细颗粒喷动床流体力学特性的数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迄今为止,对于细颗粒喷动现象尚未进行系统的实验研究。为此,本文拟采用欧拉-欧拉双流体模型对柱锥型喷动床内细颗粒喷动的流体动力学特性进行了数值分析。应用曳力模型描述气固相间作用,并运用颗粒动理学理论对固相动量守恒方程中的固相压力和固相黏度进行封闭。考虑到喷动床内的稠密气固流动,建模中还考虑了颗粒摩擦应力。基于上述数学模型,研究考察了封闭方程和相关参数以及网格尺度、时间步长对模拟结果的影响,并采用数值模拟方法对喷动床几何结构相关的参数对细颗粒喷动行为的影响进行了讨论。模拟得到了细颗粒在喷动床内的流体动力学特性,比如流型转变、浓度场分布、速度场分布、压力场分布等,并将模拟结果与文献报道的实验结果和模拟结果进行了比较分析。
     在对曳力模型进行考察时发现,与采用Wen&Yu模型、Gidaspow模型以及Syamlal-O'Brien模型这三种气固曳力模型得到的流型相比,在使用Schiller & Naumann曳力模型对细颗粒喷动行为进行模拟时得到的流型更稳定,其原因可能和喷动床几何结构有关。在对摩擦应力模型进行考察时发现,与未采用摩擦应力模型的结果相比,在采用Jackson & Jackson摩擦应力模型或者Schaeffer摩擦应力模型时,模拟得到的喷射区颗粒速度及空隙率均有所提高。由此说明,摩擦应力对细颗粒在喷射区的流体动力学行为也有显著影响,而对于粗颗粒,其影响仅限于环隙区。由模拟结果还可得知,与粗颗粒喷动类似,颗粒碰撞恢复系数和最大填充率对细颗粒喷动模拟结果也都有很大影响。因此,对于缺乏实验数据的研究体系,在对细颗粒喷动现象进行数值模拟时,预测合理的恢复系数和最大填充率就显得至为重要。
     模拟结果显示,喷动床几何结构对细颗粒喷动影响显著。要形成稳定喷动,颗粒直径、喷嘴直径及床体直径三者之间必须相互协调,并满足一定条件,一般对细颗粒体系的要求比粗颗粒体系更为苛刻。但是由结果可知,对于细颗粒即使满足稳定喷动的条件也不一定能形成稳定喷动。而对于喷动床结构与颗粒物性未能严格满足喷动条件的体系,加装导向管可能使细颗粒更容易实现稳定喷动。
     研究发现,网格尺度和时间步长对模拟结果均有很大影响。研究中采用轴向网格数为300的网格时,得到的结果已基本满足一般的精度要求,而轴向网格数为480的结果是网格独立的解。并且,结果证实时间步长选择0.0001s是合理的。
The investigation of fine particle gas-spouting phenomenon has not yet been experimentally studied until now. It is hence the propose of present contribution to obtain hydrodynamics behavior of fine particle spouting in a cylindrical-conical spouted bed in connection with Eularian-Eularian two fluid modeling approach. The interaction between phases is described with the drag force, while the solid pressure and viscosity related terms in the momentum conservation equation for solid phase is closed by the well-known kinetic theory of granular flow. For such dense gas-solid flow in the spouted bed, the frictional stress is considered as well. Based on the above mentioned mathematical models set up, the influences of the parameters relating to model closure, the grid scale and time step on the simulation results have been discussed, as well as effects of the parameters relating to spouted bed structure on fine particle spouting behavior through the numerical simulation method. The numerical results about fine particle spouting hydrodynamics, such as flow regime transition, concentration field, velocity field, pressure field, et al, were compared with both experimental and simulative results reported in literatures.
     It is found that the Schiller & Naumann drag model results in more stable flow region for fine particle spouting than that of Wen & Yu model, Gidaspow model and Syamlal-O'Brien model, which probably results from the geometry of the spouted bed. The numerical analysis of particle velocity and voidage shows that the introduction of the Jackson& Jackson or Schaeffer frictional stress into CFD simulation results in the increase of particle velocity and voidage in the spout, which means the hydrodynamics of fine particles gas-spouting can be significantly influenced by the frictional stress, however the influence can only be observed in annulus for coarse particles. The influences of the particles restitution coefficient and the maximum packing limit on fine particle spouting are both significant, being identical with the case of coarse particle spouting. Pretest of the restitution coefficient and the maximum packing limit must be therefore conducted when no experimental datum are available.
     The results reveal that the geometry of the spouted bed plays a profound role on fine particle spouting. To obtain stable spouting, the optimal coupling of particle size, orifice diameter and bed diameter has to fulfill certain criteria, and the criteria for fine particle system is mostly more strictly than that for coarse particle system. However it is found that the stable spouting, for fine particle gas-spouting, is not always achievable even if the criteria were satisfied. In addition, it is recognized that fine particle is easier to achieve stable performance in a spouted bed equipped with a pipe, even if those criteria were not quite met.
     Conclusion could be safely drawn from the results that the grid scale and time step both influence the simulation results significantly. Mesh with the vertical grid number of three hundred is competent for traditional requirements, up to a vertical grid of four hundred eighty the simulation results is completely free from mesh size. Moreover, the time step chosen as 0.0001s is proven to be reasonable.
引文
[1]中华人民共和国2009年国民经济和社会发展统计公报,2010
    [2]张国宝.中国能源发展报告2009[M].社会科学文献出版社,2009
    [3]中国统计年鉴.中华人民共和国国家统计局,2008
    [4]许红,刘尧祥.燃煤电厂烟气脱硫现状及其工艺[J].中国煤炭,2006,(32)11:48-51
    [5]岳娟娟,周云.燃煤电厂烟气脱硫技术现状及工艺选择原则[J].江西化工,2009,3:14-17
    [6]我国火电脱硫脱硝行业2007年发展综述.中国环境保护产业协会锅炉炉窑脱硫除尘委员会.北京
    [7]孙丽萍,代朝辉.燃煤电厂烟气脱硫技术研究进展[J].辽宁化工,2007,(36):687-689
    [8]张海燕,许星.国外烟气脱硫技术的发展与我国的现状[J].有色金属设计,2003,(30)1: 38-42
    [9]2006中国环境状况公报,中华人民共和国环境保护部,2007
    [10]2008中国环境状况公报,中华人民共和国环境保护部,2009
    [11]曾汉才.我国燃煤电厂的烟气脱硫问题[J].电站系统工程,1994,(10)5:27-32
    [12]赵鹏高.火电厂烟气脱硫关键技术与设备国产化规划[J].电力环境保护,2000,(16)2: 28-32
    [13]Xu G. W.. Guo Q. M., Kaneko T., et al. A new semidry desulfurization process using a powder-particle spouted bed[J]. Advances in Environmental Research,2000,4:9-18
    [14]Ma X. X., Kaneko T., Guo Q. M., et al. Removal of SO2 from flue gas using a new semidry flue gas desulfurization process with a powder-particle spouted bed[J]. The Canadian Journal of Chemical Engineering,1999,77(2):356-362
    [15]Ma X. X., Kaneko T., Tashimo T., et al. Use of limestone for SO2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed [J]. Chemical Engineering Science,2000,55(20):4643-4652
    [16]Guo Q. M., Hikida S., Takahashi Y, et al. Drying of microparticle slurry and salt-water solution by a powder-particle spouted bed[J]. Journal of Chemical Engineering of Japan, 1996,29(1):152-158
    [17]Kato Kunio, Takarada Takayuki, Matsuo Naoyuki, et al. Residence time distribution of fine particles in a powder-particle fluidized bed[J]. Kagaku Kogaku Ronbunshu,1991, 17(5):970-975
    [18]李晓斐,傅大放,马光.半干法烟气脱硫新技术—粉末-颗粒喷动床技术[J].环境污染治理技术与设备,2002,3(6):53-56
    [19]金涌,祝京旭,汪展文等.流态化工程原理[M].清华大学出版社,2001
    [20]祝京旭,洪江.喷动床发展与现状[J].化学反应工程与工艺,1997,(13)2:207-230
    [21]李水清,姚强,赵香龙.喷动床反应器气固流动模型的研究进展[J].化学反应工程与工艺,2003,(19)3:264-279
    [22]Mathur K. B., Gishler P. E.. A technique for contacting gases with coarse solid particles[J]. AIChE.Chem.1955,1:157-164
    [23]Mathur K. B., Epstein N.. Spouted beds[M]. New York:Academic Press INC,1974
    [24]Lim C J, Grace J R. Spouted bed hydrodynamics in a 0.91m diameter vessel[J]. Can J Chem Eng,1987,65:366-372
    [25]Krzywanski R. S., Epstein N., Bowen B. D.. Multi-dimensional Model of a Spouted Bed[J]. Can J Chem Eng,1992,70(5):858-872
    [26]Day J. Y., Morgan M. H.,Littman H.. Measurement of Spout Voidage Distributions Particle Velocity and Particle Circulating Rates in Spouted Beds of Coarse Particles-Ⅱ Experimental Verification [J]. Chem. Eng. Sci,1987,42:1461-1471
    [27]San Jose M J, Olazar M,A lvarez S et al. Soli Cross-flow into the Spout and Particle Trajectories in Conical Spouted Bed. Chem Eng Sci,1998,53:3561-3570
    [28]Paterson N,Reed G P,Dugwell D R et al. Gasification Tests with Sewage Sludge and Coal Sewage Sludge Mixtures in a Pilot Scale Air Blown, Spouted Bed Gasifier. [J].American Society of Mechanical Engineers, International Gas Turbine Institute, 2002,1:197-202
    [29]Lukanda M,Christophe QRobert L. Parameter Analysis and Scale-up Considerations for Thermal Treatment of Industrial Waste in an Internally Circulating Fluidized Bed Reactor[J].Chem Eng Sci,1999,54(15):3071-3078
    [30]马晓迅,曹彬,中里勉等.粉-粒喷动床的基础与应用[J].应用化工(增),2006,35:166-172
    [31]黄明辉.喷动床内气固两相流体流动数值模拟[B].西北大学,2009
    [32]Souza C R F, Oliveira W P. Drying of herbal extract in a draft-tube spouted bed [J]. Canadian Journal of Chemical Engineering,2009,87(3):279-288
    [33]Ana Magalhaes, Carlos Pinho. Spouted bed drying of cork stoppers[J]. Chemical Engineering and Processing,2008,47:2395-2401
    [34]Albina D.O.. Emissions from multiple-spouted and spout-fluid fluidized beds using rice husks as fuel [J]. Chemical Engineering and Processing,2008,47:2395-2401
    [35]Salam P.A., Bhattacharya S.C. A comparative study of charcoal gasification in two types of spouted bed reactors [J]. Energy,2006,31:228-243
    [36]Foong S. K., Barton R. K., Ratcliffe J. S.. Reduction of Sulphur Dioxide with Carbon in a Spouted Bed[J]. Chem. Eng. In Australia,1976,CEI,1/2,1-8, Instn. Engrs. Aust
    [37]Leyla Nesrin Kahyaoglu, Serpil Sahin, Gulum Sumnu. Physical properties of parboiled wheat and bulgur produced using spouted bed and microwave assisted spouted bed drying [J]. Renewable Energy,2006,31:2152-2163
    [38]McNab G. S., Bridgwater J. Solids mixing and segregation in spouted beds[J]. Proceedings of the European Conference on Mixing,1979,3rd(Vol.1):125-140
    [39]McNab G. S.. Prediction of Spout Diameter[J]. Brit. Chem. Eng.& Proc. Technol. 1972,17:532
    [40]Wu S. W. M., Lim C. J., Epstein N.. Hydrodynamics of Spouted Beds at Elevated Temperatures [J]. Chem. Eng. Commun.,1987,63:251-268
    [41]李静海,欧阳洁,高士秋.颗粒流体复杂系统的多尺度模拟[M].北京:科学出版社,2005
    [42]Kafui K. D., Thornton M. J., Adams. Discrete particle-continuum fluid modeling of gas-solid fluidized beds[J]. Chemical Engineering science,2002,57:2395-2410
    [43]Ge W., Li J. H.. Macroscale Phenomena Reproduced in microscopic systems-pseudo-particle modeling of fluidization[J]. Chemical Engineering science, 2003,57:1565-1585
    [44]Jackson R.. The mechanics of fluidized beds. Trans. Inst. Chem. Eng.,1963:3-28
    [45]Pritchett J. W., Blake T. R., Garg S. K.. A numerical model of gas fluidized beds[J]. AIChE. Symp,1978,74:134-148
    [46]Jeroen M. Link, Niels G. Deen, J.A.M. Kuipers. Discrete Particle Simulation of
    Spout-Fluid Bed:Treatment of two-way Coupling and Effect of Drag Closure[J].5th International Conference on Multiphase Flow, Yokohama, Japan,2004
    [47]Ergun S..Fluid Flow through Packed Columns[J]. Chem. Eng. Prog.,1952,48(2):89-94
    [48]Wen C.Y., Yu Y. H. Mechanics of Fluidization[J]. Chem. Eng. Prog. Symp. Series,1966, 62:100-111.
    [49]Zhong W. Q., Xiong Y.Q., Yuan Zh. L. et al. DEM simulation of gas-solid flow behaviors in spout-fluid bed[J]. Chemical Engineering Science,2006,61:1571-1584
    [50]Yutaka T.. Multi-scale modeling of dense phase gas-particle flow [J]. Chemical Engineering Science 2007,62:3410-3418
    [51]Takeuchi S., Wang S., Rhodes M.. Discrete element method simulation of three-dimensional conical-base spouted beds[J]. Powder Technology,2008,184:141-150
    [52]Link J.M., Cuypers L. A., Deen N. G. et al. Flow regimes in a spout-fluid bed:A combined experimental and simulation study [J]. Chemical Engineering Scince, 2005,60:3425-3442
    [53]Link J.M., Godleb W., Tripp P. et al. Comparison of fibre optical measurements and discrete element simulations for the study of granulation in a spout fluidized bed [J]. Powder Techonology,2009,189:202-217
    [54]Zhang Y, Jin B. S., Zhong W. Q. et al. DEM simulation of particle mixing in flat-bottom spout-fluid bed [J]. Chemical Engineering Research and Design,2009, in press
    [55]赵永志,程易,金涌.二维导流管喷动床离散颗粒动力学模拟[J].化学工程,2007,35(6): 24-28
    [56]L Huilin, S Yongli, L Yang, et al. Numerical simulations of hydrodynamic behaviour in spouted beds[J]. Chemical Engineering Research and Design,2001,79(A5):593-599
    [57]He Y. L., Lim C. J., Grace J. R., et al. Measurements of voidage profiles in spouted beds[J]. Canadian Journal of Chemical Engineering,1994a,72(4):229-34
    [58]He Y. L., Qin S. Z., Lim C. J., et al. Particle velocity profiles and solid flow patterns in spouted beds[J]. Canadian Journal of Chemical Engineering,1994b,72(4):561-568
    [59]Lu H. L., He Y R., Liu W. T., et al. Computer simulations of gas-solid flow in spouted beds using kinetic-frictional stress model of granular flow[J]. Chemical Engineering Science,2004,59(4):865-878
    [60]He Y. R., Zhao G. B., Bouillard J., et al. Numerical simulations of the effect of conical dimension on the hydrodynamic behaviour in spouted beds[J]. Canadian Journal of Chemical Engineering,2004,82(1):20-29
    [61]Wang Z. G., Bi H. T., Lim C. J.Numerical simulations of hydrodynamic behaviors in conical spouted beds[J]. China Particuology,2006,4(3-4):194-203
    [62]Du W., Bao X. J., Xu J., et al. Computational fluid dynamics(CFD) modeling of spouted bed:Assessment of drag coefficient correlations [J]. Chemical Engineering Science, 2006,61(5):1401-1420
    [63]Du W., Bao X. J., Xu J, et al. Computational fluid dynamics(CFD) modeling of spouted bed:Influence of frictional stress, maximum packing limit and coefficient of restitution of particles[J]. Chemical Engineering Science,2006,61(14):4558-4570
    [64]Du W, Wei W. S., Xu J. et al. Computational Fluid Dynamics(CFD) Modeling of Fine Particle Spouting[J]. International Journal of Chemaical Reactor Engineering, 2006,4,A27
    [65]Gidaspow D., Bezburuah R., Ding J.. Hydrodynamics of circulating fluidized beds, kinetic theory approach, Fluidization VII [D]. Proceedings of the 7th Engineering Foundation Conference on Fluidization, Brisbane, Australia,1992,75-82
    [66]Syamlal M., O'Brien T. J.. Computer Simulation of Bubbles in a Fluidized Bed[J]. AIChE Symp. Series,1989,85:22-31
    [67]Arastoopour H, Pakdel P, Adewumi M. Hydrodynamic analysis of dilute gas-solids flow in a vertical pipe[J]. Powder Technology,1990,62(2),163-170
    [68]Wu Z. H., A. S. Mujumdar. CFD modeling of the gas-particle flow behavior in spouted beds[J]. Powder Technology,2008,183(2):260-272
    [69]Luis D., Isabel A., Jon M, et al. A first approach to CFD simulation of hydrodynamic behaviour in a conical spouted bed contactor[J]. International Journal of Chemical Reactor Engineering,2008,6, A31
    [70]Duarte C. R., Olazar M., Murata V. V., et al. Numerical simulation and experimental study of fluid-particle flows in a spouted bed[J]. Powder Technology,2009,188(3): 195-205
    [71]何玉荣,陆慧林,刘文铁等.喷动床内气固两相流体动力行为的数值模拟[J].化工 学报,2004,55(2): 290-296
    [72]何玉荣,孙巧群,陆慧林等.贴体坐标系下喷动床内气固两相流体动力特性的数值模拟[J].燃烧科学与技术,2006,12(1):59-64
    [73]Hosseini S.H., Zivdar M., Rahimi R..CFD simulation of gas-solid flow in a spouted bed with a non-porous draft tube[J]. Chemical Engineering and Processing:Process Intensification,2009,48:1539-1548
    [74]Wang S.Y., Liu Y.J., Liu Y.K., Simulations of flow behavior of gas and particles in spouted bed with a porous draft tube[J]. Powder Technology,2010, 199:238-247
    [75]Wang S.Y., Li X., Lu H.L.. Numerical simulations of flow behavior of gas and particles in spouted beds using frictional-kinetic stresses model [J]. Powder Technology,2009, 196:184-193
    [76]Johnson P.C., Jackson R.. Frictional-collisional constitutive relations for granular materials, with application to plane shearing[J]. Fluid Mech.176 (1987) 67-93
    [77]Schaeffer G. Instability in the evolution equations describing incompressible granular flow[J]. Diff. Equ.66 (1987) 19-50
    [78]Sun D., Wang S. Ya., Liu G. D.. Simulations of flow behavior of gas and particles in a spouted bed using a second-order moment method-frictional stresses model [J]. Chemical Engineering Science,2010,65:2635-2648
    [79]Luca M., Fabio I.. Multiphase Eulerian-Lagrange CFD simulation applied to Wet Flue Gas Desulphurisation technology [J]. International Journal of Multiphase Flow,2009, 35:185-194.
    [80]Soo S L. Fluid dynamics of multiphase systems[M]. Waltham:Blaisdell,1967
    [81]Anderson T B, Jackson R. A fluid mechanical description of fluidized beds[J]. Industrial and Engineering Chemistry Research Fundamentals,1967,6:527-539
    [82]Ishii M. Thermo-Fluid dynamic theory of two-phase flow[M]. Paris:Eyrolles,1975
    [83]Boure J A, Delhaye J M. General equations and two-phase flow modeling[M]. In: Hetsroni G, ed. Handbook of Multiphase Systems. Hemisphere:McGraw Hill,1982
    [84]Drew D A. Mathematical modeling of two-phase flow[J]. Ann. Rev. Fluid Mech,1983, 15:261-291
    [85]刘大有.二相χ流体动力学[M].北京:高等教育出版社,1993,441-533
    [86]Gidaspow D. Multiphase Flow and Fluidization:Continuum and Kinetic Theory Description[M]. Boston:Academic Press,1994
    [87]Boure J A. Delhaye J M. General Equations and Two-Phase Flow Modeling. In:Hetsroni G,ed[M]. Handbook of Multiphase Systems. Hemisphere:McGraw Hill,1982
    [88]Lun, C.K.K., Savage S.B., Jeffrey D.J., Kinetic Theories for Granular Flow:Inelastic Particles in Couette Flow and Slightly Inelastic Particles in General Flow Field[J]. Journal of Fluid Mechanics,1984,140:223-256
    [89]Ding J, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE J.,1990,36(4):523-538
    [90]Lun C. K. K., Savage S. B.. The effects of an impact velocity dependent coefficient of restitution on stresses developed by sheared granular materials[J]. Acta Mechanica, 1986,63:15-44
    [91]R. Ocone, S. Sundaresan, R. Jackson. Gas-particle flow in a duct of arbitrary inclination with particle-particle interaction[J].1993, AIChE J.,39:1261-1271
    [92]Schiller L, Naumann Z. A drag coefficient correlation [J]. Verein Deutscher Ingenieure, 1935,77,318-320
    [93]Lu H. L., He Y. R., Gidaspow D., et al. Size Segregation of binary mixture of solids in bubbling fluidization beds[J]. Powder Technology,2003,134:86-97
    [94]Lu H. L., Gidaspow D.. Hydrodynamics of binary fluidization in a riser:CFD simulation using two granular temperatures [J]. Chemical Engineering Science,2003,58:3777-3792
    [95]祁海鹰,由长福,徐旭常.稠密气固两相流动欧拉数值模拟的理论与实践[D].Fluent第一届中国用户大会
    [96]Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Comput. Methods Appl. Mech. Eng.,1974,3:269-289
    [97]FLUENT 6.3 Use's Guide. FLUENT Inc.,2006
    [98]Elgobashi S. E., Abou-Arab T. W..A two-equation turbulence model for two-phase flows[J]. Phys. Fluids,1983,26(4):931-938
    [99]Csanady G. T.. Turbulent diffusion of heavy particles in the atmosphere[J]. J. Atmos. Science,1963,20:201-208
    [100]Simonin C., Viollet P. L.. Predictions of an oxygen droplet pulverization in a compressible subsonic coflowing hydrogen flow[J]. Numerical Methods for Multiphase Flows,1990, FED 91:65-82
    [101]陶文铨.计算传热学的近代进展[M].科学出版社,2005
    [102]陶文铨.数值传热学[M].西安交通大学出版社,2001
    [103]Versteeg H. K., Malalasekera W.. An Introduction to Computational Dynamics. The Finite Volume Methods[J]. Essex:Longman Scientific & Technical,1995.6
    [104]Freitas C. J. Editorial. ASME J fluid Engineering,1993,115:339-340
    [105]Kassia G.S., Valeria V. M., Marcos A. S. R.. Three-dimensional computational fluid dynamics modelling of spouted bed[J]. Canadian Jouranl of Chemical Engineering, 2009,87:211-219
    [106]O. Gryczka, S. Heinrich, J. Tomas. Micro-Macro-interaction[M]. Springer Berlin Heidelberg Press,2008:265-275
    [107]O. Gryczka, S. Heinrich, N. G Deen.,M. van Sint Annaland, J.A.M. Kuipers, M. Jacob and L. Morl, Characterization and CFD-modeling of the hydrodynamics of a prismatic spouted bed apparatus [J]. Chemical Engineering Science(2009), dli:10.1016/j.ces. 2009.04.020
    [108]Goldschmidt M. J. V, Kuipers J. A. M., van Swaaij W. P. M. Hydrodynamic modeling of dense gas-fluidized beds using the kinetic theory of granular flow:effect of coefficient of restitution on bed dynamics[J]. Chemical Engineering Science,2001, 56(2):571-578
    [109]Wang S. N., Xu J., Wei W. S., et al. Gas Spouting Hydrodynamics of Fine Particles[J]. Canadial Journal of Chemical Engineering,2000,78:156-160
    [110]Chandnani, P. P., N. Epstein. Gas Spouting of Fine Particles[D].34th Can. Chem. Eng. Conf., Quebec City,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700