非粮燃料乙醇废水生物处理资源化利用及功能菌群研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着非粮原料——木质纤维素燃料乙醇产业的发展,开发其生产废水处理及资源化利用技术,可以增加燃料乙醇产业的环境友好性和经济性,是燃料乙醇产业能否快速发展重要环节。
     本文首先采取高温厌氧-中温好氧-常温生物滤床耦合系统对玉米秸秆/玉米芯燃料乙醇废水进行净化处理,同时获得清洁能源沼气。对燃料乙醇生产过程中的高浓度蒸馏废水及高氨氮预处理废水净化工艺进行了研究。耦合系统由高温厌氧流化床实验(AFBR),好氧气升式环流生物反应器(ALR)和曝气生物滤床(BAF)。在高温厌氧阶段,对燃料乙醇蒸馏废水进行一级处理时,在最优条件下:操作温度54~55℃,水力停留时间(HRT)为48h,AFBR反应器连续长期运行,有机负荷达(OLR)14.1g-COD/L。d,同时甲烷产量达到280mL/g-CODremoved。然后在ALR反应器内共代谢降解处理厌氧出水和预处理废水,在操作温度30~33℃,pH7.0~8.0,表观气速(μg)12mm/s,HRT为15h,COD和氨氮(NH_4~+-N)去除率分别达88.5%和96.7%。最后在BAF中对好氧出水进行深度处理,BAF在常温(18-25℃)下操作,气液比为6:1,HRT为5h,最终出水COD及氨氮降至65.1mg/L和3.9mg/L,达到国家废水一级排放标准(COD≤100mg/L,氨氮≤15mg/L)。16S rRNA分析显示高温厌氧活性污泥中产甲烷菌属以Methanoculleus和Methanosarcina为主,其它功能菌主要包括Clostridia;而好氧污泥中优势菌群主要为Sphingobacteria和Alphaproteobacteria。
     采用木质纤维素燃料乙醇废水做底物,进行了极端嗜热产氢间歇和连续过程的研究。通过批次反复富集获得极端嗜热产氢混合菌群。考察了温度和pH对间歇产氢过程的影响。在pH7.0及70℃下间歇实验氢气产率达到196.4 mL/g-VSadded;在CSTR反应器中,采用蒸馏废水连续进水,在HRT为4d的条件下,稳定产氢量达到172.0mL/g-VSadded;对稳定产氢的CSTR反应器(70℃,pH 7.0及HRT4天)中嗜热产氢菌群菌群构成采用基因克隆技术进行了研究,极端嗜热产氢菌群主要由Thermotoga和Coprothermobacter属的细菌构成。
With the development of bioethanol based on lignocellulosic materials, technologies for purification and resource utilization of bioethanol wastewater can increase the environmental benefits and economy of bioethanol industry. And these technologies are the basic processes for rapid development of bioethanol industry.
     In this study, purification of the wastewater from corn stover and corncob-based bioethanol production process with simultaneous biogas production was investigated in a combined system, which was based on thermophilic anaerobic digestion in a fluidized bed reactor (AFBR), an aerobic airlift loop reactor (ALR), and a biological aerated filter (BAF). High strength distillery wastewater and high ammonia nitrogen content pretreatment wastewater were used as the influents. In the thermophilic anaerobic process (53~55℃), the methane yield of 280mL/g-COD removed was obtained at organic loading rate (OLR) of 14.1g-COD/L·d and hydraulic retention time (HRT) of 48 h in the AFBR. Then co-digestion of anaerobic effluent and pretreatment wastewater was carried out in the ALR. COD and NH4+-N average removal rate of 88.5% and 96.7% were obtained at HRT of 10h, temperature of 30~33oC and superficial gas velocity (μg) of 12mm/s. The aerobic effluent was finally purified in the BAF operated at ambient temperature and HRT of 5h with simultaneous removal of COD, NH4+-N and chroma. Final effluent with COD and NH4+-N concentrations of 65.1mg/L and 3.9mg/L was obtained with other main indexes satisfying the primary discharge standards for ethanol industry in China. Clone library analyses show that methanogen were dominated by Methanoculleus and Methanosarcina in thermophilic anaerobic sludge and with other species related to Clostridia. While bacteria in aerobic activated sludge were dominated by species related to Sphingobacteria and Alphaproteobacteria.
     Extreme-thermophilic biohydrogen production from distillery wastewater was investigated in batch and continuous-mode operation. Hydrogen-producing mixed culture was enriched by repeated batch cultivations. Effect of temperature and pH on biohydrogen yield was investigated in batch experiments. The highest hydrogen yield of 196.4 mL/g-volatile solidsaddded (VSadded) was obtained at 70℃and pH 7.0 in batch culture. Continuous biohydrogen production was performed in CSTR reactor with yield of 172.0mL/g-VSadded at HRT of 4 days. The main metabolic products were acetate, lactate, and ethanol. Community structure of hydrogen-producing microflora was investigated by 16S rRNA gene clone library analyses. The microorganisms involved in both batch and continuous-mode were similar and hydrogen production was carried out by a group of extreme-thermophilic bacterial species related to Thermotoga, Coprothermobacter.
引文
[1] Lund H, Renewable energy strategies for sustainable development, Energy Policy,2007, 32(6): 912~919
    [2]程景明,徐莉,徐伟平,美国?巴西和中国燃料乙醇发展现状比较,世界农业,2008,(6):10~13
    [3] Balat M, Balat H, Oz C. Progress in bioethanol processing. Progress in Energy and combustion, 2008, 34(5): 551~573
    [4]中国可再生能源项目组,中国可再生能源发展战略研究生物质能卷.北京:中国电力出版社,2008
    [5] Sanchez OJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 2008, 99(13): 5270~95.
    [6] Chen HZ, Qiu WH. Key technologies for bioethanol production from lignocellulose. Biotechnology Advances, 2010, 28(5): 556~562
    [7] Zhu JY, Pan XJ. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation, Bioresource Technology, 2010, 101(13): 4992~5002
    [8]钱伯章,朱建芳,我国纤维素乙醇的开发进展的前景,粮食与饲料工业,2009(10):11~14
    [9]钱伯章,朱建芳,燃料乙醇发展前景和我国的进展,化学工业, 2009(10): 13~16
    [10]Guragain YN, De Coninck J, Husson F et al., Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth, Bioresource Technology, 2011, 102(6): 4416~4424
    [11]Satyawali Y, Balakrishanan M, Wastewater treatment in molasses based alcohol distilleries for COD and color removal: a review, Journal of Environmental Management, 2008, 86(3): 481~497
    [12]Saha NK, Balakrishnan M, Batra VS, Improving industrial water use: case study for an Indian distillery, Resources Conservation and Recycling, 2005, 43(2): 163~174
    [13]S. Mohana, C. Desai, D. Madamwar, Biodegradation and decolorization of anaerobically treated distillery spent wash by a novel bacterial consortium, Bioresource Technology, 2007, 98(2): 333~339.
    [14]Acharya BK, Mohana S, Madamwar D, Anaerobic treatment of distillery spentwash: A study on upflow anaerobic fixed film bioreactor, Bioresource Technology, 2008, 99(1): 4621~4626
    [15]Singh SK, Juwarkar AA, Pandey RA, et al., Applicability of high rate transpiration system for treatment of biologically treated distillery effluent, Environmental Monitoring and Assessment, 2008, 141(1~3): 201~202
    [16] Torry-Smith M, Sommer P, Ahring BK, Purification of bioethanol effluent in an uasb reactor system with simultaneous biogas formation, Biotechnology and Bioengineering, 2003, 84(1): 7~12
    [17]Li BZ, Balan V, Yuan YJ, et al., Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment, Bioresource Technology, 2010, 101(4): 1285~1292
    [18]Zhang MJ, Wang F, Su RX, et al., Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment, Bioresource Technology, 2010, 101(13): 4959~4964
    [19]Kumar V, Wati L, FitzGibbon F, et al., Bioremediation and decolorization of anaerobically digested distillery spent wash, Biotechnology Letters, 1997, 19(4): 311~313
    [20]Kumar S, Sahay SS, Sinha MK, Bioassay of distillery effluent on common guppy, Lebistes reticulates (Peter), Bulletin of Environmental Contamination and Toxicology, 1995, 54(2): 309~316
    [21]Matkar LS, Gangotri MS, Acute toxicity tests of sugar industrial effluents on the freshwater crab, Barytelphusa guerini, Pollution Research, 2003, 22(2): 269~276
    [22]Kannan A, Upreti RK, Influence of distillery effluent on germination and growth of mung bean (Vigna radiata) seeds, Journal of Hazardous Materials, 2008, 153(1~2): 609~615
    [23]吴婉娥,葛红光,张克峰,废水生物处理技术,北京:化学工业出版社,2003
    [24]中国化工防治污染技术协会,化工废水处理技术,北京:化工出版社,2000
    [25]贺延龄,废水的厌氧生物处理,北京:中国轻工业出版社,1998
    [26]贺延龄,陈爱侠,环境微生物学,北京:中国轻工业出版社,2001
    [27]R. E.斯皮思,工业废水的厌氧生物技术(李亚新译),北京:中国建筑工业出版社,2001
    [28]郑元景,沈水明,沈光范,污水厌氧生物处理,北京:中国建筑工业出版社,1988
    [28]沈耀良,王宝贞,废水生物处理新技术-理论与应用,北京:中国环境科学出版社,1999
    [30]郑隆举,李德生,厌氧反应器在国内外的进展研究,能源与环境,2007(6):89~90,92
    [31] Gonzalez-Martinez S, Gonzalez-Barcelo O, Flores-Torres CA, Wastewater treatment in an anaerobic filter using small lava stones as filter media without temperature control, Water Science and Technology, 2011, 63(6): 1188~1195
    [32] Lalov, IG; Krysteva, MA; Phelouzat, JL Jhung JK, Choi E, A comparative study of UASB and anaerobic fixed film reactors with development of sludge granulation, Water Research, 1995, 29(1): 271~277
    [33] Lalov IG, Krysteva MA, Phelouzat JL, Improvement of biogas production from vinasse via covalently immobilized methanogens, Bioresource Technology, 2001, 79(1): 83~85
    [34]Perez M, Romero LI, Nebot E, Sales D, Colonisation of a porous sintered glass support inanaerobic thermophilic bioreactors, Bioresource Technology, 1997, 59(2~3): 177~183
    [35]Khemkhao M, Nuntakumjorn B, Techkarnjanaruk S, et al., Effect of chitosan on UASB treating POME during a transition from mesophilic to thermophilic conditions, Bioresource Technology, 2011, 102(7): 4674~4681
    [36]Lew B, Lustig I, Beliavski M, et al., An integrated UASB-sludge digester system for raw domestic wastewater treatment in temperate climates, Bioresource Technology, 2011, 102(7): 4921~4924
    [37]邱丽娟,陈亮,黄满红,UASB反应器处理染料及印染废水的研究进展,化工环保,2009,29(5):416~419
    [38]Harada H, Uemura S, Chen A, et al., Anaerobic treatment of a recalcitrant distillery wastewater by a thermophilic UASB reactor, Bioresource Technology, 1996, 55(3): 215~221
    [39]Takahashi, M; Yamaguchi, T; Kuramoto, Y, et al., Performance evaluation and kinetic modeling of the start-up of a UASB reactor treating municipal wastewater at low temperature, Bioresource Technology, 2011, 34(2): 153~162
    [40]Carbajo Jose B, Boltes Karina, Leton Pedro, Treatment of phenol in an anaerobic fluidized bed reactor (AFBR): continuous and batch regime, Biodegradation, 2010, 21(4): 603~613
    [41]Kida K, Morimura S, Abe N, et al., Biological treatment of Shochu distillery wastewater, Process Biochemistry, 1995, 30(2): 125~132
    [42]Fernandez N, Montalvo S Borja R, et al., Performance evaluation of an anaerobic fluidized bed reactor with natural zeolite as support material when treating high-strength distillery wastewater, Renewable Energy, 2008, 33(11): 2458~2466
    [43]van Lier JB, Tilche A, Ahring. BK, et al., New perspectives in anaerobic digestion, Water Science and Technology, 2001, 43 (1): 1~18
    [44]Zhang D, Chen YG, Zhao YX, et al., A New Process for Efficiently Producing Methane from Waste Activated Sludge: Alkaline Pretreatment of Sludge Followed by Treatment of Fermentation Liquid in an EGSB Reactor, Environmental Science & Technology, 2011, 45(2): 803~808
    [45]Ruiz C, Torrijos M, Sousbie P, et al., Treatment of winery wastewater by an anaerobic sequencing batch reactor, Water Science & Technology, 2002, 45(1): 219~224
    [46]Banerjee S, Biswas GK, Studies on biomethanation of distillery wastes and its mathematical analysis, Chemical Engineering Journal, 2004, 102 (2): 193~201
    [47]高志永,陈鸿汉,韦道领,内循环式厌氧反应器常温下启动过程试验研究,水处理技术,2010,(3):63~66
    [48]赵晓宁,刘志斌,张正夫,好氧活性污泥的培养研究,能源与环境,2010,(2):55~57,65
    [49]周小波,杨健,缺氧/好氧SBR工艺去除酒精废水中的氮,工业用水与废水,2006,37(6):
    [50]Jiao Y, Zhao QL, Jin WB, et al., Bioaugmentation of a biological contact oxidation ditch with indigenous nitrifying bacteria for in situ remediation of nitrogen-rich stream water, Bioresource Technology, 2011,102(2): 990~995.
    [51]Wen JP, Liu XL, Yuan Q, et al., A pilot study for nitrifying treatment of wastewater from fertilizer production using a gas–liquid–solid three~phase flow airlift loop bioreactor, Journal of Chemical Technology and Biotechnology, 2006, 81(5): 817~822.
    [52]Liu XL, Wen JP, Yuan Q, The pilot study for oil refinery wastewater treatment using a gas–liquid–solid three-phase flow airlift loop bioreactor, Biochemical Engineering Journal, 2005, 27(1): 40~44.
    [53]Arantes V, Milagres AMF, Filley TR, et al., Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions, Journal of Industrial Microbiology & Biotechnology, 2011, 38(4): 541~555
    [54]Zhang ZB, Zhao JF, Xia SQ, et al., Particle size distribution and removal by a chemical-biological flocculation process, Journal of Environmental Sciences, 2007, 19(5): 559~563.
    [55]Bes-Pia A, Mendoza-Roca JA, Alcaina-Miranda MI, et al., Combination of physico-chemical treatment and nanofiltration to reuse wastewater of printing, dyeing and finishing textile industry, Desalination, 2003, 157(1~3): 73~80
    [56]Feng Y, Yu YZ, Duan QA, et al. The characteristic research of ammonium removal in grain-slag biological aerated filter (BAF), Desalination, 2010, 263(1~3): 146~150.
    [57]Wang WJ, Ma T, Cheng W, Experimental Study on the Treatment of low C/N ratio disposal of sewage with BAF, 6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion, 2010, 1207: 157~161.
    [58]Chang WS, Hong SW, Park J, Effect of zeolite media for the treatment of textile wastewater in a biological aerated filter, Process Biochemistry, 2002, 37(7): 693~698
    [59]Qiu LP, Zhang SB, Wang GW, et al., Performances and nitrification properties of biological aerated filters with zeolite, ceramic particle and carbonate media, Bioresource Technology, 2010, 101(19): 7245~7251.
    [60]Krzywonos M, Cibis E, Mi?kiewicz T, et al. Utilization and biodegradation of starch stillage (distillery wastewater), Electronic Journal of Biotechnology, 2009, 12(1): No. 5
    [61]Jasti N, Rasmussen ML, Khanal SK, et al. Influence of selected operating parameters on fungal biomass production in corn-ethanol wastewater, Journal of Environmental Engineering-ASCE, 2009, 135(11): 1106~1114
    [62]Chaudhari PK, Mishra IM, Chand S. Effluent treatment for alcohol distillery: Catalytic thermal pretreatment (catalytic thermolysis) with energy recovery, Chemical Engineering Journal, 2008, 136(1): 14~24
    [63]Guo WQ, Ren NQ, Wang XJ, et al. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. International Journal of Hydrogen Energy, 2008, 33(19): 4981~4988
    [64]Qiu CS, Jia XQ, Wen JP, Purification of high strength wastewater originated from bioethanol production with simultaneous biogas production, World Journal of Microbiology & Biotechnology, Article in Press.
    [65]van Groenestijn JW, Hazewinkel JHO, Nienoord M, et al., Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range. International Journal of Hydrogen Energy, 2002, 27(1-2): 1141~1147
    [66]Oh SE, Van Ginkel S, Logan BE, The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environmental Science & Technology, 2003, 37(22): 5186~5190
    [67]Benemann J. Hydrogen biotechnology: Progress and prospects. Nature Biotechnology, 1996, 14(9): 1101~1103
    [68]Das D, Nejat VT, Hydrogen production by biological processes: a suvrey of literature. International Journal of Hydrogen Enegry, 2001, 26(1): 13~28
    [69]Gray CT, Gest H, Biological fomration of molecular hydrogen production, Science, 1965, 148(3667): 186~192.
    [70]Ren NQ, Li JZ, Lin M, et al., Study on the mechanism of bacterial hydrogen evolution by fermentation, Acta Energiae Solaris Sinica, 2002, 23(1): 1~5
    [71]Tanisho. SA Srtategy for improving the yield of hydrogen by fermentation. Proceedings of 13th WHEC, 2000: 363~369
    [72] Ren NQ, Li YF, Zheng GX, et al., Biohydrogen:I The progress of fundamental research, Advance in Earth Science, 2004, 19(Suppl.): 537~541
    [73]Chong ML, Sabaratnam V, Shirai Y, et al., Biohydrogen production from biomass and industrial wastes by dark fermentation, International Journal of Hydrogen Enegry, 2009, 34(8): 3277~3287
    [74]Kotsopoulos TA, Fotidis IA, Tsolakis N, et al., Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 oC). Biomass and Bioenergy, 2009, 33(9): 1168~1674
    [75]Zhao CX, O-Thong S, Karakashev D, et al., High yield simultaneous hydrogen and ethanol production under extreme thermophilic (70oC) mixed culture environment, International Journal of Hydrogen Enegry, 2009, 34(14): 5657~5665
    [76]Mohan SV, Babu VL, Sarma PN, Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): Effect of organic loading rate, Enzyme and Microbial Technology, 2007, 41(4): 506~515
    [77]Park MJ, Jo JH, Park D et al., Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses, International Journal of Hydrogen Enegry, 2010, 35(12): 6194~6202
    [78]Yokoyama H, Waki M, Moriya N, et al., Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry, Applied Microbiology and Biotechnology, 2007, 74(2): 474~483
    [79]Espinoza-Escalante FM, Pelayo-Ortiz C, Navarro-Corona J, et al., Anaerobic digestion of the vinasses from the fermentation of Agave tequilana Weber to tequila: The effect of pH, temperature and hydraulic retention time on the production of hydrogen and methane, Biomass & Bioenergy, 2009, 33(1): 14~20
    [80]Kaparaju P, Serrano M, Thomsen AB, et al., Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept, Bioresource Technology, 2009, 100(9): 2562~2568
    [81]Kongjan P, Min B, Angelidaki I, Biohydrogen production from xylose at extreme thermophilic temperatures (70 oC) by mixed culture fermentation, Water Research, 2009, 43(5): 1414~1424
    [82]Liu DW, Min B, Angelidaki I, Biohydrogen production from household solid waste (HSW) at extreme-thermophilic temperature (70 oC)– Influence of pH and acetate concentration, International Journal of Hydrogen Enegry, 2008, 33(23): 6985~6992
    [83]Kongjan P, O-Thong S, Kotay M, et al., Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture, Biotechnology and Bioengineering, 2010, 105(5): 899~908
    [84]Kongjan P, Angelidaki I, Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: Effect of reactor configuration, Bioresource Technology, 2010, 101(20): 7789~7796
    [85]Luo G, Xie L, Zou ZH, et al., Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: Effects of temperature and pH. Applied Energy, 2010, 87(12): 3710-3017
    [86]Vatsala TM, Raj SM, Manimaran A, A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture, International Journal of Hydrogen Energy, 2008, 33(20): 5404-5415
    [87] Kim SH, Han SK, Shin HS, Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter, Process Biochemistry, 2006, 41(1): 199~207
    [88]陈坚,环境微生物实验技术,北京:化学工业出版社,2008
    [89]曲媛媛,微生物非培养技术原理与应用,北京:科学出版社,2010
    [90]Tang YQ, Fujimura Y, Shigematsu T, et al., Anaerobic treatment performance and microbial population of thermophilic upflow anaerobic filter reactor treating Awamori distillery wastewater, Journal of Bioscience and Bioengineering, 2007, 104(4): 281~287
    [91]Li JM, Jin ZX, Effect of hypersaline aniline-containing pharmaceutical wastewater on the structure of activated sludge-derived bacterial community, Journal of Hazardous Materials, 2009, 172(1): 432~438
    [92]Tan YF, Ji GD, Bacterial community structure and dominant bacteria in activated sludge from a 70 oC ultrasound-enhanced anaerobic reactor for treating carbazole-containing wastewater, Bioresource Technology, 2010, 101(1): 174~180
    [93]Castello E, Santos CGY, Iglesias T, et al., Feasibility of biohydrogen production from cheese whey using a UASB reactor: Links between microbial community and reactor performance, International Journal of Hydrogen Energy, 2009, 34(14): 5674~5682
    [94]Yokoyama H, Moriya N, Ohmori H, et al., Community analysis of hydrogen-producing extreme thermophilic anaerobic microflora enriched from cow manure with five substrates, Applied Microbiology and Biotechnology, 2007, 77: 213~222
    [95]吕凡,何品晶,邵立明,pH对可降解有机废物发酵途径的影响,环境科学,2006,(5):991~997
    [96]Li YC, Zhu J, Wu XA, et al, The effect of pH on continuous biohydrogen production from swine wastewater supplemented with glucose, Applied Biochemistry and Biotechnology, 2010, 162(5): 1286~1296
    [97]Chong ML, Rahman NA, Yee PL, et al., Effects of pH, glucose and iron sulfate concentration on the yield of biohydrogen by Clostridium butyricum EB6, International Journal of Hydrogen Energy, 2009, 34(21): 8859~8865
    [98]Van Ginkel S, Logan BE, Inhibition of biohydrogen production by undissociated acetic and butyric acids, Environmental Science & Technology, 2005, 39(23): 9351~9356
    [99]Lee M, Hidaka T, Tsuno H. Two-phased hyperthermophilic anaerobic co-digestion of waste activated sludge with kitchen garbage. Journal of Bioscience and Bioengineering, 2009, 108(5): 408~413
    [100]Etchebehere C, Pavan ME, Zorzopulos J, et al., Coprothermobacter platensis sp. nov., a new anaerobic proteolytic thermophilic bacterium isolated from an anaerobic mesophilic sludge, International Journal of Systematic Bacteriology, 1998, 48: 1297~1304
    [100]de Vrije T, de Haas GG, Tan GB, Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii, International Journal of Hydrogen Energy, 2002, 27(11~12): 1381~90
    [101]van Niel EWJ, Budde MAW, de Haas GG, et al., Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. International Journal of Hydrogen Energy, 2002, 27(11~12): 1391-1398
    [102]Ravot G, Magot M, Fardeau ML, et al., Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. International Journal of Systematic Bacteriology, 1995, 45(2): 308-314
    [103]O-Thong S, Prasertsan P, Karakashev D, et al., Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2, International Journal of Hydrogen Energy, 2008, 33(4): 1204~1214
    [104]Ahring BK, Licht D, Schmidt AS, et al., Production of ethanol from wet oxidised wheat straw by Thermoanaerobacter mathranii. Bioresource Technology, 1999, 68(1): 3~9
    [105] Niu LL, Liu XL, Chen SY, et al., A new hydrogen-producing strain and its characterization of hydrogen production. Acta Microbiologica Sinica, 2006, 46(2): 280~284
    [106] Bredholt S, Sonne-Hansen J, Nielsen P, Mathrani IM, Ahring BK. Caldicellulosiruptor kristjanssonii sp nov., a cellulolytic extremely thermophilic, anaerobic bacterium, International Journal of Systematic Bacteriology, 1999, 49: 991~996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700