含Sc镁合金组织和性能控制的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为轻质的工程结构材料,其在汽车、航空航天和其它领域的应用前景广阔。然而,现有镁合金的高温力学性能等还难以满足工业生产的需要。因此,有必要开发高性能的新型耐热镁合金。含Sc镁基合金作为一种潜在的高温镁合金,其研究正引起国内外的关注和重视。然而,国内外目前对于含Sc镁基合金的研究主要集中在相图的建立及完善上,对其组织和性能控制的研究还相对较少。因此,针对含Sc镁基合金的组织和性能控制展开研究,对于高性能含Sc镁基合金的开发及扩大镁合金的应用具有非常重要的理论指导意义和实际应用价值。
     本文基于Mg-Ce-Mn-Sc、Mg-Y-Mn-Sc和Mg-Gd-Mn-Sc三种含Sc镁基合金,利用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、差热分析(DSC)和性能测试等手段,研究了微量Zr、Sr和/或Ca以及T5热处理对含Sc镁合金显微组织和力学性能的影响,并得到了以下研究结果:
     1)Mg-3Ce-1.2Mn-0.9Sc镁合金主要由α-Mg、Mg12Ce和Mn2Sc三种相组成,在合金中单独和/或复合添加0.5wt%Zr及0.1wt%Sr对合金组织中合金相的类型没有影响,但可使合金的晶粒细化,其中以复合添加0.5wt%Zr+0.1wt%Sr的细化效果最好,其次依次是单独添加0.5wt%Zr和0.1wt%Sr。相应地,经Zr和/或Sr微合金化的Mg-3Ce-1.2Mn-0.9Sc镁合金在室温和高温下的抗拉性能及蠕变性能得到提高。此外,Mg-3Ce-1.2Mn-0.9Sc镁合金在T5处理过程会析出Mn2Sc强化相,也使合金的力学性能得到进一步的改善。
     2)Mg-4Y-1.2Mn-0.9Sc镁合金主要由α-Mg、Mg12Y和Mn2Sc三种相组成,在合金中单独和/或复合添加0.5wt%Zr及0.1wt%Sr对合金组织中合金相的类型没有影响,但可使合金的晶粒细化,其中以复合添加0.5wt%Zr+0.1wt%Sr的细化效果最好,其次依次是单独添加0.5wt%Zr和0.1wt%Sr。相应地,经Zr和/或Sr微合金化的Mg-4Y-1.2Mn-0.9Sc镁合金在室温和高温下的抗拉性能及蠕变性能得到提高。此外,Mg-4Y-1.2Mn-0.9Sc镁合金在T5处理过程会析出Mn2Sc和Mg12Y强化相,也使合金的力学性能得到进一步的改善。
     3)Mg-5Gd-1.2Mn-0.4Sc镁合金主要由α-Mg、Mn2Sc、Mg3Gd、Mg5Gd四种相组成,在合金中单独和/或复合添加0.5wt%Zr、0.1wt%Sr及0.3wt%Ca对合金组织中合金相的类型没有影响,但可使合金的晶粒细化,其中以复合添加0.3wt%Ca+0.1wt%Sr细化效果最好,其次依次是添加0.5wt%Zr、0.1wt%Sr的合金。相应地,经Zr、Sr和/或Ca微合金化的Mg-5Gd-1.2Mn-0.4Sc镁合金在室温和高温下的抗拉性能及蠕变性能得到提高。此外,Mg-5Gd-1.2Mn-0.4Sc镁合金在T5处理过程会析出Mn2Sc和Mg5Gd强化相,也使合金的力学性能得到进一步的改善。
     4)Mg-3Ce-1.2Mn-0.9Sc、Mg-4Y-1.2Mn-0.9Sc和Mg-5Gd-1.2Mn-0.4Sc镁合金的铸态和T5态力学性能存在较大的差异。在铸态和T5态条件下,Mg-4Y-1.2Mn-0.9Sc和Mg-5Gd-1.2Mn-0.4Sc镁合金均具有较高的室温和高温抗拉性能及蠕变性能,而Mg-Ce-Mn-Sc镁合金的力学性能相对较差。
Magnesium alloys are the lightest structural alloys commercially available and have great potential for applications in automotive, aerospace and other industries. However, the elevated temperature properties of the current magnesium alloys are relatively poor. Therefore, it is very necessary to develop new elevated magnesium alloys. The Sc-containing magnesium alloys are thought as the potential elevated temperature magnesium alloys, and their research have received much global attention. However, the research about the Sc-containing magnesium alloys presently focuses on the phase diagram, the investigation about the controlling of the microstructure and mechanical properties is very scarce. Therefore, the research about the controlling of the microstructure and mechanical properties for the Sc-containing magnesium alloys has very important theoretical significance and practicable value in developing the Sc-containing magnesium alloys with high properties and widening the application of magnesium alloys.
     Based on the three Sc-containing magnesium alloys of the Mg-Ce-Mn-Sc, Mg-Y-Mn-Sc and Mg-Gd-Mn-Sc, the effects of minor Sr, Zr and/or Ca, and T5 heat treatment on the microstructure and mechanical properties of the Sc-containing magnesium alloys were investigated by using optical microscope(OM), scanning electron microscope (SEM), transmission electron microscope(TEM), X-Ray diffraction(XRD) and properties testing, and the following research results were obtained:
     1) The Mg-3Ce-1.2Mn-0.9Sc magnesium alloy is mainly composed ofα-Mg, Mg12Ce and Mn2Sc phases. Adding 0.5wt%Zr and/or 0.1wt%Sr to the alloy does not cause the formation of any new phases but can refines the grains, and adding 0.5wt%Zr+0.1wt%Sr can obtain relatively high refining efficiency, followed by adding 0.5wt%Zr and 0.1wt%Sr, respectively. As a result, the tensile properties at room and high temperatures and creep properties for the Mg-3Ce-1.2Mn-0.9Sc alloy micro-alloyed with Zr and/or Sr are improved. In addition, the mechanical properties of the alloy are further improved by T5 treatment due to the precipitating of the Mn2Sc strengthening phase.
     2) The Mg-4Y-1.2Mn-0.9Sc magnesium alloy is mainly composed ofα-Mg, Mg12Y and Mn2Sc phases. Adding 0.5wt%Zr and/or 0.1wt%Sr to the alloy does not cause the formation of any new phases but can refines the grains, and adding 0.5wt%Zr+0.1wt%Sr can obtain relatively high refining efficiency, followed by adding 0.5wt%Zr and 0.1wt%Sr, respectively. As a result, the tensile properties at room and high temperatures and creep properties for the Mg-4Y-1.2Mn-0.9Sc alloy micro-alloyed with Zr and/or Sr are improved. In addition, the mechanical properties of the alloy are further improved by T5 treatment due to the precipitating of the Mn2Sc and Mg12Y strengthening phases.
     3) The Mg-5Gd-1.2Mn-0.4Sc magnesium alloy is mainly composed ofα-Mg, Mn2Sc, Mg3Gd and Mg5Gd phases. Adding 0.5wt%Zr, 0.1wt%Sr and/or 0.3 wt%Ca to the alloy does not cause the formation of any new phases but can refines the grains, and adding 0.3wt%Ca+0.1wt%Sr can obtain best refining efficiency, followed by adding 0.5wt%Zr and 0.1wt%Sr, respectively. As a result, the tensile properties at room and high temperatures and creep properties for the Mg-5Gd-1.2Mn-0.4Sc alloy micro-alloyed with Zr, Sr and/or Ca are improved. In addition, the mechanical properties of the alloy are further improved by T5 treatment due to the precipitating of the Mn2Sc and Mg5Gd strengthening phases.
     4) The difference in the as-cast and T5 mechanical properties for the Mg-3Ce -1.2Mn-0.9Sc, Mg-4Y-1.2Mn-0.9Sc and Mg-5Gd-1.2Mn-0.4Sc magnesium alloys is very obvious. Under the as-cast state or T5 treatment, the Mg-4Y-1.2Mn-0.9Sc and Mg-5Gd -1.2Mn-0.4Sc alloys have relatively higher tensile properties at room and high temperatures and creep properties than the Mg-3Ce-1.2Mn-0.9Sc alloy.
引文
[1]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002.
    [2] Abthoff J, GelseW.and Lang J,Proc.3rd International Magnesium Conferenee, Institute of Materials, London, 1997:193.
    [3]张津,章宗和等.镁合金及应用,北京:化学工业出版社,2004.
    [4]丁文江,袁广银.新型镁合金的研究开发与应用[N].有色金属加工, 2002,31(3):27-32.
    [5]刘海峰,侯峻,刘耀辉等.压铸镁合金高温蠕变研究现状及进展[J].铸造,2002,51(6): 330-335.
    [6]刘子利,丁文江,袁广银等.镁铝基耐热铸造镁合金的进展[M].机械工程材料,2001, 25(11):1-4.
    [7] Yuan Guang-yin, Sun Yang-shan, Ding Wen-jiang. Effects of Bismuth and Antimony Additions on the Microstructure and Mechanical Properties of AZ91 Magnesium Alloy. Materials Science and Engineering A, 2001, A308:38-44.
    [8]闵学刚,朱旻,孙扬善等. Ca对AZ91合金显微组织及力学性能的影响[J].材料科学与工艺, 2002,10(1):93-96.
    [9]闵学刚,孙扬善,杜温文等. Ca、Si和RE对AZ91合金的组织和性能的影响[J].东南大学学报(自然科学版),2002,32(3):1-6.
    [10] Qudong Wang, Wenzhou Chen, Wenjiang Ding, et al. Effect of Sb on the Microstructure and Mechanical Properties of AZ91 Magnesium Alloy. Metallurgical and Materials Transactions A, 2001,32A:787-794.
    [11] G Pettersen, H Westengen, R Hier, et al. Microstructure of a Pressure Die Cast Magnesium -4wt%Aluminum Alloy Modified with Rare Earth Additions.Materials Science and EngineeringA, 1996, 207A:115-120.
    [12] Kojima Y. Platfom seienee and teehnology for advanced magnesium alloy [J]. Mater Sci Forum,2000, 350-351:3-12.
    [13]关绍康,王迎新.汽车用高温镁合金的研究进展[J].汽车工艺与材料,2003,(4):3-8.
    [14]张新明,彭卓凯,陈健美,邓运来.耐热镁合金及其研究进展[J].中国有色金属学报,2004, 14(9):1443-1450.
    [15]张诗昌,魏伯康,林汉同.耐热高温压铸镁合金的发展及研究现状[J].中国稀土学报,2003, 21(增刊):150-152.
    [16] I.P.Moreno, T.K.Nandy, J.W.Jones, J.E.Allison, T.M.Pollock. Microstructural stability and creep of rare-earth containing magnesium alloys. Scripta Materialia, 2003, 48:1029-1034.
    [17] M.S.Dargusch, K.Pettersen, P.Bakke, K.Nogita, A.L.Bowles and G.L.Dunlop. Microstructu- re and mechanical properties of high pressure die cast magnesium alloy AE42 with 1% strontium. International Journal of Cast Metals Research, 2004, 17(3):170-173.
    [18] B.R.Powell, V.Rezhets, M.P.Balogh, R.A.Waldo. THE relationship between microstructure and creep behavior in AE42 magnesium die casting alloy. Magnesium Technology, 2001:175.
    [19] Per Bakke, Hakon,Westengen. Die casting for high performance-Focus on alloy development. Advanced Engineering Materials, 2003,12:879-885.
    [20] A.A.Luo. Recent magnesium alloy development for elevated temperature applications.International Materials Reviews, 2004, 49(1):13-30.
    [21] Mihriban O.Pekguleryuz and A.Arslan Kaya. Creep resistant magnesium alloys for powertrain applications. Advanced Engineering Materials, 2003,(12)5:866-878.
    [22] G.Y. Yuan, Z.L. Liu, Q.D. Wang, W.J. Ding. Microstructure refinement of Mg–Al–Zn–Si alloys[M].Materials Letters, 2002 ,56:53– 58.
    [23] Emley E F. PrinciPles of Magnesium Teehnology[M]. NeW York:Pergamon Press, 1966,126-127.
    [24] B.L. Mordike. Creep-resistant magnesium alloys[J]. Materials Science and Engineering [J]. 2002, 324: 103-112
    [25] B. Smola, I. Stulikova, F. V. Buch, et al. Structural aspects of high performance Mg alloys design[J]. Materials Science and Engineering A, 2002,324: 113-117
    [26]余强国,翁国庆.稀土镁合金的发展、应用及开发[J].稀有金属与硬质合金,2006,34(3):36-38
    [27]李德辉,董杰,曾小勤等.高性能稀土镁合金研究进展[J].材料导报,2005,19(8):51-54
    [28]黎业生,董定乾,吴子平.稀土镁合金的研究现状及应用前景[J].轻合金加工技术,2006,34(4):1-6
    [29]王月.含钪铝合金的研究进展[J].上海金属, 2003, 25(1): 36-40
    [30]陈显明,潘青林,周昌荣等.微量钪对Al-Mg-Mn合金组织与性能的影响[J].稀有金属, 2003, 27(3): 403-405
    [31]李绍禄,潘青林,陈显明. Sc和Ti复合微合金化对Al-Mg合金组织与性能的影响[J].兵器材料科学与工程, 2003, 26(1): 11-15
    [32] Y. A. Filatov, V. I. Yelagin, V. V. Zakharov. New Al-Mg-Sc alloys[J]. Materials Science and Engineering A, 2000, 280: 97-103
    [33]朱大鹏,尹志民,滕浩等.微量Sc和Zr对Al-Mg-Mn合金组织和性能的影响[J].宇航材料工, 2004, (6): 45-49
    [34] J.Royset, N.Ryum. Scandium in aluminum alloys[J].International Materials Reviews,2005, 50:19-44
    [35]王斌,易丹青,罗文海等.微量Sc元素对AZ91镁合金组织性能的影响[J].铸造, 2005, 54(5): 459-461
    [36]李继强,樊自田,王元庆. AZ91镁合金增强改性研究进展[J].材料导报, 2006, 20(10): 80-83
    [37] S.J.Yao, D.Q.Yi, S.Yang,et al. Effect of Sc on the microstructure and corrosion properties of AZ91 alloy[J]. Materials Science Forum, 2007, 546-549:139-142
    [38] S.C. Wang, C.P. Chou. Effect of adding Sc and Zr on grain refinement and ductility of AZ31 magnesium alloy[J]. Journal of Materials Processing Technology, 2007(In Press)
    [39] B. L. Mordike. Development of highly creep resistant magnesium alloys[J]. Journal of Materials Processing Technology, 2001, 117:391-394.
    [40] F. V.Buch J. Lietzau, B.L. Mordike,et al. Development of Mg-Sc-Mn alloys[J]. Materials Science and Engineering A, 1999, 263: 1-7
    [41] J. Grobner, R. Schmid-Fetzer. Selection of promising quaternary candidates from Mg-Mn- (Sc, Gd, Y,Zr) for development of creep-resistant magnesium alloys[J]. Journal of Alloys and Compounds, 2001, 320: 296-301
    [42] A. Pisch, J. Grobner, R. Schmid-Fetzer. Application of computational thermochemistry to Al and Mg alloy processing with Sc additions[J]. Materials Science and Engineering A, 2000, 289:123-129
    [43] B.L. Mordike, I. Stulikova and B. Smola. Mechanisms of Creep Deformation in Mg-Sc-Based Alloys[J]. Metallurgical and Materials Transactions A, 2005,36: 1729-1736
    [44] Stulikova, B. Smola, J. Pelcova,et al. Phase t ransformation in creep resistant Mg-Y-Nd-Sc-Mn alloy [J]. Materrials Science, 2005, 96:823-829
    [45]蒋浩,张新明,陈健美等. Mg-5Gd-1Mn-0.3Sc合金铸态的显微组织及其异常热处理行为[J].金属热处理, 2007, 32(3): 8-12
    [46]熊创贤,张新明,蒋浩等.热处理对Mg-Y-Mn-Sc合金显微组织演变的影响[J].特种铸造及有色合金, 2006, 26(3): 129-132
    [47]陈健美,张新明,熊创贤等.添加Mn、Sc元素对Mg-9Gd-4Y合金组织和力学性能的影响[J].材料热处理学报, 2006, 27(2): 42-46
    [48]陈健美,张新明,熊创贤等. Mg-Y-Mn-Sc合金的铸态组织及其热处理行为[J].金属热处理, 2006, 31(7): 53-57
    [49] A.P.Drnschitz, E.R.Showalter, B.M.Joseph, et al. Evolution of Structural and High-temperature Magnesium Alloys. SAE Technological Paper, 2002-01-0080.
    [50] I.P.Moreno, T.K.Nandy, J.W.Jones, J.E.Allison, T.M.Pollock. Microstructure characterization of a die-cast magnesium-rare earth alloy. Scripta Materialia, 2001,45:1423-1429.
    [51] American Society for Metals. Metals Handbook. Ohio: Metals Park, 1973.
    [52] Binary Alloy Phase Diagrams Volume 1. American Society for Metals Park, Ohio 44073, 1986.
    [53]中国机械工程学会.铸造手册,第三卷[M].北京:机械工业出版社, 1997: 9-11.
    [54]王迎新,关绍康,王建强. RE对Mg-8Zn -4A1 -0.3Mn合金组织的影响[J].中国有色金属学报,2003,13(3):616-620.
    [55] Caceres C H, Rovera D M. Solid solution strengthening in concerntrated Mg-Al alloy[J].Journal of Light Metals, 2001,1:151-156.
    [56]长崎诚三,平林真,刘安生编著.二元合金状态图集.冶金工业出版社,2004.
    [57] Celotto S, Bastow T J. Study of precipitation in aged binary Mg-Al and ternary Mg-Al-Zn alloys using 27Al NMR spectroscopy [J].Acta materialia,2001,49:41-45.
    [58]邹宏辉,曾小勤等.镁合金的强韧化进展[J]..机械工程材料,2004,28(5):1-3.
    [59]李松瑞,周善初.金属热处理。中南大学出版社,2003.
    [60] Easton Mark, StJohn David.Grain Refinement of Aluminum Alloys[J].. Metallurgical and Materials Transactions A , 1999 , 30A(6) :1613~1633.
    [61]刘子利,沈以赴.铸造镁合金的晶粒细化技术[J]..材料科学与工程学报:22(1):146-149.
    [62]马图哈.非铁金属的结构与性能[M].北京:科技出版社,1999.
    [63] Lee Y. C, Dahle A.K, St John D. H.Grain refinement of magnesium[J].. Magnesium Technology 2000:211~218.
    [64]秦敬玉,边秀芳,韩秀军等.变形Al-Sr中间合金的遗传效应[J].材料研究学报,1999,13(2):162-166.
    [65]边秀房,刘相法,王先娥等.Al-Sr中间合金变质效果的遗传效应[J].金属学报,1997,33(6):609-613.
    [66] Zhonghuang Zhang,Xiufang Bian,Yan Wang. Microstructural characterization of a rapidly solidified Al-Sr-Ti alloy[J] .Materials Research Bulletin ,2002, (37): 2303-2314.
    [67] Zhonghuang Zhang,Xiufang Bian,Yan Wang. Growth of dendrites in a rapidly solidified Al-23 Sr alloy[J]. .Journal of Crystal Growth ,2002 ,(243):531-538
    [68] Luo Z P , Song D Y, Zhang S Q. Effect of heat treatment on the stability of the quasi crystal in a Mg-Zn-Zr-Y alloy[J ] . Materials Let ters, 1994 ,21 (1) :85 - 88.
    [69] Watanabe H , Mukai T. High strain rate super plasticity at low temperature in a ZK61 magnesium alloy produced by powder metallurgy[J ]. Scripta Materialia , 1999 ,41 (2) :209 - 213.
    [70] Watanabe H , Mukai T. Realization of highst rain rate super plasticity at low temperatures in a Mg-Zn-Zr alloy[J ] . Materials Science and Engineering , 2001, A307 :119 - 128.
    [71] M. Aljarrah, M. Medraj. Thermodynamic modelling of the Mg–Ca, Mg–Sr, Ca–Sr and Mg–Ca–Sr systems using the modified quasichemical model[J ] . Computer Coupling of Phase Diagrams and Thermochemistry 2008,A310: 240–251
    [72]刘生发,黄尚宇,徐萍等.Ce对AZ31镁合金铸态组织细化的影响[J].金属学报,2006,A234:609-613.
    [73] J.Groebner,R.Schmid-Fetzer.Seleetion of Promising quarternary candidates from Mg-Mn-(Sc,Gd,Y,andZr)for development of creep-resistant magnesium alloys[J].Journal of Alloys and Compounds,2001:296-301.
    [74] Buch F V,Mordike B L, Pisch A, eta. Development of Mg-Mn-Sc alloys [J].Mater. Sc.i Eng., 1999, A 263: 1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700