiaomei, Tang Junwu, Song Qingjun, Ding Jing, Ma Chaofei,A research onstatistical retrieval algorithms and spectral characteristics of the total absorptioncoefficients in the Yellow Sea and the East China Sea,Chinese Journal of Oceanology andLimnology,2006,24(3):236-242
    [83] Wang, M., S. Son, and L. W. Harding Jr.(2009), Retrieval of diffuse attenuation coefficientin the Chesapeake Bay and turbid ocean regions for satellite ocean color applications, J.Geophys. Res.,114, C10011,15PP, doi:10.1029/2009JC005286.
    [84] Wang M. Atmospheric correction of ocean color sensors: computing atmospheric diffusetransmittance. Appl. Opt.,1999(3):451-455.
    [85] Jiang Wensheng, Thomas Pohlmann, Jun Sun, Andreas Starke. SPM transport in the BohaiSea: field experiments and numerical modeling[J]. Journal of Marine Systems.2004,44(3-4):175–188.
    [86] Xu J. Sediment flux to the sea as influenced by changing human activities and precipitation:example of the Yellow River, China. Environmental Management,2005,31(8):328~341
    [87] Yang Z S, Milliman J D, Liu J P, et al. Yellow River's water and sediment dischargedecreasing steadily. EOS,1998,79:589~592
    [88] Yang H. and H. R. Gordon. Remote sensing of ocean color: Assessment of wter-leavingradiance bidirectional effects on atmospheric diffuse transmittance. Appl. Opt.,1997(30):7887-7-897.
    [89] Zhang Xiaobing, Dickey Tommy, Chang Grace. Variability of the downwelling diffuseattenuation coefficient with considerating of inelastic scattering [J]. Applied Optics,2002,41(30):6477-6488.
    [90]陈楚群,潘志林,施平.海水光谱模拟及其在黄色物质遥感反演中的应用.热带海洋学报,2003,22(5):34-39.
    [91]陈清莲,唐军武,王项南,任洪启.东海实验区水体光谱特性现场测量与数据分析[J].海洋技术,1999,18(3):25-37.
    [92]曹文熙,杨跃忠等.南海及西太平洋水域水色谱特征的研究[J].南海研究与开发,1996,(2):43-51.
    [93]陈一强,陈沈良,马宗文,彭俊,刘锋.黄河三角洲孤东近岸悬沙质量浓度变化和底沙再悬浮[J].海洋科学进展,2011,29(2):157-162.
    [94]段洪涛,马荣华,孔维娟,郝景燕,张寿选.太湖沿岸水体CDOM吸收光谱特性[J].湖泊科学,2009,2l(2):242-247.
    [95]段民征,吴北婴,吕达仁.海洋-大气耦合辐射传输模式[J].大气科学,1997,21(6):735-742.
    [96]韩宇超,郭卫东,程远月.海洋CDOM光吸收研究中若干问题的探讨[J].台湾海峡,2005,24(3):289-298.
    [97]何贤强,潘德炉,白雁,朱乾坤,龚芳.基于矩阵算法的海洋-大气耦合矢量辐射传输数值计算模型[J].中国科学D辑,2006,36(9):860~870
    [98]何贤强,潘德炉,毛志华,等.利用SeaWiFS反演海水透明度的模式研究[J].海洋学报,2004,26(5):56-62.
    [99]合肥仪思特光电技术有限公司. ISI921VF野外地物光谱辐射计用户手册[R].2002,1-14.
    [100]胡好国,袁业立,万振文.海浪混合参数化的渤海、黄海、东海水动力环境数值模拟[J].海洋学报,2004,26(4):19-32.
    [101]郭卫东,程远月,吴芳.海洋荧光溶解有机物研究进展[J].海洋通报,2007,26:98-106.
    [102]蒋凤华,殷月芬,黎先春,等.胶州湾海泊河口水域水体的吸收、荧光特性与溶解有机碳的实验研究[J].海洋环境科学,2007,26(4):351-354.
    [103]江文胜,苏健,杨华等.渤海悬浮物浓度分布和水动力特征的关系[J].海洋学报.24(S1):212—217
    [104]孔德星,杨红,吴建辉.长江口海域黄色物质光吸收特性[J].海洋环境科学,2008,27(6):629—631
    [105]李国英.黄河调水调沙.人民黄河,2002,24(11):1~5.
    [106]乐成峰,李云梅,查勇等.太湖梅梁湾水体组分吸收特征季节性差异分析[J].环境科学,2008,9:2448-2455.
    [107]李猛.郭卫东,夏恩琴,等.厦门湾有色溶解有机物的光吸收特性研究[J].热带海洋学报,2006,25(1):9-14.
    [108]李铜基,陈清莲,朱建华.我国近岸二类海水光谱特性的测量与研究[J].海洋通报,2002,21(6):9-15.
    [109]李铜基,陈清莲,杨安安等.黄东海春季水体后向散射系数的经验模型研究[J].海洋技术,2004,23(3):11-14.
    [110]李京.水域悬浮泥沙固体含量的遥感定量研究.环境科学学报,1986,6(2):166-173.
    [111]雷惠,潘德炉,陶邦一,沈亮,康林冲,张汉松.东海典型水体的黄色物质光谱吸收及分布特征[J].海洋学报,2009,31(2):57-62.
    [112]刘芳.南黄海及东海北部海域悬沙的遥感研究[D].北京:中国科学院研究生院,2005.
    [113]刘勇胜,陈沈良,李九发.黄河入海水沙通量变化规律.海洋通报,2005,24(6):1~7
    [114]毛汉礼,甘子钧,蓝淑芳.长江冲淡水及其混合问题的初步探讨.海洋与湖沼,1963,5(3):183~206
    [115]宁修仁,史君贤,蔡昱明,等.长江口和杭州湾海域生物生产力锋面及其生态学效应[J].海洋学报,2004,26(6):96-106.
    [116]潘德炉,白雁.我国海洋水色遥感应用工程技术的新进展[J].中国工程科学,2008,09:14-46.
    [117]彭海龙,孙从容,张正,邵岩.黄、东海区光谱漫衰减系数特性研究[J].海洋通报,2004,23(4):15-18.
    [118]任敬萍,赵进平.二类水体水色遥感的主要进展于发展前景[J].地球科学进展,2002,17(3):363-371.
    [119]沈红,赵冬至,付云娜,杨建洪.黄色物质光学特性及遥感研究进展.遥感学报,2006,10(6):949-954
    [120]宋庆君,唐军武.黄海、东海海区水体散射特性研究[J].海洋学报,2006,28(4):56-61.
    [121]宋玲玲,仇雁翎,张洪恩,等.淀山湖有色可溶性有机物的光谱吸收特性[J].湖泊科学,2007,19(3):250-254.
    [122]孙凌.针对HY-1A CCD的大气修正与水体组分反演[C].青岛:中国科学院海洋研究.
    [123]孙从容,唐君武,彭海龙.黄东海海水体类型综合识别技术研究[J].海洋预报,2005,22(2):7-14.
    [124]孙德勇,李云梅,王桥,乐成峰等.内陆湖泊水体固有光学特性的典型季节差异[J].应用生态学报,2008,19(5):1117-1124.
    [125]唐军武,王晓梅,宋庆君,李铜基,黄海军,任敬萍,简伟军.黄东海二类水体水色要素的统计反演模式[J].海洋科学进展,2004,22(增):2-7.
    [126]唐军武,田国良.离水辐射非朗伯特性的Monte Carlo模拟及分析[J].海洋学报,2000,22(2):48-57.
    [127]唐军武.海洋光学特性模拟与遥感模型[D].北京:中国科学院遥感应用研究所,1999.
    [128]吴永森,张士魁,张绪琴等.海水黄色物质光吸收特性实验研究.海洋与湖沼,2002,33(4):402-406.
    [129]夏达英,李宝华,吴永森等.海水黄色物质荧光特性的初步研究.海洋与湖沼,1999,30(6):720-725.
    [130]修鹏.渤海海域水色遥感的研究[D].青岛:中国海洋大学,2008.
    [131]修鹏,刘玉光.太阳光谱仪的定标技术与渤海海域的光学测量[J].高技术通讯,2005,15(7):85-89.
    [132]黎夏.悬浮泥沙遥感定量的统一模式及其在珠江口中的应用.环境遥感,1992,7(5):106-113.
    [133]于炜.渤海表层悬浮物分布变异规律的研究[D].青岛:中国科学院海洋研究生,2011.
    [134]王繁.河口水体悬浮物固有光学性质及浓度遥感反演模式研究[博士学位论文].杭州:浙江大学,2008.
    [135]王林,赵冬至,傅云娜等.黄色物质吸收系数ag(440)与斜率Sg相关关系[J].大连海事大学学报,2007,33(2):179-182.
    [136]王鑫,张运林,赵巧华.水体各组分吸收系数的测量方法研究[J].安全与环境学报,2007,7(4):97-102.
    [137]王晓梅,唐军武,丁静等.黄海、东海二类水体漫衰减系数与透明度反演模式研究[J].海洋学报,2005,27(5):38-45.
    [138]王晓梅,唐军武,宋庆君等.黄海、东海水体总吸收系数光谱特性及其统计反演模式研究[J].海洋与湖沼,2006,37(3):256-263.
    [139]汪小勇,李铜基,杨安安.黄东海海区表观光学特性和固有光学特性春季模式研究[J].2004,23(4):123-126.
    [140]汪小勇,李铜基,周虹丽,韩冰,杨安安,毕大勇.中国近海典型海区表观光学特性分析与研究[J].光学技术,2011,37(5):574-581.
    [141]吴永森,孙培光,张振生,等.胶州湾黄色物质反演模式建立及在黄、东海海域的适应性检验[J].海洋与湖沼,2006,37(6):505—510.
    [142]吴培中.中国海洋水色遥感十年[J].国土资源遥感,1994,(2):5-14.
    [143]邢小罡,赵冬至,刘玉光,杨建洪,王林.渤海非色素颗粒物和黄色物质的吸收特性研究[J].海洋环境科学,2008,27(6):595-598.
    [144]俞宏,蔡启铭,吴敬禄.太湖水体吸收系数与散射系数的特征研究[J].水科学进展,2003,14(1):46-49.
    [145]赵崴,唐军武,严卫,陈光明.利用6S进行月光条件下遥感器信号模拟研究[J].中国空间科学技术,2007,1:27-32.
    [146]朱建华,李铜基.黄东海非色素颗粒与黄色物质的吸收系数光谱模型研究.海洋技术,2004,23(2):8-13.
    [147]朱建华,李铜基.探讨黄色物质吸收曲线参考波长选择[J].海洋技术,2002,22(3):10-14.
    [148]朱建华.分光光度计测量二类水体光谱吸收系数的关键技术.海洋技术,2003,22(l):34-39.
    [149]朱建华,李铜基.黄东海海区浮游植物色素吸收系数与叶绿素a浓度关系研究[J].海洋技术,2004,23(4):117-122.
    [150]朱建华,李铜基.黄东海非色素颗粒与黄色物质的吸收系数光谱模型研究[J].海洋技术,2004,23(2):7-13.
    [151]朱伟健,沈芳,洪官林.长江口及邻近海域有色溶解有机物(CDOM)的光学特性[J].环境科学,2010,31(10):2292-2298.
    [152]
    [153]周虹丽,朱建华,李铜基,等.青海湖水色要素吸收光谱特性分析[J].海洋技术,2005,24(2):55-59.
    [154]周良明,郭佩芳,刘玉光.渤海海域上空大气衰减光学厚度的研究[J].高技术通讯,2005,15(6):102-105.
    [155]周良明,刘玉光,郭佩芳.渤海和北黄海水色光谱的特征分析[J].海洋通报,2005,24(2):13-19.
    [156]周冠华,杨一鹏,陈军,李京.基于叶绿素荧光峰特征的浑浊水体悬浮物浓度遥感反演[J].湖泊科学,2009,21(2):272-279.
    [157]中国河流泥沙公报,2003.中华人民共和国水利部. www.hydroinfo.gov.cn
    [158]赵冬至,罗虎,傅云娜.海洋水色组分吸收系数的测定方法研究.海洋通报,2004,23(3):81-86.
    [159]张绪琴,张士魁,吴永森,夏达英.海水黄色物质研究进展.黄渤海海洋,2000,18(1):89-92
    [160]张绪琴,吴永森,张士魁,等.胶州湾海水黄色物质荧光分布初步研究[J].遥感学报,2002,6(3):229-232.
    [161]张清凌,陈楚群,施平,等.南海水域水体漫衰减系数K(490)的特性研究[J].热带海洋,2003,22(1):9-16.
    [162]张运林,吴生才,秦伯强等.太湖梅梁湾有色可溶性有机物对光的吸收[J].中国环境科学,2004,24(4):405-409.
    [163]张运林,秦伯强,龚志军.太湖有色可溶性有机物荧光的空间分布及其与吸收的关系[J].农业环境科学学报,2006,25(5):1337-1342.
    [164]詹海刚,施平,陈楚群.基于遗传算法的二类水体水色遥感反演.遥感学报,2004,8(1):31-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700