Sc、Sb对Mg-Gd-Y合金组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金较低的高温力学性能严重限制了其广泛应用。本文以Mg-Gd-Y基合金为基础,利用光学显微镜(OM)、X-射线衍射仪(XRD)、带能谱分析(EDS)的扫描电子显微镜(SEM)、透射电子显微镜(TEM)、差动分析仪(DSC)、拉伸实验等检测分析技术,研究Sc、Sb元素对Mg-7Gd-3Y基合金组织和力学性能的影响。
     对合金铸态组织研究结果表明:Mg-7Gd-3Y-xSc(x=0,0.5,1)合金的铸态显微组织由等轴α-Mg和主要沿晶界分布的半连续析出相组成;合金组成相为а-Mg、Mg24(Y,Gd)5和Mg5(Gd,Y),在合金中添加Sc后没有生成新相,但合金中的析出相含量有着明显的增多,并在晶界处聚集长大;SEM分析结果表明:Mg-7Gd-3Y-0.5%Sc合金析出相中均含有一定量的Sc,其中,Sc在Mg24(Y,Gd)5相中的含量远大于Sc在Mg5(Gd,Y)相中的含量。在Mg-7Gd-3Y合金加入Sc能提高铸态合金的室温和200℃的抗拉强度和屈服强度,Mg-7Gd-3Y-1Sc合金的室温抗拉强度和屈服强度分别达到了240和180MPa,200℃时的抗拉强度和屈服强度分别为215和149Mpa。在Mg-7Gd-3Y合金中加入Sc会提高析出相熔点和合金的熔化温度;DSC分析表明:低熔点共晶相的溶解温度从411.6℃提高到431.1℃;Mg5(Gd,Y)相向а-Mg中的溶解温度从553.1℃提高到554.1℃,合金的最终熔化温度也从637.5℃提高到639.0℃。
     合金的固溶处理结果表明:在525℃进行固溶时发现,合金Mg-7Gd-3Y固溶处理10h后枝晶结构基本消除,但在晶内及晶界上仍有部分未溶解的富RE相,随着时间的延长,这些富RE相会逐渐变小,但很难完全溶解;随着Sc的加入,合金在固溶处理时,未溶解的富RE相明显增多;在540℃进行固溶处理时,Mg-7Gd-3Y-0.5Sc和Mg-7Gd-3Y-1%Sc两种合金的晶粒大小随固溶时间的延长发生了异常变化现象,表现为固溶处理的前2-8h晶粒由大变小,随后晶粒由小变大,这一变化与合金的固溶硬度曲线分析结果一致。Mg-7Gd-3Y-xSc在525℃/10h固溶处理后进行的时效(225℃)处理表明:在时效过程中,合金基体中会有大量的析出相析出,随着时间的延长,析出相的含量也相应地增加,合金中的时效析出相会优先在未固溶相和晶界处析出;而随着Sc含量的增加,这种优先析出倾向更加明显;在合金中添加Sc能够提高提高合金的时效峰值硬度及合金的室温和200℃力学性能; Mg-7Gd-3Y-1Sc合金的时效峰值时的室温抗拉强度和屈服强度分别为254MPa和185MPa,200℃时的抗拉强度和屈服强度分别为228MPa和159Mpa;TEM分析结果表明,合金在时效过程中析出相的长条状Mg24(Y,Gd)5相和颗粒状的Mg5(Gd,Y)相是合金力学性能的到提高的原因。
     与金属型铸造对比,挤压铸造获得的组织均匀,且晶粒更加细小。在Mg-7Gd-3Y合金中加入Sb后,合金的晶粒得到了细化,析出相的明显增多并在晶界三角处聚集长大;Mg-7Gd-3Y-xSb(x=0,1)合金合金在525℃固溶处理结果表明:在固溶处理开始后,晶间网状共晶相快速地重新融入基体,取而代之的是在其原来的位置上形成的弥散的点状颗粒相;当固溶时间达到10h,晶间组织完全溶解到基体中,颗粒状析出相变少或消失且合金晶粒都发生了一定的晶粒粗化;在Mg-7Gd-3Y合金中加入Sb后,晶粒的粗化现象降低。在Mg-7Gd-3Y合金中加入Sb能提高合金的室温及200℃的抗拉强度和屈服强度; Mg-7Gd-3Y-1Sb合金时效时效峰值时的室温抗拉强度和屈服强度分别为260MPa和194MPa,200℃时的抗拉强度和屈服强度也达到了244MPa和181MPa。
The poor mechanical properties of magnesium alloys at high temperatures severely limit their applications. In this paper, Sc and Sb elements were introduced into the existing Mg-Gd-Y system alloys to further improve their microstructures and mechanical properties both at room temperatures and elevated temperatures. Optical microscopy (OM), X-ray diffraction(XRD), scanning electron microscopy(SEM), transition electron microscopy(TEM), differential scanning calorimeter(DSC)and tensile test were used to study the microstructures, mechanical properties, fracture behavior, plastic deformation behavior and processing parameters of the Mg-Gd-Y based alloys with different compositions.
     The results indicate that the as-cast microstructure of Mg-7Gd-3Y-xSc(x=0,0.5,1) are mainly composed of a lot of semi-continuous network grain eutectics and granular phase ofα-Mg, and the eutectics were made up of Mg5(Gd,Y) and Mg24(Y,Gd)5. With increasing Sc content, the volume fraction of intermetallic phases increased. The SEM result show that all precipitates of Mg-7Gd-Y-0.5Sc alloy contained some Sc, and the Sc content in Mg24(Y,Gd)5 phase was more than its in Mg5(Gd,Y) phase. With increasing Sc content, the tensile properties of the die cast alloys increased. The Mg-7Gd-3Y-0.5Sc alloy exhibited maximum tensile strength and yield strength, and the values were 240MPa and 180MPa at room temperature, and 215MPa and 149MPa at 250℃, respectively. The results of DSC show that the addition of Sc to Mg-7Gd-3Y alloys could improve the solution point of precipitates and the melting temperature of alloys. The solution point of low melting eutectic phase enhanced from 411.6℃to 431.1℃with Sc additions, the solution temperature of Mg5(Gd,Y) intoα-Mg added from 553.1℃to 554.1℃, and the melting point changed from 637.5℃to 639℃.
     The result of solution treatmen shows that the dendrite branches of Mg-7Gd-3Y solid solution disappeared after the solution treatmen at 525℃/10h, and the rich RE precipitations became smaller, but hardly cannot disappeared completely, and with the Sc increased, there were more rich RE precipitations retained. The grain size of Mg-7Gd-3Y-0.5Sc and Mg-7Gd-3Y-1Sc behaved abnormally during solution treatments at 540℃. The gain size evolved from large to small during the beginning 2-8 hours and then to the coarse, and the abnormal behavior was in consistent with the outcome of the solution hardness curve.The aging treatment (225℃) after the solution treatmen at 525℃/10h results show that, during the aging process, a large number of precipitates precipitated with the time increased, and the precipitates were mainly distrubted along the gain boundaries and non-solution phase. And with Sc increased, the behavior became more obviously. With increasing Sc content, the age hardening response of the alloys enhanced, tensile properties increased. The Mg–7Gd–3Y-1Sc alloy exhibited maximum tensile strength and yield strength at aged-peak hardness, and the values were 254MPa and 185MPa at room temperature, and 228MPa and 159MPa at 200℃, respectively.
     The strong peak age hardening was attributed to the precipitation of the Mg24(Gd,Y)5 and Mg5(Gd,Y). The microstructure of Mg-7Gd-3Y alloys were more regularity and the gains were more fine by the squeeze casting through the contrast experiment of the metal mould casting. The solution treatmen result of Mg-7Gd-3Y-xSb(x=0,1) shows that the continuous network grain boundaries disappeared quikly during the solution treatmen process, and a lot of disperse particle phases remain. After 10h solution treatmen, the grain boundaries disappeared compeletely, and the particle phases became smaller or diappeared, and the grain size coarsened, and with the additions of Sb, the coarsening behavior of Mg-7Gd-3Y weakened. The results show that the addition of Sb to the Mg–7Gd-3Y alloy could reduce the grain size slightly, and increase precipitations along the triangular gain boundry. The Mg-7Gd-3Y-1Sb alloy exhibited notably age-hardening behaviour and the higher mechanical property than that of Mg-7Gd-3Y alloy. The ultimate tensile strength and yield strength of Mg–7Gd–3Y-1Sb alloy in the peak aged hardness are 260 MPa and 194MPa at room temperature, and 244 MPa and 181MPa at 200℃.
引文
[1]彭晓东,李玉兰,刘江.轻合金在汽车上的应用.机械工程材料, 1999, 23(2):1-4.
    [2] Brown B. 49th annual IMA world magnesium conference. Light Metal Age, 1992, 50(5-6):21-24.
    [3] Robert B, Aronson. Materials for the next generation vehicle. Manufacturing Engineering, 1999, 123(2):94-102.
    [4]王渠东,吕宜振,曾小勤,等.稀土在铸造镁合金中的应用.特种铸造及有色合金, 1999, 1 (35):40-43.
    [5]张洪杰,孟健,唐定骧.高性能镁-稀土结构材料的研制、开发与应用.中国稀土学报, 2004, 22(1):40-47.
    [6]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社, 2002, 16-28.
    [7]陈振华,严红革,陈吉华,等.镁合金.北京化学工业出版社, 2004, 10-203.
    [8]中南矿业学院物理化学教研室编.物理化学(上册) .冶金工业出版社, 1983.
    [9]张津,章宗和等编著.镁合金及应用.北京:化学工业出版社, 2004, 13 (2):277-288.
    [10] Asm International. Magnesium and magnesium Alloy. OH:Metal Park, 1999.
    [11] Buck R S. Magnesium Products Design. New York:Marcel Dekker INC, 1987.
    [12]徐日瑶.冶金学.北京:冶金工业出版社, 1981.
    [13] Boyrt H, Gall E. Metals Handbook. Ohio:American Society for Metals, 1985.
    [14] Arne K, Dahle, Young C, Lee, et al. Development of the as-cast microstructure in magnesium aluminium alloys. Journal of Light Metals, 2001, 1(1):61-72.
    [15] Zhan Z, Alain C. An investigation of the properties of Mg-Zn-Al alloys. Scripta Materialia, 1998, 39(1):5-53.
    [16] Pekguleryuz M O, Magnesium alloys. Some potentials for alloy development.Journal of Light Metals, 1992, 42(12):679-686.
    [17] Wang R M, Eliezer A. An investigation on the microstructure of an AM50 magnesium alloy. Materials Science and Engineering A, 2003, 335:201-207.
    [18]黄正华,郭学峰,张忠明,等. Si对AZ91镁合金显微组织与力学性能的影响.材料工程, 2004, 6:28-32.
    [19]张诗昌,段汉桥.主要合金元素对镁合金组织和性能的影响.铸造, 2001, 50(6):310-314.
    [20] Yuan G Y, Liu Z L, Wang Q D, et al. Microstructure refinement of Mg–Al–Zn–Si alloys.Materials Letters, 2002, 56:53-58.
    [21]张诗昌,魏伯康,林汉同.耐热高温压铸镁合金的发展及研究现状.中国稀土学报, 2003, 21(增刊):150-52.
    [22]杨智超.轻量化新镁合金材料之发展.工业材料杂志, 1992, 198:81-85.
    [23] Jae J K, Do H, Kim K S, et al. Modification of Mg2Si morphology in squeeze cast Mg-Al-Zn-Si alloy by Ca or P addition. Scripta Materialia, 1999, 41(3):333-340.
    [24]宋海宁,袁广银,王渠东,等.耐热Mg-Zn-Si-Ca合金的显微组织和力学性能.中国有色金属学报, 2002, 12(5):956-960.
    [25]张新明,彭卓凯,陈健美,等.耐热镁合金及其研究进展.中国有色金属学报, 2004, 14(9):1443-1450.
    [26]孙丰泉,严有为.抗蠕变耐热镁合金的研究进展.铸造设备研究, 2004, 3:17-18.
    [27]张静,潘复生,郭正晓,等.含锆镁合金系中的合金相.兵器材料科学与工程, 2002, 25 (6):50-56.
    [28] Ma Q, StJohn D H, Frost M T. Heterogeneous nuclei size in magnesium–zirconium alloys. Scripta Materialia, 2004, 50:1115-1119.
    [29]有色金属及其热处理编写组.有色金属及其热处理.北京:国防工业出版社, 1983.
    [30] Pekguleryuz M O, Avedesian M M.Mg Alloying, Some potential for Alloy Develoment. Light Metal, 1992, 42(12):679-686.
    [31]孙扬善,翁坤忠,袁广银. Sn对镁合金显微组织和力学性能的影响.中国有色金属学报, 1999, 9(1):55-58.
    [32]翁坤忠,孙扬善,袁广银. Bi对铸造镁合金组织和力学性能的影响.铸造, 1998, 5:5-7.
    [33]袁广银,孙扬善,王震. Sb低合金化对Mg-9Al基合金显微组织和力学性能的影响.中国有色金属学报, 1999, 9(4):781-783.
    [34]关绍康,王迎新.高温镁合金的研究进展及其在汽车工业中的应用.机械工程材料, 2003, 27 (8), 1-4.
    [35]郭旭涛,李培杰.稀土镁合金在航空发动机零部件中的应用.材料热处理学报(增刊), 2002, 22(10):115-118.
    [36] Erickson S, Soper J. Magnesium stands on its own. Machine Design, 1995, 67(18):99-104.
    [37]马燕合.我国稀土应用开发现状及其展望.材料导报, 2000, 14(1):3-5.
    [38] Humble P. Towards A cheap resistant magnesium alloy. Materials Forum, 1997, 21:45-56.
    [39]马庆波,刘胜新,李庆奎,等.锑和混合稀上对AZ31镁合金高温变形行为的影响.机械工程材料, 2007,31(4):82-84.
    [40] Pekguleryuz M, Adedesian M M. Magnesium alloying, some potential for alloy development. Light Alloying, 1992, 42 (12):679-686.
    [41]刘子利,潘青林,陈照峰,等. Sb对AE41镁合金耐热性能的影响.材料研究学报, 2006, 20(2):186-190.
    [42] Thaddeus B M. Binary alloy phase diagrams. Ohio: American Society for Metals, Metals Park, 1987.
    [43]徐光宪.稀土.北京:冶金出版社, 1999.
    [44] Suzuki M, Kimura T, Koike J, et al. Effects of zinc on creep behavior and deformation substructures of Mg-Y alloy. Mater Sci Forum, 2003, 419(422):473-478.
    [45] Hilditch T, Nie J F, Muddle B C, et al. Magnesium alloys and their applications. Werkstoff-Informationsges, Frankfurt, 1998, 339-344.
    [46] Mordike B L. Creep-resistant alloys. Mater Sci Eng A, 2002, 224:103-112.
    [47] Mordike B L, Stulikova I. Proceedings of the international conference on metalliclight Alloys. Institution of Metallurgists, London, 1983, 146-153.
    [48] Li D Q, Wang Q D, Ding W J. Characterization of phases in Mg–4Y–4Sm–0.5Zr alloy processed by heat treatment. Materials Science and Engineering A, 2006 (428):295-300.
    [49] Zheng M Y, Xu S W, et al. Superplasticity of Mg–Zn–Y alloy containing quasicrystal phase processed by equal channel angular pressing. Materials Letters, 2007, (61):4406-4408.
    [50] Xu D K, Liu L, Xu Y B, et al. The fatigue crack propagation behavior of the forged Mg–Zn–Y–Zr alloy. Journal of Alloys and Compounds 2007, (431):107-111.
    [51] Guo X F, Remennik S G, Xu C J. Development of Mg–6.0%Zn–1.0%Y–0.6%Ce–0.6%Zr magnesium alloy and its microstructural evolution during processing. Materials Science and Engineering A, 2007, 367:864-869.
    [52] Morgan J E, Mordike B L. Proceedings of the 6th International Conference on Strength of Metallic Alloys (ICSMA6). Pergamon, Melbourne, Australia, 1982, 643-648.
    [53] Suzuki M, Kimura T, Koike J, et al. Effects of zinc on creep strength and deformation substructures in Mg–Y alloy. Materials Science and Engineering A, 2004, (387–389):706-709.
    [54] Smola B, Stulikova I, Ocenasek V, el at. Annealing effects in Al–Sc alloys. Materials Science and Engineering A, 2006, 1-5.
    [55] Bastow T J, Celotto S. Clustering and formation of nano-precipitates in dilute aluminium and magnesium alloys. Materials Science and Engineering C, 2003, (23):757-762.
    [56] R?yset J, Ryum N. Scandium in aluminium alloys. International Materials Reviews, 2005, 50(1):19-44.
    [57] Buch V F, Lietzau J, Mordike B L, et al. Development of Mg-Sc-Mn alloys. Mater Sci Eng A, 1999, (263):1-7.
    [58] Mordike B L, Stulikova I, Smola B. Mechanisms of creep deformation in Mg-Sc–based alloys. Metallurgical and Materials Transactions A, 2005, 36:1729-1736.
    [59] Grobner J, Schmid-Fetzer R.Selection of promising quaternary candidates from Mg-Mn-(Sc,Gd,Y,Zr) for development of creep-resistant magnesium alloys. Journal of Alloys and Compouds, 2001, (320):296-301.
    [60] Kamado S, Kitaguchi Y, Harima Y ,et al. High temperature deformation characteristic and forgeability of Mg-heavy rare earth element-Zr alloys. Keikinzoku/Journal of Japan Institute of Light Metals, 1998, 48(4):168-173.
    [61] Kiryuu M, Okumura H, Kamado S, et al. Corrosion resistence of heat resistant magnesium alloys containing heavy rare earth elements. Keikinzoku/Journal of Japan Institute of Light Metals, 1996, 48(4):174-178.
    [62] Vostry P, Smola B. Microstructure evolution in isochronally heat treated Mg-Gd alloy. Phys Stat Sol, 1999, A175:491-497.
    [63] Peng Q M, Wu Y M, Fang D Q, et al. Microstructures and properties of Mg–7Gd alloy containing Y. Journal of Alloys and Compounds, 2007, 430:252-256.
    [64] Peng Q M, Wang J L, Wu Y M, et al. Microstructures and tensile properties of Mg–8Gd–0.6Zr–xNd–yY (x+y=3, mass%)alloys. Materials Science and Engineering A , 2006 (433):133-138.
    [65] Wang J, Meng J, Zhang D P, et al. Effect of Y for enhanced age hardening response and mechanical properties of Mg–Gd–Y–Zr alloys. Materials Science and Engineering A, 2007, 456:78-84.
    [66] He S M, Zeng X Q , et al. Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. Journal of Alloys and Compounds, 2007, 427:1-5.
    [67] Yan Gao. Behavior of Mg–15Gd–5Y–0.5Zr alloy during solution heat treatment from 500 to 540℃. Materials Science and Engineering A, 2007, 459:117-123.
    [68] Nie J F, Gao X, Zhu S M. Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn. Scripta Mater, 2005, 53:1049-1053.
    [69] Yamasaki M, Anan T, Yoshimoto S, et al. Mechanical properties of warm-extruded Mg–Zn–Gd alloy with coherent 14H long periodic stacking ordered structure precipitate. Scripta Mater, 2005, 53:799-803.
    [70] Liu X B, Chen R S, Han E H. Effects of ageing treatment on microstructures and properties of Mg-Gd-Y-Zr alloys with and without Zn addition. Journal of Alloys and Compounds, 2007, 87:533-540.
    [71] Zheng K Y, Dong J, Zeng X Q, et al. Precipitation and its effect on the mechanical properties of a cast Mg-Gd-Nd-Zr alloy. Materials Science & Engineering A, 2007, 11:80.
    [72] Stulikova I, Smola B, Buch F von, et al. Mechanocal properties and creep of Mg -rare earth–Sc-Mn squeeze cast alloys. Mat-wiss u, Werkstofftech, 2003, 34:102-108.
    [73] Peng Q M, et al. Age hardening and mechanical properties of Mg–Gd–Er alloy. Journal of Alloys and Compounds, 2007, 76:323-328.
    [74] Drits M E, Padezhnova E M, Muratova E V. Relationship between heat resistant and composition and structural stste of alloy of systems Mg-Y,Mg-Dy,and Mg-Sm. Russian Metally, 1984, 1:195-201.
    [75] Rokhlin L L, Nikitiina N I. Study of the recovery in aged Mg-Dy alloys. Metallovedenie i Termicheskaya Obrabotka Metallov, 2001, 5:34-38.
    [76] Lorimer G W, Apps P J, Karimzadeh H, et al. Improving the Performance if Mg-Rare Earth Alloys by the Use of Gd or Dy Additions. Materials Science Forum, 2003, (279):419-422.
    [77] Xu Y, Chumbley L S, Weigelt G A, et al. Analysis of inter-diffusion of Dy, Nd, and Pr in Mg. Mater Res, 2001, 16(11):3287-3295.
    [78] Negishi Y, Iwasawa S, Kamado S, et al. Effect of yttrium and neodymium additions on ageing characteristics and high temperature tensile properties of Mg-10massGd and Mg-10massDy alloys. Japan Institute Light Metals, 1994, 44(10):549-554.
    [79] Li D H, Dong J, Zeng X Q, et al. Characterization ofβ″precipitate phase in a Mg–Dy–Gd–Nd alloy. Materials Characterization, 2007, 58:1025-1028.
    [80] Cahn R W,丁道云.非铁合金的结构和性能.北京:科学出版社, 1999, 129-176.
    [81] Li D Q, Wang Q D, Ding W J. Effects of heat treatments on Microstructure and mechanical. Materials Science and Engineering A, 2007, (448):165-170.
    [82] Guo Y C, Li J P, Li J S, et al. Mg–Gd–Y system phase diagram calculation and experimentalclarification. Journal of Alloys and Compounds 2006, (241):216-223.
    [83] Vostry P. Electrical resistivity changes due to solution treatment of magnesium-rare earth binary alloys. Z Metallkd, 1999, 90(11):888-891.
    [84]诺维柯夫,王子佑译.金属热处理理论.北京:机械工业出版社, 1987.
    [85]蒋浩,张新明,陈健美,等. Mg-Gd-Mn-Sc合金的显微组织及其异常的热处理行为.金属热处理, 2007, 32(3):8-12.
    [86] Wang Q D, Chen W Z, Ding WJ, et al. Effect of Sb on the microstructure and mechanical properties of AZ91D magnesium alloy. Metallurgical and Materials Transactions A, 2001, 32A(3):185-192.
    [87]元效刚,陈俊华,江旭彪. Sb变质共晶硅的异质形核.特种铸造及有色合金, 2000, (1):13-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700