挤压变形Al-0.8%Mg-0.6%Si-xSc合金的低周疲劳行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金以其优异的性能,受到越来越多的重视,广泛应用在航空航天、汽车等工业部门。为了进一步改善铝合金的性能,扩大铝合金的应用范围,本文选择稀土元素Sc作为铝合金中的合金化元素,研究了微量元素Sc和固溶+时效(T6)处理对铝合金疲劳变形行为的影响。
     根据合金成分配比,熔炼Al-0.8%Mg-0.6%Si-x%Sc铝合金,然后进行浇注、热挤压,最后加工成实验所需的疲劳试样,对部分试样进行T6处理,然后进行显微组织观察和低周疲劳实验。显微组织观察结果表明,加入一定量的稀土元素Sc可以有效地细化挤压变形Al-0.8%Mg-0.6%Si-x%Sc合金的显微组织,经过T6处理后,除了含0.2%Sc合金的晶粒尺寸变化不大外,其余合金的晶粒尺寸明显减小。低周疲劳实验结果表明,挤压(F)态Al-0.8%Mg-0.6%Si-x%Sc合金在疲劳变形过程中,可表现为循环应变硬化,循环应变硬化的程度主要取决于稀土元素Sc的含量以及外加总应变幅的高低,T6态Al-0.8%Mg-0.6%Si-x%Sc合金在疲劳变形过程中,除了表现为循环应变硬化外,还可表现为循环稳定和循环应变软化;F态和T6态挤压变形Al-0.8%Mg-0.6%Si-x%Sc合金的塑性应变幅、弹性应变幅与断裂时的载荷反向周次之间表现为线性行为,分别服从Coffin-Manson和Basquin公式,其中,T6态挤压变形Al-0.8%Mg-0.6%Si-0.2%Sc合金的塑性应变幅与断裂时的载荷反向周次之间呈双线性关系。低周疲劳断口形貌分析结果表明,在低周疲劳加载条件下,F态和T6态挤压变形Al-0.8%Mg-0.6%Si-x%Sc合金的疲劳裂纹均是以穿晶方式萌生于疲劳试样表面,并以穿晶方式扩展。
Aluminum alloys are concerned by more and more people due to its excellent properties, and have been widely applied in aeronautics and astronauts, automobile industries, etc. For further improvement of the properties of aluminum alloys, expanding the applied scope of aluminum alloys, rare earth element Sc has been choosen as the alloying element added into the aluminum alloy, the effect of trace Sc and solution plus aging (T6) treatment on the fatigue deformation behavior are investigated.
     According to the composition of the alloys, Al-0.8%Mg-0.6%Si-x%Sc are melted, then by casting, extrusion, finally fatigue samples needed are fabricated, T6 treatment was taken on partial samples, then the observations on the microstructures and fatigue tests are performed. The microstructure observations show that the microstructures of the extruded Al-0.8%Mg-0.6%Si-x%Sc alloys can be refined effectively with certain Sc, after T6 treatment, grain size of the alloys decreased apparently except for the alloy with 0.2%Sc which changed a little. The results of low-cycle fatigue tests reveal that the as-extruded (F) Al-0.8%Mg-0.6%Si-x%Sc alloys exhibit the cyclic strain hardening, degree of cyclic strain hardening mainly depends on the content of Sc and imposed total strain amplitude, extruded Al-0.8%Mg-0.6%Si-x%Sc alloys at T6 state exhibit the cyclic strain hardening, cyclic strain softening, cyclic stability. For the extruded Al-0.8%Mg-0.6%Si-x%Sc alloys at F and T6 state, the relationship between plastic and elastic strain amplitudes with reversals to failure shows linear behavior, and can be well described by the Coffin-Manson and Basquin equations, and for the extruded Al-0.8%Mg-0.6%Si-0.2%Sc alloy after T6 treatment, the relationship between plastic strain amplitude and reversals to failure shows bilinear behavior. The observations on the fracture surfaces of fatigued specimens reveal that under the condition of fatigue loading, the fatigue cracks initiate in a transgranular mode at the surface of fatigue specimens, and propagate transgranularly for extruded Al-0.8%Mg-0.6%Si-x%Sc alloys at F and T6 state.
引文
[1]《轻金属材料加工手册》编写组.轻金属材料加工手册(上册).北京:冶金工业出版社,1979.
    [2]王晓敏.工程材料学.哈尔滨:哈尔滨工业大学出版社,2005.
    [3]潘复生,张丁非.铝合金及应用.北京:化学工业出版社,2006.
    [4]王祝堂.简说传统铝合金及其进展.金属世界,2007(1):43-47.
    [5]邱惠中,吴志红.国外航天材料的新进展.宇航材料工艺,1997(4):5-16.
    [6]尹登峰,郑子樵.铝锂合金研究开发的历史与现状.材料导报,2003,17(2):18-20.
    [7]高军,赵国群,李丽华.铝合金型材挤压技术现状与发展趋势.汽车工艺与材料,2002,6:21-24.
    [8]王涛,尹志民.高强变形铝合金的研究现状和发展趋.稀有金属,2006,30(2):197-202.
    [9]Caceres C H, Selling B I. Casting defects and the tensile properties of an Al-Si-Mg alloy. Materials Science and Engineering,1996, A220:109-116.
    [10]刘静安.变形铝合金可挤压性的分析与评价.铝加工,2004(3):19-24.
    [11]武恭,姚良均.铝及铝合金材料手册.北京:科学出版社,1994.
    [12]曾渝,彭志辉,潘青林等.Al-Mg-Si系中强挤压铝合金.湖南有色金属,2001,17(2):27-30.
    [13]Smith WF.工程合金的组织和性能.张泉,等译.北京:冶金工业出版社,1984.
    [14]尹桂全,何铀,曹占泉等.6061合金吊钩时效强化工艺研究.华东冶金学院学报,1998,15(4):314-323.
    [15]何兴仙,王荣,王金亮.6061铝合金车圈挤压型材着黑色工艺研究.轻合金加工技术,2000,28(8):33-35.
    [16]高树增.6351铝合金挤压制品工艺研究.轻合金加工技术,1998,26(7):29-31.
    [17]李宏德.冷胀提高6005铝合金疲劳寿命的机理.机械工程材料,2007,31(9):67-69.
    [18]刘炜.6082合金船用铝型材的生产工艺研究.铝加工,2001,24(3):19-22.
    [19]王祝堂,田荣璋.铝合金及其加工手册(第一版).长沙:中南工业大学出版社,1989.
    [20]曾联群.控制6063合金挤压产品机械性能的有效途径.有色金属加工,2006,35(4):29-32.
    [21]王举荣,王国军,齐中东.T832状态6063铝合金气缸管工艺研究.轻合金加工技术,2000,28(10):32-44.
    [22]丁发俊.提高6063铝合金挤压型材成品率的措施.轻合金加工技术,2001,29(3):35-47.
    [23]赵文芝.6063-T6铝合金挤压棒材晶粒度的研究.轻合金加工技术,2005,33(5):37-39.
    [24]孙伟成,张淑荣,侯爱芹.稀土在铝合金中的行为.北京:兵器工业出版社,1992.
    [25]Nogita K, Knuutinen A, McDonald S D et al. Mechanisms of eutectic solidification in Al-Si alloys modified with Ba, Ca, Y and Yb. Light Metals,2001,1:219-228.
    [26]Yin Z M, Pan Q L, Zhang Y et al. Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys. Materials Science and Engineering,2000, A280:151-155.
    [27]Kendig K L, Miracle D B. Strengthening mechanisms of an Al-Mg-Sc-Zr alloy. Acta Materialia, 2004,50:4165-4175.
    [28]Zakharov V V. Industrial aluminum alloys with scandium additive. Metal Science and Heat Treatment,1995,37(7-8):283-285.
    [29]杨军军,聂祚仁,付静波等.稀土在铝合金中的作用及研究进展.北京工业大学学报,2002,28(4):500-505.
    [30]王荣滨.稀土在铝合金中的作用及新型含钪铝合金.有色金属加工,2006,35(2):12-13.
    [31]孙全喜,黄瑞芬.新型含钪铝合金的应用与发展前景.内蒙古科技与经济,2007(10):107-108.
    [32]Toropova L S, Eskin D G, Kharakterova M L et al. Advanced aluminum alloys containing scandium. Gordon and Breach:Science Publishers,1998.
    [33]Iwamura S, Miura Y. Loss in coherency and coarsening behavior of Al3Sc precipitates. Acta Materialia,2004,52:591-600.
    [34]张欣.含钪铝合金及其应用.稀有金属,2007,31(6):857-861.
    [35]李汉广,尹志民.钪的发展动态和发展战略.稀有金属与硬质合金.1996,124:47-50.
    [36]陈志国,郑子樵,Ringer S P.微量钪对Al-2.5Cu-l.5Mg合金时效特性与微观组织的影响.稀有金属材料与工程,2004,33(8):81]-814.
    [37]梁文杰,潘青林,朱朝明等.微量Sc对Al-Cu-Li-Zr合金的微观组织和拉伸性能的影响.稀有金属材料与工程,2006,35(4):550-553.
    [38]周昌荣,刘心宇,潘青林.微量钪在Al-Cu-Li-Zr合金中的存在形式和作用.材料工程,2006(S1):225-228.
    [39]Parker B A, Zhou Z F, Nolle P. The effect of small addition of scandium on the properties of aluminum alloys. Journal of Materials Science,1995,30:452-458.
    [40]潘青林,高拥政,尹志民等.Sc对Al-Mg合金组织与性能的影响.材料科学与工艺,1997,5(4):9-13.
    [41]潘青林,尹志民,周景霞等.微量Sc在Al-Mg合金中的作用.金属学报,2001,37(7):749-753.
    [42]朱大鹏,尹志民,滕浩等.微量Sc和Zr对Al-Mg-Mn合金组织和性能的影响.宇航材料工艺,2004(6):45-49.
    [43]周昌荣,潘青林,刘心宇.微量Sc和Mn对Al-Mg合金组织与性能的影响.材料导报,2006,20(11):147-149.
    [44]彭勇宜,尹志民.Sc与Zr对Al-Mg-Mn合金力学性能和剥落腐蚀性能的影响.中国稀土学报,2006,24(2):217-222.
    [45]Ocenasek V, Slamova M. Resistance to recrystallization due to Sc and Zr addition to Al-Mg alloys. Materials Characterization,2001,47:157-158.
    [46]Kendig K L, Miracle D B. Strengthening mechanism of Al-Mg-Sc-Zr alloy. Acta Materialia,2002, 50:4165-4167.
    [47]高爱华,张建新,谢玉芬.微量Sc对6063铝合金组织性能的影响.热加工工艺,2006,35(10):1-3.
    [48]Mousavi M G, Cross C E. Effect of scandium and titaniumboron on grain refinement and hot cracking of aluminum alloy. Science and Technology Journal,1999,4(6):383-386.
    [49]陈显明,潘青林,周昌荣.微量钪对Al-Mg-Mn合金组织与性能的影响.稀有金属,2003,27(3):404-405.
    [50]Bethencourt M, Botana F J, Calvino J J et al. Lanthanide compounds as environment-friendly corrosion inhibitors of aluminum alloy. Corrosion Science,1998,40(11):1803-1819.
    [51]戴晓元,夏长清,刘昌斌.钪对Al-Zn-Mg-Cu-Zr合金组织性能的影响.稀有金属材料与工程,2006,35(6):913-916.
    [52]Ahmad Z. The properties and application of scandium-reinforced aluminum. JOM,2003(2):35-38.
    [53]Kramer L S, Tack W T, Fernandws M T. Scandium in aluminum alloys. Advanced Materials & Processes,1997,152(4):23-25.
    [54]Senkov O N, Miracle D B, Milman Y V et al. Low temperature mechanical properties of scandium-modified Al-Zn-Mg-Cu alloys. Materials Science Forum,2002,396-402:1127-1132.
    [55]陈传尧.疲劳与断裂.武汉:华中科技大学出版社,2002.
    [56]莫德锋,何国求,朱正宇等.Al-7Si-0.3Mg合金低周疲劳行为及其机理.特种铸造及有色合金,2008,28(7):394-396.
    [57]Jin C Y, Monzen R, Kitagawa K. Low-cycle fatigue behavior and dislocation structure of an Al-Mg-Sc alloy. Materials Science and Engineering,2004, A387:552-555.
    [58]Mercer M E, Dickerson S L, Gibeling J C. Cycle deformation of dispersion-strengthened aluminum alloys. Materials Science and Engineering,1995, A203:46-58.
    [59]周昆,李云卿.Al-Zn-Mg-Cu合金应变疲劳行为及位错结构演变.中国有色金属学报,1997,7(4):79-83.
    [60]吴细毛,艾素华,张匀等.8090Al-Li合金的低周疲劳行为.金属学报,1997,33(7):702-708.
    [61]李文意,杨伏良,马政等.新型高塑铝-镁-硅系铝合金的力学性能.机械工程材料,2010,34(6):58-60.
    [62]Raske D T, Morrow J. Mechanics of materials in low cycle fatigue testing. ASTM STP 465, Philadelphia:American Society for Testing and Materials,1969,1-25.
    [63]Liu Xiaoshan, He Guoqiu, Ding Xiangqun et al. Fatigue behavior,and dislocation substructures for 6063 aluminum alloy under nonproportional loadings. International Journal of Fatigue,2009,31: 1190-1195.
    [64]高爱华,张建新,谢玉芬.微量Sc对6063铝合金组织性能的影响.热加工工艺,2006,35(10):1-3.
    [65]C. Watanabe, R. Monzen, K. Tazaki. Effects of Al3Sc particle size and precipitate-free zones on fatigue behavior and dislocation structure of an aged Al-Mg-Sc alloy. International Journal of Fatigue,2008,30:635-641.
    [66]张国军,刘刚,丁向东等.含有第二相的高强铝合金疲劳模型.稀有金属材料与工程,2004,33(1):35-39.
    [67]Valsan M. and Parameswaran P. High temperature low-cycle fatigue behavior of a Nimonic PE-16 superalloy-corralation with deformation and fracture. Metallurgical Transcations,1992,23A: 1751-1761.
    [68]Lerch B A, Gerold M V. Cyclic hardening mechanisms in Nimonic 80A. Metallurgical Transactions,1987,18A:2135-2141.
    [69]Singh V, Sundararaman M., Chen W et al. Low-cycle fatigue behavior of Nimonic PE16 at room temperature. Metallurgical Transactions,1991,22A:499-506.
    [70]陈传尧,高大兴.疲劳断裂基础.北京:华中理工大学出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700