Mg-Li-Sc合金的组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mg-Li合金是目前最轻的金属结构材料,具有较高的比强度、比刚度和良好的可成形性,在航空航天等对结构重量有苛刻要求的领域具有较大的应用潜力,是镁合金研究开发中的热点之一。本文制备了Mg-3Li和Mg-3Li-1Sc两种合金,分别研究了两种合金铸态、固溶和时效态及热轧变形后退火态的显微组织和室温拉伸性能,并进一步测试分析了铸态及热处理态的冲击变形行为,探讨了少量稀土Sc对α相Mg-Li合金组织与性能的影响,以期为该合金的性能改进及应用提供实验基础。
     得到的主要研究结果如下:
     显微组织分析结果表明,少量Sc添加到Mg-3Li合金中起到了细化晶粒、均匀化组织、提高合金再结晶温度的作用。
     拉伸实验结果表明,与铸态Mg-3Li合金相比,铸态Mg-3Li-1Sc合金的强度有一定提高,塑性有所改善;经固溶+时效处理后,由于细晶强化和MgSc相析出强化作用,Mg-3Li-1Sc合金的强度进一步提高,而塑性无明显下降;经轧制退火后,由于基体中弥散分布的MgSc相在组织回复和再结晶过程中通过对位错的钉扎和对晶界迁移的阻碍作用,显著细化了再结晶晶粒,使合金的强度和塑性明显提高。
     动态冲击实验结果表明,在相同应变率下,铸态Mg-3Li-1Sc合金的屈服强度均高于Mg-3Li合金的值,而且随着应变率的提高,Mg-3Li-1Sc合金动态屈服强度的提高更加明显。两者的应力-应变行为在实验范围内均表现出先正效应后负效应的变化趋势。经固溶处理后,Mg-3Li-1Sc合金的动态屈服强度明显提高,应力-应变行为在实验范围内表现为应变率负效应,组织产生变形局部化,裂纹沿变形带萌生和长大,导致合金的抗冲击性能下降。经固溶+时效处理后,Mg-3Li-1Sc合金的应力-应变行为表现出一定的应变率负效应,但动态屈服强度进一步提高,变形组织也出现了明显的变形局部化现象,随应变率提高,裂纹沿变形带萌生并扩展,冲击变形抗力下降。
Mg-Li alloys are the lightest of all practical metallic materials for structures with high specific strength, high specific stiffness and good formability. They are under intensive research worldwide currently with promising application potential in fields which have rigid requirements for weight-saving, such as aeronautical and astronautical engineering. In the present study, two kinds of alloys, Mg-3Li and Mg-3Li-1Sc, were prepared. Microstructure and tensile properties for as-cast, solid state and aging treatment and hot-rolled and subsequent annealed conditions of these alloys were investigated. Furthermore, dynamic impact deformation behavior for as-cast and solid state and aging treatment conditions were tested and analyzed. The influence of minor rare earth Sc on microstructure and properties ofαphase Mg-Li alloys were discussed in order to provide experimental basis for their further improvement and extended application.
     The main conclusions are as follows:
     The analysis of microstructure showed that minor Sc, after being added to Mg-3Li alloy, refines grains, uniformes microstructure and elevates the recrystallizing temperature. The results of tensile tests showed that the strength and plasticity of as cast Mg-3Li-1Sc alloy is better than that of Mg-3Li alloy. The combination of grain refinement strengthening and precipitation strengthening improves the strength of Mg-3Li-1Sc alloy evidently without visible decline of plasticity after solid solution treatment followed by aging treatment with proper parameters. After hot-rolling and annealing treatment, the strength and plasticity were improved evidently owing to the strong grain refinement caused by the pinning effect of MgSc phase on dislocation motion and grain boundaries migration in the process of recovery and recrystallization.
     The results of dynamic impact experiments showed that the dynamic yield strength of cast Mg-3Li-1Sc is higher than that of Mg-3Li alloy at same strain rate, and the increment has been increased with the increase of strain rate. The stress-strain behavior of both Mg-3Li and Mg-3Li-1Sc alloys shows positive effect followed by negative effect within tested strain rate. Because localized deformation occurs and furthermore micro-cracks form and coalesce, Mg-3Li-1Sc showed negative strain rate effect and the impact resistance declined while deformed at tested strain rates after solid solution treatment. the stress-strain behavior shows negative strain rate effect after subsequent aging treatment. Distinct deformation localization occurs and cracks initiate and propagate along deformation bands with the increase of strain rate, which lead to the decline of impact resistance.
引文
[1]陈振华.镁合金[M].北京:化学工业出版社, 2004:1-60
    [2] Kainer K. U.Buch F. Von. The Current State of Technology and Potential for Further Development of Magnesium Applications [A]. K. U. Kainer. Magnesium Alloys and Technology[C]. Weinheim: Wiley-VCH, 2003:1-22
    [3]丁文江.镁合金科学与技术[M].北京:科学出版社, 2007:1-26
    [4]张津,章宗和,等.镁合金及应用[M].北京:化学工业出版社, 2004:5-7
    [5]曹幸,彭立明,曾小勤,等.稀土及固溶处理对AM60B合金组织和力学性能的影响[J].机械工程材料, 2003, 27 (2):21-24
    [6]黄晓锋,王渠东,卢晨,等. Si对AM50力学性能和高温蠕变性能的影响[J].材料研究学报, 2004, 18 (6):630-634
    [7] Liu Hongmei, Chen Yungui, Tang Yongbai, et al. Microstructure and Properties of Mg-10%Al-(0~3%)Di Alloys [J]. Journal of Rare Earths, 2006, 24 (Spec.):382-384
    [8] G. Ben-Hamu, D. EliezerK.S. Shin. The role of Si and Ca on new wrought Mg-Zn-Mn based alloy [J]. Materials Science and Engineering: A, 2007, 447 (1-2):35-43
    [9] Liu Xudong, Song Lihua, Zhao Hongliang, et al. Effects of cerium on the microstructure and mechanical properties of Mg-16Zn-6Al magnesium alloy[DB].中国科技论文在线, 2008-05-20
    [10] V. Lisitsyn, G. Ben-Hamu, D. Eliezer, et al. The role of Ca microalloying on the microstructure and corrosion behavior of Mg-6Zn-Mn-(0.5-2)Si alloys [J]. Corrosion Science, 2009, 51 (4):776-784
    [11]余琨,黎文献,王日初,等.快速凝固镁合金开发原理及研究进展[J]. 2007, 17 (7):1025-1033
    [12] Kawamura Y, Hayashi K, A Inoue, et al. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600GPa [J]. Materials Transactions, 2001, 42:1172-1176
    [13]乐启炽,崔建忠,李红斌,等. Mg-Li合金研究最新进展及其应用[J].材料导报, 2003, 17 (12):1-5
    [14] Orimer G W, Apps P J, Karimzadeh H, et al. Improving the performance of Mg-rare earth alloys by the use of Gd or Dy additions [J]. Materials Science Forum, 2003, 419-422:279-284
    [15] Emely E F. Principles of Magnesium technology [M]. Oxford:Pergamon Press, 1996:1-50
    [16]于化顺,闵光辉.合金元素在Mg-Li基合金中的作用[J].稀有金属材料与工程, 1996, 25 (2):1-5
    [17] Hansen, EschurmannFormneyer G. The deformation and strengthening mechanisms of the multiphase Mg-Li-Al alloys [J]. Metals, 1986, 40:126
    [18] Dutta Abhijit, Prabhakar PKumar a D. Superplastic Behavior of Mg-8Li-6.5Al alloy[J]. ManufacturingTechnology [J]. Manufacturing Technology, 2000, 35 (5):459
    [19] Kazakov a K, Timonava M ABorisova L G. Manufacturing Properties and Workability of Mg-Li-Alβ-based Alloys [J]. Metal Science and Heat Treatment, 1983, 25:9-10
    [20]乐启炽,李洪斌,崔建忠.稀土和银对Mg-Li合金显微组织及力学性能的影响[J].兵器材料科学与工程, 1997, 20 (4):9
    [21] Siddhartha Das. Mg-Li alloys of RSP [J]. Manufacturing Technology, 1992:236-250
    [22]大内清明,岩泽秀,镰土重晴. Mg-8%Li合金的组织与机械特性及稀土元素的影响[J].轻金属, 1992, (8):446-452
    [23] Kim S H. Effects of rare earth(Y,Nd)on the corrosion Behaviors of Mg-Li-Al light alloys[J]. J. Corrosion Sci. Soc. Korea, 1999, 28 (2):175
    [24] Tanno OOhuchi K. Effect of rare-earth elements on the structures and mechanical properties of Mg-8% Li alloys [J]. J. JPN. Inst. Light Met., 1992, (2):96-103
    [25]刘滨,张密林. Ce对Mg-Li-Al合金组织及力学性能的影响[J].特种铸造及有色合金, 2007, 27 (5):329-331
    [26]王涛,张密林,牛中毅. Y对Mg-8Li-3Al合金组织和性能的影响[J].轻合金加工技术, 2007, 27 (4):35-50
    [27] Schemme KHuppert G. Surface modifications of Mg-Li alloy by laser alloying and by laser particles impregnation [J]. Metal, 1993, 39 (4):445
    [28] Matsuda A., Wan C C, Yang J M, et al. Rapid Solidification processing of a Mg-Li-Si-Ag alloy[J]. Maeterials Science, 1996, 5:1363
    [29] Grensing F CFraser H L. Microstructure and perspective of rapidly solidified magnesium-lithium alloy[A]. S. J. Savage. Processing of structural metals by rapid solidification. Place.Published:AMS, 1987: 6
    [30] Meschter P JO`Eal J E. Effect of RSP on the Microstructure and the Properties of Mg-9Li[J]. Alloys.Met.Trans.A, 1984, 15A:237
    [31]马图哈K H.非铁合金的结构与性能[M].北京:机械工业出版社, 1999:142
    [32] Cao Furong, Cui Jianzhong, Wen Jinglin, et al. Mechanical behaviour and microstructure evolution of superplastic Mg-8.4Li alloy and effect of grain size and phase ratio on its elongation[J]. Mater Sci Techn., 2000, 10 (1):55
    [33] SivakesavamPrasad Yvrk. Characteristics of superplasting domain in the processing map for hot working of as-ost Mg-11.5Li-1.5Al [J]. Mater Sci Eng A, 2002, 323:270
    [34] Wolfenstine J, Donce GHigashi K. Superplastic Mg-Li alloy [M]. USA:AIME, 1995:75
    [35] Ninomiya RMiyake K. A study on super-light and super-plastic Mg-Li based alloys[J]. Jpn Inst Light Metals, 2001, 51 (10):509
    [36] Yoshida Y, Yamada HKandao S. Tensile perspetics and occurrence of low tempeature superplasticity of ECAE processed Mg-Li based alloys [J]. .Japan Institute Light Mater, 2001, 51 (10):509
    [37]刘腾. ECAP处理Mg-Li基合金的室温拉伸行为[D].沈阳:中国科学院金属研究所,2004
    [38]王辅忠,李荣华. Mg-Li基复合材料研究[J].稀有金属, 2003, 27 (2):273-276
    [39]于化顺,高瑞兰,闵光辉. Mg-Li合金及复合材料的抗蠕变性能[J].特种铸造及有色金属, 2008, 1:8
    [40] Zhang D, Ma C J, Qin J N, et al. Interficial structure and mechanical properties of Mg-Li-Al composites [J]. Case Western Reserve University, 2000:14
    [41]马春江,张获,施忠良.镁锂基复合材料界面结构及热力学分析[J].稀有金属, 1999, 23 (6):401
    [42]姜锡权,胡时胜.霍普金森杆实验技术发展综述[A]. Hopkinson杆实验技术研讨会. Hopkinson杆实验技术研讨会论文集. Place.Published:万方数据股份有限公司, 2007: 147-157
    [43]王礼立.应力波基础[M].北京:国防工业出版社, 2005:1-380
    [44]胡时胜,王礼立.一种用于材料高应变率试验的实验装置[J].振动与冲击, 1986, (1):40
    [45]鲁世红,何宁.高应变速率下A1-Mg-Sc合金压缩变形的流变方程[J].中国有色金属学报, 2008, 18 (5):897-902
    [46]董新龙,王礼立,李深智.高应变率下铁锰铸造合金正向和反向应变率效应的研究[J].爆炸与冲击, 2002, 22 (1):20-25
    [47] P.M.SargentM.F.Ashby. The Presentation of High Strain Rates on Deformation Mechanism Maps[R]. Cambridge C. U. E. Dept., 1983
    [48] Frost H JAshby M F. Deformation Mechanism Maps [M]. Oxford:Pergamon Press 1982:
    [49] Meyers M A. Dynamic Behavior of Materials [M]. New York:John Wiley & Sons Inc 1994:448 - 486
    [50] Zener CHollomon J. H. Effect of strain rate upon plastic flow of steel [J]. J Appl Mech, 1944, 15 (1):22 - 32
    [51]谭成文,王富耻,李树奎.绝热剪切变形局部化研究进展及发展趋势[J].兵器材料科学与工程, 2003, 26 (5):62-67
    [52] Meyers Marc Andre.材料的动力学行为[M].北京:国防工业出版社, 2006:206-223
    [53] Mott N. F. Fragmentation of Shell Cases [J]. Proc. Royal Soc., 1947, A189:300-305
    [54] Grady D.E.Kipp M.E. The micromechanics of impact fracture of rock [J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1979, 16:293-302
    [55] Grady D EKipp M E. Continuum modelling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences, 1980, 17:147-157
    [56] Grady D.E. Local inertial effects in dynamic fragmentation[J]. Journal of Applied Physics, 1982, 53:322-325
    [57] Aimone C.T., Meyers M.A.Mojtabai N. Shock-Wave-Induced Fragmentation of Copper Porphyries [A]. C. H. DowdingandM. M. Singh. Rock Mechanics in Productivity and Protection[C]. Warrendale: SME-AIME, 1984:979
    [58] Jaeger Z., Englman R., Gur Y., et al. Internal Damage in Fragments[J]. J. of Materials Science Letters, 1986, 5:577-579
    [59]柏振海. Sc对Al-Mg合金组织和性能的影响[J].铝加工, 2002, 25 (2):17
    [60]柏振海等.微量Sc和Zr对Al-Mg合金组织和性能影响的研究[J].材料科学与工艺, 2002, 10 (3):55
    [61]陈志国,郑子樵.微量钪对Al-2.5Cu-1.5Mg合金时效特性与微观组织的影响[J].稀有金属材料与工程, 2004, 33 (8):8-11
    [62]陈显明,潘青林.微量钪对Al2Mg2Mn合金组织与性能的影响[J].稀有金属, 2003, (27):3
    [63]柏振海,罗兵辉.钪在铝及铝合金中的作用[J].材料导报, 2003, 17 (7):6
    [64]王明星,岑昆.钪对铝锂合金时效硬化行为的影响[J].村料热处理学报, 2005, 26 (2):61
    [65]陈振华.变形镁合金.北京:化学工业出版社.2005,331-334
    [66]艾桃桃,冯小明,张会. AZ31镁合金压缩过程中的变形性能及组织演变[J].特种铸造及有色合金,2009,29(4):373
    [67]黄克智,肖纪美.材料的损伤断裂机理和宏微观力学理论[M].北京:清华大学出版社,1999:122-126
    [68] M.A. Meyers, Y.B.Xu,Q.Xue, et al. Microstructural evolution in adiabatic shear localization in stainless steel[J]. Acta Materialia,2003,51(5):1321-1322
    [69]毛萍莉,刘正,王长义,等.高应变速率下AZ31B镁合金的压缩变形组织[J].中国有色金属学报,2009,19(5):819
    [70] Y.B. XU, J.H. ZHANG, Y.L. BAI, et al. Shear Localization in Dynamic Deformation: Microstructural[J]. EvolutionMetallurgical and materials transactions A,2008,39A(Apr.):811-840
    [71]毛卫民,朱景川,郦剑,等.金属材料结构与性能[M].北京:清华大学出版社,2008:183
    [72]江慧丰,张青川,陈学东,等.位错与溶质原子间动态相互作用的数值模拟研究[J].物理学报, 2007, 56(6): 3388-3391
    [73] Y.B. Xu, W.L. Zhong, Y.J. Chen, et al. Shear localization and recrystallization in dynamic deformation of 8090 Al–Li alloy[J]. Materials Science and Engineering A, 2001, 299(1):287
    [74]刘翠云,沙桂英,邢芳超,等. Mg-8%Li合金的高速冲击变形行为.轻合金加工技术,2009,37(4):50-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700