挤压变形Al-Mg-Si-RE铝合金低周疲劳行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金具有密度低、比强度和比刚度高的特点,目前已在航空工业和汽车工业中得到了广泛的应用。为了进一步拓展铝合金的应用领域,需要采取一定的措施以改善铝合金的组织、提高铝合金的力学性能。稀土元素Sc和Er被认为是改善铝合金组织及力学性能的两种有效的合金元素。因此,研究稀土元素Sc和Er在铝合金中的作用,对于新型高强、高韧铝合金的开发和工程应用具有重要的理论参考价值和实际指导意义。
     以Al-0.8%Mg-0.6%Si合金为母合金,向其中分别加入不同含量的稀土元素Sc和Er,通过熔炼、浇注、热挤压和热处理,制备了不同加工处理状态的挤压变形Al-0.8%Mg-0.6%Si-xRE合金,并分别进行了微观组织观察、拉伸和疲劳实验以及断口形貌观察。显微组织观察结果表明,加入适量的稀土元素Sc和Er可以显著地细化挤压变形Al-0.8%Mg-0.6%Si-xRE合金的组织。室温拉伸实验结果表明,加入适量的稀土元素Sc和Er可以有效地提高Al-0.8%Mg-0.6%Si-xRE合金的抗拉强度、屈服强度和断裂伸长率,尤其是经过固溶+时效处理后,合金的抗拉强度和屈服强度均得到显著提高。低周疲劳实验结果表明,疲劳变形期间,挤压变形Al-0.8%Mg-0.6%Si-xRE合金可表现为循环应变硬化、循环稳定和循环应变软化,这主要取决于外加总应变幅的高低以及所加入稀土元素的种类;挤压变形Al-0.8%Mg-0.6%Si-xRE合金的塑性应变幅、弹性应变幅与断裂时的载荷反向周次之间分别服从Coffin-Manson和Basquin公式,其中Al-0.8%Mg-0.6%Si-0.2%Sc合金的塑性应变幅与断裂时的载荷反向周次之间呈双线性关系;在较高的外加总应变幅条件下,合金的循环滞后回线上出现锯齿状起伏现象,说明合金在疲劳变形期间发生了动态应变时效。断口分析结果表明,拉仲加载条件下,挤压变形Al-0.8%Mg-0.6%Si-xRE合金呈现明显的韧性断裂特征,而在低周疲劳加载条件下,疲劳裂纹均是以穿晶方式萌生于试样表面,并以穿晶方式扩展。
Aluminum alloys have such characteristics as low density,high specific strength and rigidity,and have been found a wide application in aeronautical and automotive industries. To extend the application field of aluminum alloys,some measures,which can improve the microstructure and mechanical properties of aluminum alloys,need to be taken.The rare earth elements Sc and Er are considered as two kinds of the most effective elements available to enhance the microstructures and properties of aluminum alloys.Thus,the research concerning the effect of Sc and Er in aluminum alloys is of both important theoretical referring value and practical directing significance for developing new aluminum alloys with high strength and ductility.
     In this investigation,the different amounts of Sc and Er were added into the Al-0.8%Mg-0.6%Si matrix alloy.And the extruded Al-0.8%Mg-0.6%Si-xRE alloys with different states were fabricated by melting,casting,hot extrusion and heat-treatment.Then, the observations on the microstructures and fracture surface morphologies as well as both tensile and fatigue tests were performed for the extruded Al-0.8%Mg-0.6%Si-xRE alloys. The microstructural observations reveal that the addition of Sc and Er with appropriate content can refine the grains of the extruded Al-0.8%Mg-0.6%Si-xRE alloys.The results of tensile experiments show that the addition of Sc and Er with appropriate content can significantly enhance the ultimate tensile strength,yield strength and elongation of the extruded Al-0.8%Mg-0.6%Si-xRE alloys.Especially,the ultimate tensile and yield strengths of the alloys get obviously enhanced after solid solution plus aging treatment. The results of low-cyclic fatigue tests show that during fatigue deformation,the extruded Al-0.8%Mg-0.6%Si-xRE alloys exhibit the cyclic strain hardening,softening and stable cyclic stress response,which mainly depends on the imposed total strain amplitude and the type of the added rare earth elements.For the extruded Al-0.8%Mg-0.6%Si-xRE alloys,the relationship between plastic and elastic strain amplitudes as well as reversals to failure can be described by Coffin-Manson and Basquin equations,respectively.And for the extruded Al-0.8%Mg-0.6%Si-0.2%Sc,a bilinear ralation between the plastic strain amplitude and reversals to failure has been noted.In addition,at the higher total strain amplitudes,a serrated flow can be observed in the cyclic hysteresis loop for the extruded Al-0.8%Mg-0.6%Si-xRE alloys.It means that the so-called dynamic strain aging takes place during fatigue deformation. The fractographic results reveal that under tensile loading conditions,the extruded Al-0.8%Mg-0.6%Si-xRE fractographic alloys show typical ductile fracture,while under low-cycle fatigue loading conditions,the fatigue cracks initiate transgranularly at the surface of fatigue samples and propagate in a transgranular mode.
引文
[1]罗兵辉,柏振海,周华等.几种铸造铝合金的铸造性能、力学性能及耐蚀性.矿冶工程,2001,21(2):67-71.
    [2]《轻金属材料加工手册》编写组.轻金属材料加工手册(上册).北京:冶金工业出版社,1979.
    [3]王晓敏.工程材料学.哈尔滨:哈尔滨工业大学出版社,2005.
    [4]Dash M,Makhlouf M.Effect of key alloying elements on the feeding characteristics of aluminum-silicon casting alloys.Journal of Light Metals,2001,1:251-265.
    [5]李元元,郭国文,罗宗强等.高强韧铸造铝合金材料研究进展.特种铸造及有色合金,2000(6):45-47.
    [6]唐明君,吉泽升,吕新宁.5×××系铝合金的研究进展.轻合金加工技术,2004,32(7):1-7.
    [7]潘复生,张丁非,杨明波 等编.铝合金及应用.北京:化学工业出版社,2006.
    [8]陈刚,陈鼎.锰在有色金属中的应用.中国锰业,2003,21(1):34-37.
    [9]司乃潮,傅明喜.有色金属材料及制备.北京:化学工业出版社,2006.
    [10]曾渝,尹志民,潘青林等.超高强铝合金的研究现状及发展趋势.中南工业大学学报,2002,33(6):592-596.
    [11]钟声,苗忠,曹占义.稀土在铝硅合金中细化和变质作用微观机制.长春大学学报,2001,11(4):9-11.
    [12]张永红,尹志民.微量Sc,Zr对Al-Mg合金的组织和力学性能的影响.稀土,2003,23(3):29-32.
    [13]杜挺.稀土元素在金属材料中的一些物理化学作用.金属学报,1997,33(1):67-77.
    [14]Singh V,Prasad K S,Gokhale A A.Microstructure and age hardening response of cast Al-Mg-Sc-Zr alloys.Journal of Materials Science,2004,39:2861-2864.
    [15]郭旭涛,李培杰,熊玉华等.稀土在铝、镁合金中的应用.材料工程,2004(8):60-64.
    [16]Kendig K L,Miracle D B.Strengthening mechanisms of an Al-Mg-Sc-Zr alloy.Acta Materialia,2004,50:4165-4175.
    [17]孙伟成,张淑荣,侯爱芹.稀土在铝合金中的行为.北京:兵器工业出版社,1992.
    [18]张启运.稀土元素对Al-Si共晶合金的变质作用.金属学报,1981,17(2):130-136.
    [19]Davydov V G,Rostova T D,Zakharov V V.The principles of making and alloying addition of scandium to aluminium alloys.Materials Science and Engineering,2000,A280:30-36.
    [20]Norman A F,Prangnell P B,Mcewen R S.The solidification behavior of dilute aluminiumscandium alloys.Acta Materialia,1998,46(16):5715-5732.
    [21]尹志民,高拥政,潘青林等.微量Sc利zr对Al-Mg合金铸态组织的品粒细化作用.中国有色金属学报,1997,7(4):75-79.
    [22]杨磊,潘青林,尹志民 等.微量Sc和Zr对Al-Zn-Mg合金组织与性能的影响.材料工程,2001(7):29-32.
    [23]朱大鹏,尹志民,滕浩等.微量Sc和Zr对Al-Mg-Mn合金组织和性能的影响.宁航材料工艺,2004,34(6):45-49.
    [24]徐国富,杨军军,金头男 等.微量稀土Er对Al-5Mg合金组织与性能的影响.中国有色金属学报,2006,16(5):768-774.
    [25]Nogita K,Knuutinen A,McDonald S D et al.Mechanisms of eutectic solidification in Al-Si alloys modified with Ba,Ca,Y and Yb.Journal of Light Metals,2001,1:219-228.
    [26]Yin Z M,Pan Q L,Zhang Y et al.Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys.Materials Science and Engineering,2000,A280:151-155.
    [27]陈显明,潘青林,周吕荣等.微量钪对Al-Mg-Mn合金组织与性能的影响.稀有金属,2003,27(3):403-405.
    [28]雷广孝.稀土在铝及铝合金中的作用和应用概况.轻合金加工技术,1990(2):5-10.
    [29]丁培道.稀土对6063铝合金热塑性的影响.材料科学进展,1990,4(3):212-217.
    [30]谭澄宇,陈准,郑子樵.Al-Mg-Sc合金的拉伸性能和显微组织研究.铝加工,2002,25(4):1-3.
    [31]潘青林,尹志民,邹景霞 等.微量Sc在Al-Mg合金中的作用.金属学报,2001,37(7):749-753.
    [32]柏振海,熊俊,罗兵辉等.钪在铝合金中的作用.铝加工,2001,24(6):33-37.
    [33]周晓霞,张仁元,刘银峁.稀土元素在铝合金中的作用和应用.新技术新工艺,2003,4:43-45.
    [34]Bian X F.A master alloy for sphereodisation of needle form iron compounds in aluminium alloy.Cast Metals,1993,6(3):2571-2573.
    [35]P E沙林.金属材料中的稀土元素.材料工程,1993(1):1-5.
    [36]曹大力,石忠宁,杨少华等.稀土在铝及铝合金中的作用.稀土,2006,27(5):87-93.
    [37]王祝堂,张燕,江斌.钪-铝合金的新型微量合金元素.轻合金加工技术,2000,28(1):31-34.
    [38]魏晓伟,曾明.稀土对铸造铝铜合金流动性和热裂倾向性的影响.铸造技术,1997(3):46-50.
    [39]邓小民,挤压温度对2Al2铝合金T4状态管材力学性能的影响.轻合金加工技术,2004,32(2):33-34.
    [40]刘莹,王炳德,王本贤.高强度铝合金管材热挤压工艺及力学性能分析.机械设计与制造,2006(8):83-84.
    [41]王涛,尹志民.高强变形铝合金的研究现状和发展趋.稀有金属,2006,30(2):197-202.
    [42]胡赓祥,蔡珣.材料科学基础.上海:上海交通大学出版社,2000.
    [43]Caceres C H,Selling B I.Casting defects and the tensile properties of an Al-Si-Mg alloy.Materials Science and Engineering,1996,A220:109-116.
    [44]蹇海根,姜锋,徐忠艳 等.航空用高强韧Al-Zn-Mg-Cu系铝合金的研究进展.热加工工艺,2006,35(12):61-66.
    [45]Altenberger I,Scholtes B.Improvement of fatigue behaviour of mechanically surface treated materials by annealing.Scripta Materialia,1999,41(8):873-881.
    [46]McDowell D L,Gall K,Horstemeyer M F.Microstructure-based fatigue modeling of cast A356-T6alloy.Engineering Fracture Mechanics,2003,70:49-80.
    [47]Wang Q G.,Apelian D,Lados D A.Fatigue behavior of A356-T6 aluminum cast alloys.Journal of Light Metals,2001,1:73-84.
    [48]王清远,王中光,李守新.高速铁路关键材料超长寿命疲劳断裂性能.机车电传动,2003(增刊):28-29.
    [49]张秀梅.Ce的加入对变形铝合金组织与疲劳性能的影响.包头钢铁学院学报,2000,19(3):243-246.
    [50]Meng L,Zheng X.L,Tian L.Effect of alkali metal impurities and cerium modification on the fatigue behaviour of 8089 alloy sheets.Materials Science and Engineering,1995,A196:191-196.
    [51]Watanabe C,Jin C Y,Monzen R et al.Low-cycle fatigue behavior and dislocation structure of an Al-Mg-Sc alloy.Materials Science and Engineering,2004,A387-389:552-555.
    [52]Kobayashi T,Ito T,Yao Q et al.Fatigue properties and microstructure of A1-Si-Cu system casting alloys.Materials Science and Technology,1999,15:1037-1043.
    [53]Bolleau J M,Allison J E.The Effect of solidification time and heat treatment on the fatigue properties of a cast 319 aluminum alloy.Metallurgical and Materials Transcations,2003,34A:1807-1820.
    [54]Toshiyuki F,Chihiro W,Yoshimichi N et al.Microstructural evolution during low cycle fatigue of a 3003 aluminum alloy.Materials Science and Engineering,2001,A319-321:592-596.
    [55]Eswara P N,Vogt D,Bidlingmaier T et al.High temperature,low cycle fatigue behaviour of an aluminium alloy(Al-12Si-CuMgNi).Materials Science and Engineering,2000,A276:283-287.
    [56]Srivatsan T S,Kolar D,Magnusen P.The cyclic fatigue and final fracture behavior of aluminum alloy 2524.Materials and Design,2002,23:129-139.
    [57]中宏伟,穆恩生,邹定强.几种铝合金的循环特性与疲劳抗力.中国铁道科学报,1997,18(2):99-101.
    [58]Kim K C,Nam S W.Effects of Mn-dispersoids on the fatigue mechanism in an Al-Zn-Mg alloy.Materials Science and Engineering,1998,A244:257-262.
    [59]Roder O,Wirtz T,Gysler A,L(u丨¨)tjering G.Fatigue properties of Al-Mg alloys with and without scandium.Material Science and Engineering,1997,A234-236:181-184.
    [60]Buffière J Y,Savelli S,Jouneau P H et al.Experimental study of porosity and its relation to fatigue mechanisms of model Al-Si7-Mg0.3 cast Al alloys.Materials Science and Engineering,2001,A316:115-126.
    [61]Altenberger I,Scholtes B.Improvement of fatigue behaviour of mechanically surface treated materials by annealing.Scripta Materialia,1999,41(8):873-881.
    [62]Blankenship C P,Kaisand L R.Elevated temperature fatigue crack propagation behavior of an Al-Cu-Mg alloy.Scripta Materialia,1996,34(9):1455-1460.
    [63]Srivatsan T S.An investigation of the cyclic fatigue and fracture behavior of aluminum alloy 7055.Materials and Design,2002,23:141-151.
    [64]Hamana D,Bouchear M,Derafa A.Effect of plastic deformation on the formation and dissolution of transition phases in Al-12wt.%Mg alloy.Materials Chemistry and Physics,1998,57:99-110.
    [65]G(u丨¨)rb(u丨¨)z R,Sario(?)lu F.Fatigue crack growth behaviour in aluminium alloy 7475 under different aging conditions.Materials Science and Technology,2001,17:1539-1543.
    [66]Bray G H,Glazov M,Rioja R J et al.Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys.International Journal of Fatigue,2001,23:265-276.
    [67]Luo A A,Kubic R C,Tartaglia J M.Microstructure and fatigue properties of hydroformed aluminum alloys 6063 and 5754.Metallurgical and Materials Transactions,2003,34A:2549-2557.
    [68]肖亚庆,唐桂林.稀土在6063铝合金中存在的形式和对组织性能的影响.轻合金加工技术,1996,24(11):33-36.
    [69]Nie Z,Jin T,Fu J et al.Research on rare earth in aluminium.Materials Science Forum,2002,396-402:1731-1736.
    [70]Raske D T,Morrow J.Mechanics of materials in low cycle fatigue testing.ASTM STP 465,Philadelphia:American Society for Testing and Materials,1969,1-25.
    [71]Davydov V G.Scientific principles of making an alloying addition of scandium to aluminum alloys.Materials Science and Engineering,2000,A280:30-36.
    [72]Drits M E,Yu G.Bykov,Toropova L S.Effect of ScAl_3 phase dispersity on hardening of Al-6.3%Mg-0.21%Sc alloy.Technical Information,1985(4):309-312.
    [73]杨军军,聂祚仁,金头男 等.稀土饵在Al-Zn-Mg合金中的存在形式与细化机理.中国有色金属学报,2004,14(4):620-626.
    [74]Li F,Wang Y,Chen L Jet al.Low-cycle fatigue behavior of two magnesium alloys.Journal of Materials Science,2005,40:1529-1531.
    [75]Saisrinadh K V,Singh V.Elimination of dual slope from the Coffin-Manson relationship of low-cycle fatigue in the titanium alloy Timetal 834 by cold rolling.Metallurgical and Materials Transactions,2007,38A:1868-1871.
    [76]Valsan M.and Parameswaran P.High temperature low-cycle fatigue behavior of a Nimonic PE-16superalloy-corralation with deformation and fracture.Metallurgical Transcations,1992,23A:1751-1761.
    [77]Lerch B A,Gerold M V.Cyclic hardening mechanisms in Nimonic 80A.Metallurgical Transactions,1987,18A:2135-2141.
    [78]Singh V,Sundararaman M.,Chen W et al.Low-cycle fatigue behavior of imonic PE16 at room temperature.Metallurgical Transactions,1991,22A:499-506.
    [79]Mediratta S R,Ramaswamy V,Singh V et al.Dependence of strain hardening exponent on the volume fraction and carbon content of martensite in dual phase steels during multistage work hardening.Journal of Materials Science,1990,9:205-206.
    [80]Coffin L F.Noteon low cycle fatigue laws.Journal of Materials Science,1971,6:388-402.
    [81]Picu R C,Zhang D.Atomistic study of pipe diffusion in Al-Mg alloys.Acta Materialia,2004,52:161-171.
    [82]钱匡武,李效琦,萧林钢等.金属和合金中的动态应变时效现象.福州大学学报,2001,29(6):8-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700