冻融后混凝土力学性能及钢筋混凝土粘结性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
处于寒冷地区的钢筋混凝土结构物常常发生冻融破坏,抗冻性能是钢筋混凝土耐久性能中非常重要的方面。冻融循环作用后,混凝土的抗冻性能和力学性能发生退化,钢筋与混凝土的粘结性能也遭到破坏,研究冻融循环作用后混凝土的力学性能和钢筋混凝土的粘结性能具有十分重要的工程意义。本文通过试验研究和理论分析,主要完成了以下工作:
     1、试验研究了尺寸为100×100×100mm的混凝土小试件冻融后的单双轴力学性能和抗冻性能,并试验研究了尺寸为150×150×150mm的混凝土标准试件冻融后的单轴力学性能。分别建立了两种混凝土试件的各力学指标与冻融循环作用次数的关系公式,并建立了冻融后混凝土小试件与标准尺寸混凝土试件的强度转换计算公式。通过双轴强度试验数据分析,研究了冻融循环作用对混凝土双轴压作用下强度和变形的影响。采用统一的应力-应变方程形式来表示混凝土遭受冻融循环作用后的本构关系。
     2、基于各向同性连续损伤力学理论,以损伤条件下的弹性模量和泊松比为变量,基于Ottosen理论模型建立了混凝土冻融损伤破坏准则,并以Ottosen本构理论模型为基础,利用建立的冻融损伤破坏准则构建了混凝土冻融损伤本构模型,并编制了本构模型有限元程序,为有限元计算应用提供参考。
     3、试验研究了冻融循环作用后两种外形、三种直径、三种粘结长度的钢筋与混凝土的粘结性能,分析了冻融循环对钢筋粘结性能的影响,并分析了设定冻融循环次数作用后钢筋外形、钢筋直径、钢筋粘结长度和混凝土强度对钢筋与混凝土粘结锚固性能的影响。
     4、把钢筋混凝土粘结滑移曲线分为四个阶段,分别对光圆钢筋和不同直径、不同粘结长度的螺纹钢筋的粘结滑移曲线随着冻融循环作用次数的增加而变化作了较详细的分析,从试验角度分析了冻融后钢筋和混凝土粘结性能的退化机理。基于细观力学模型建立了冻融后钢筋混凝土界面层受冻时的静水压力理论计算公式,从细观力学角度分析了冻融后光圆钢筋粘结性能迅速退化的机理。通过钢筋与混凝土界面层的粘结-摩擦力学模型分析,揭示了光圆钢筋与混凝土粘结试件在冻融循环作用后,粘结强度迅速下降的本质原因,并解释了光圆钢筋粘结滑移曲线的不同阶段随着冻融循环作用次数增加而变化的机理。通过弹塑性厚壁圆筒理论计算模型,建立了钢筋粘结强度理论计算公式,并通过与试验得到的粘结强度相比较,从理论上揭示了在试验中发生的螺纹钢筋粘结试件在遭受一定冻融循环次数作用后,拔出破坏形态发生变化的机理。
     5、基于三参数weibull分布,在理论分析的基础上建立了混凝土结构冻融损伤可靠度分析模型,认为混凝土结构遭受冻融循环作用的正负峰值温度差是随机变化的,把混凝土结构冻融损伤近似看作不同正负峰值温度差顺序作用损伤累积的结果,利用等效损伤原理,推导了计算混凝土冻融损伤失效概率计算公式。得出了混凝土结构冻融损伤剩余寿命的计算公式,并结合混凝土冻融的定量化分析,得出了在遭受一定的冻融损伤后混凝土结构的剩余工作年限。
The concrete structures located in the cold region usually are destroyed because of freezing and thawing, and frost resistance is an important aspect of,durability of concrete structure. The frost resistance and mechanic performance of concrete and the bond behaviour between concrete and steel bar will be destroyed after freezing and thawing. It is very important for concrete structure to research the bond behaviour between concrete and steel bar after freezing and thawing. In this paper, the major contributions are summarized as follows by experimental research and theoretical analysis.
     1、The uniaxial、biaxial mechanic performance of concrete cubic specimens with a size of 100×100×100mm and uniaxial mechanic .performance of concrete cubic specimens with a size of 150×150×150mm are tested after freezing and thawing. The relationship equations between strength of two kinds of concrete specimens and cycles of freeze-thaw cycling are estimated. And the relationship equation of concrete strength of two kinds of specimens is estimated, too. A standard equation is used to descript the stess-strain curve of concrete after freezing and thawing.
     2、Based on the damage mechanics and Ottosen failure model, a frost damage failure model is established which elastic modulus and Possion ratio under damage are the damage variable. And based on Ottosen theory, a frost damage constitutive model is established and all these will be useful to the development of finite element programme. The test of the constitutive model by the experimental data shows that it is accurate comparatively.
     3、The pullout specimens of two different surface configurations, three different diameters and three different bond lengthes of stell bars are tested after freezing and thawing by experiments. The effect of freezing and thawing on the bond behaviour is analyzed through the study of these indexes, such as bond strength, slippage at the peak of bond strength, etc. And the effect of surface configurations, diameter of steel bar, bond length of steel bar and concrete strength on the bond behaviour between concrete and steel bar are analized based on the experimental results.
     4、Theτ-S curves of all pullout specimens are parted four segments to analyze the development ofτ-S curves with the cycles of freezing and thawing increasing. A formula is established to calculate the hydraulic pressure when the concrete under thawing based on the microcosmic mechanic model. Based on the bond-friction model of interface of concrete and steel bar, the mechanism of decreasing quickly of bond strength of plain steel bar after freezing and thawing. Based on the thick-walled column theory, the theoretic model of bond strength of deformed steel bar is obtained. The mechanism of the conversion of failure modes of pullout specimens after freezing and thawing is explained through analyzing the results of experiments and caculating results.
     5、Based on the theory of macro-damage mechanics, the damage of concrete structures under the action of freezing and thawing may be approximately regarded as the damage due to sequential cyclic action with various positive-negative peak temperature differences, since the temperature difference is always not a constant. On this basis, the reliability of damaged concrete is analyzed. The failure of concrete can be described by the Weibull distribution model. Thereby, a model with 3 parameters for analyzing the reliability of concrete is proposed and the formula for evaluating the residual life of concrete after the freezing-thawing action is deduced.
引文
[1] Tamon UEDA. Durability design concept in Asian Concrete Model Code and its future direction. Hokkaido University, Japan, 2005.10
    [2] 中国水利水电科学研究院.大坝混凝土材料的强度、老化和耐久性.中国大坝长期安全性评价专项评价报告:北京,2006.7
    [3] 亢景富,冯乃谦.水工混凝土耐久性问题与水工高性能混凝土.混凝土与水泥制品,1997,8(4):4-10
    [4] Kilareski W R. Failure of reinforced concrete structures due to corrosion materiall performance, 1980, 3:48-50
    [5] 刘西拉.结构工程学科的现状与展望.北京:人民交通出版社,1997
    [6] ACI Committee201. Proposed revision: Guide to durable concrete: ACI. Mat., 1991, (9-10):544-582
    [7] 中国水利水电科学研究院.大体积混凝土.北京:水利水电出版社,1990
    [8] Powers T C. A working hypothesis for further studies of frost resistance of concrete. ACI, 1945,41:245-272
    [9] Fagerlund G. The significance of critical degrees of saturation at freezing of porous and brittle materials. In :Scholer C F, eds. Durability of concrete. Detroit: American concrete institute, 1975:13-65
    [10] 张誉.混凝土结构耐久性概论.上海:上海科学出版社,2003
    [11] Powers T. C, Helmuth R A. Theory of volume change in hardened porland cement paste during freezing. Proceedings, Highway research board, 1953, 32:285-297
    [12] Mihta P K, Schiessl P Raupach M. Performance and durability of concrete systems. Proceedings of 9th international congress on the chemistry cement, 1992, 1:571-659
    [13] Powers T C. Void spacing as A basis for producing air-entrained concrete. ACI journal, proceedings, 1954, 50:741-760
    [14] Fagerlund G. The significance of critical degrees of saturation at freezing of porous and brittle materials. In: Scholer C F, eds. Durability of concrete. Detroit:American concrete institute, 1975:13-65
    [15] Emmanuel K Attiogbe. Predicting freeze-thaw durability of concrete-A new approach. ACI mat. 1996, 93:457-465
    [16] ASTM, Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing, ASTM C666/C666M-03
    [17] 中国建筑科学研究院,普通混凝土长期性能和耐久性试验方法(GBJ82-85),北京,中国标准出版社,2000.12
    [18] 北京水利科学研究院,中国水利水电科学研究院,水工混凝土试验规程,(DL/T5150-2001),北京,中国电力出版社,2002
    [19] 李金玉、曹建国等,混凝土冻融破坏机理的研究,水利学报,1999(1):41-49
    [20] 覃丽坤,高温及冻融循环后混凝土多轴强度和变形试验研究,大连,大连理工大学博士论文,2004.2
    [21] 程红强,张雷顺,李平先,冻融对混凝土强度的影响,河南科学,2003.21(2):215-216
    [22] Pigeon M., Lemaire F. Study of the basic properties of standard concrete subjected to long freeze/thaw cycles, Canadian Journal of Civil Engineering Issue: Sept. 1980: 13
    [23] 宋玉普.冻融条件下混凝土的多轴强度和破坏准则(50479059).国家自然科学基金资助项目,2004.1-2007.12
    [24] Stefan Jacobsen, Jacques Marchand and Hugues Hornain. Sem observations of the microstructure of frost deteriorated and self-healed concretes. Cement and Concrete Research, 1995, 25(8): 1781-1790
    [25] Isa Yaksel, Turhan Bilir. Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate. Building and Environment,, 2006,41(5):633-639
    [26] N. M. Akhras. Detecting freezing and thawing damage in concrete using signal energy. Cenment and concrete research, 1998, 28(9):1275-1280
    [27] K.S Mendelson, W.P. Halperin. Magn. Reson. Imaging, 1994,12:207-209
    [28] R. Bline, J Dolinsek, G. Lahajnar. Pintar, Z. Natruforsch. 43a, 1998:1026-1033
    [29] K.J Pachker and J.J Tessier, Molec. Phys, 1996, 87:267-231
    [30] P.J. Prado, B.J. Balcom, ect. Concrete freeze thaw as studied by magnetic resonance imageing. Cement and concrete research, 1998, 28(2):261-270
    [31] F. Haussler, M. Hempel, etc. Long-time monition of the microstructural change in hardening cement paste by SANS, Adv. Cem. Res. 1997, 9:139-147
    [32] J J. Thomas, H.M. Jennings, A J Allen, Determination of the neutron scattering contrast of hydrated Portland cement paste using Ho/Do exchange, Adv. Cem. Based Mater. 1998, 7:119-122
    [33] R. Berliner, M. Popovici, etc. Neutron scattering studiesof hydrating cement pastes, 1998, Physics B:1237-1239
    [34] R. Berliner, M. Popovici, etc. Quasi-elastic neutron scattering study of the effect of weter to cement ratio on the hydration kinetics of tricalciumsilicate. Cem. Concr. Res. 1998, 28:231-243
    [35] R. Berliner, C. Ball, etc. Reply to the discussion of the paper neutron powder diffraction investigation of model cement compounds, Cem. Conc. Res. 1998,28:1833-1836
    [36] E.M. Schulson, I.P. Swainson, etc. Hexagonal ice in hardened cement, Cem. Concr. Res: 2000, 30:191-196
    [37] M.P. Fang, P.E. Sokol, etc. Neutron diffraction study of cement, J. Porous Mater., 1999, 6:95-99
    [38] Ian. P. Swainson, Erland M. Schulson. A neutron diffraction study of ice and water within a hardened cement paste during freeze-thaw. Cem. Conc. Res. 2001, 31:1821-1830
    [39] Yixia Zhou, Menashi D. cohen, etc. Effect of external loads on the frost-resistant properties of Mortar with and without silica fume. ACI Mat. Journal, 1994, 91(6):547-555
    [40] Mosongo Moukwa, Pierre-Claude Aitcin, Michel Pigeon, etc. Freeze-thaw tests of concrete in seawater. ACI Mat. Journal, 1989, 86(4):360-366
    [41] 赵霄龙,卫军等.高性能混凝土在盐溶液中的抗冻性.建筑材料学报,2004,7(1):85-89
    [42] 覃丽坤,宋玉普等.冻融循环对海水中混凝土抗压性能的影响.混凝土,2004,1:16-19
    [43] Christiane F., Michel Pigeon, etc. Freeze-thaw durability and deicer salt scaling resistance of a 0.25 w/c ration concrete. Cem. Conc. Res., 1988, 18(4):604-614
    [44] C. Maclnnis, J.D. Whiting. The frost resistace of concrete subjected to a deicing agent. Cem. Conc. Res., 1979, 9(3):325-336
    [45] 慕儒.冻融循环与外部弯曲应力、盐溶液作用下混凝土耐久性与寿命预测.[博士学位论文]南京:东南大学,2000
    [46] 慕儒,严安等.荷载与冻融同时作用下下HSC和SFRHSC的耐久性.工业建筑,1998,28:11-15
    [47] W.Sun, Y.M. zhang, etc. Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles. Cem. Conc. Res., 1999, 29:1519-1523
    [48] 张德思.粉煤灰混凝土的抗冻耐久性.混凝土与水泥制品,1998,4:8-10
    [49] 杨鼎易,周明耀等.粉煤灰混凝土的耐久性.水利与建筑工程学报, 2003,1(3):1-5
    [50] 许辉,谢友军等.引气粉煤灰混凝土抗冻融耐久性的研究.粉煤灰,2006.4:3-5
    [51] 范沈抚.高强硅粉混凝土的抗冻性及气泡结构性能的研究.水利水电科学研究院结构研究所,1989.9
    [52] ACI committee 226, Sillica fume in concrete, ACI Mat. Jounal, 1987, 84(2):158-186
    [53] Richard Gangne, Alain Boisvert, Michel Pigeon. Effect of superplasticizer dosage on mechanical properties, permeability, and freeze-thaw durability of high-strenth concretes with and without silica fume. ACI Mat. Journal, 1996, 93(2):111-120
    [54] 高丹盈,朱海堂等.冻融后钢纤维混凝土力学性能的试验研究.郑州大学学报(工学版),2005,26(1):1-4
    [55] 谢晓鹏,高丹盈等.钢纤维混凝土冻融后和碳化后力学性能试验研究.西安建筑科技大学学报(自然科学版),2006,38(4):512-518
    [56] 余宏发,孙伟等.膨胀剂和纤维及其复合对混凝土抗冻性能的影响.南京航空航天大学学报,2006,38(2):245-250
    [57] 姜雪洁,王书祥.纤维混凝土抗冻融性能试验及机理分析.建筑技术,2006,37(2):135-137
    [58] 姚武.纤维混凝土的低温性能和冻融损伤机理研究.冰川冻土,2005,27(4):545-549
    [59] Parviz Soroushian, Mohamad Nagi, etc. Freeze-thaw durability of lightweight carbon fiber reinforced cement composites. ACI. Mat. Journal, 1992, 89(5): 491-494
    [60] 高建明,王边等.掺矿渣微粉混凝土的抗冻性试验研究.混凝土与水泥制品,2002,5:3-5
    [61] Peter M. Gifford, Jack E. Gillott. Freeze-thaw durability of activated blast furnace slag cement concrete. ACI MAT. Journal, 1996, 93(3):242-245
    [62] Mandal S, Chakarborty S, Gupta A. Some studies on durability of recycled aggregate concrete. Indian concrete journal, 2002, 76(6):385-388
    [63] Salem, Rohi M. Resistance to freezing and thawing of recycled aggregate concrete. ACI Mat. Journal, 2003, 100(3):216-221
    [64] 王武祥.再生混凝土集料研究.混凝土与水泥制品,2001,4:9-12
    [65] Roumiana Zaharieav, Franois Buyle-bodin, etc. Frost resistance of recycled aggregate concrete, Cem. Conc. Res., 2004, 34:1927-1932
    [66] 张雷顺,王娟等.再生混凝土抗冻耐久性试验研究.工业建筑,2005,35(9):64-68
    [67] Stephan Assie, Gilles Escadeillas, etc. Estimaties of self-compacting concrete potential durability. Construction and building materials, accepted 30 june 2006, May be pressed in 2007
    [68] B Person. Internal frost resistance and salt frost scaling of self-compacting concrete. Cement and Concrete Research, 2003 33:373-379
    [69] 中华人民共和国原城乡建设环境保护部标准编制组.《混凝土结构试验方法标准》(GB50152-92).1991年10月
    [70] C.A Menzel. Some factors influencing results of pull-out bond tests. ACI Journal, Proceedings, 1939, 35:517-502.
    [71] R E Untrauer, R L Henry: Influence of normal pressure on bond strength. ACI Journal, Proceedings, 1965, 62(5):577-585
    [72] P M Ferguson and JN Thompson. Development length for high strength reinforcing bars. ACI Journal proceedings, 1962, 59 (7):887-922
    [73] P M Ferguson and J N Thompson. Development length for large high strength reinforcing bars. ACI Journal proceedings, 1965, 62 (1):71-94
    [74] S.S omayaji, S .P .Shah. Bond stress versus slip relationship and cracking response of tension members. ACI. Journal, 1981(3): 217-225
    [75] D.Z. Yankelevsky. Bond action between concrete and deformed bar-a new model. ACI J., 1985(2):154-161.
    [76] Nilson, A.H.. Non-linear analysis of reinforced concrete by the finite element method. ACI Journal, 1968, 65(9):757-766
    [77] Saeed M Mirza, Jules Houde. Study of bond stress-slip relationship in reinforced concrete. ACI Journal, 1979, 76(1):19-29
    [78] 狄生林.钢筋混凝土握裹应力-滑移关系的试验研究.南京:东南大学土木工程系,1981
    [79] D H Jiang, etc. Study of the transfer of tensile forces by bond. ACI Journal, Proceedings, 1984, 81(3):251-259
    [80] 金芷生,朱万福等.钢筋与混凝土粘结性能试验研究.南京工学院学报,1985,15(2):73-85
    [81] 王传志,藤智明.钢筋混凝土结构理论.北京:中国建筑工业出版社,1985
    [82] 宋玉普,赵国藩.钢筋与混凝土间的粘结滑移性能研究.大连工学院学报,1987,26(2):93-100
    [83] Rales Tepfers. Cracking of concrete cover along anchored deformed reinforcing bars. Magazine of concrete research, 1979, 31(106):3-12
    [84] 徐有邻.变形钢筋-混凝土粘结锚固性能的试验研究.博士学位论文,清华大学,1990
    [85] R J Allwood, Abdullah, ect. Modeling nonlinear bond-slip behaviour for finite element analyses of reinforced concrete structures. ACI structure Journal, 1996, 93(5):538-544
    [86] C.O. Orangum, et al. A reevaluation of test data on development length and splices. ACI Journal, 1979, 74(3):114-122
    [87] D. Darwin, et al. Development length criteria:bars not confined by transverse reinforcement. ACI Structure Journal, 1992, 89(6):709-720.
    [88] 高向玲.高性能混凝土与钢筋的粘结性能试验研究及数值模拟.博士学位论文,同济大学,2003
    [89] M. Reza. Esfahani, etc. Local bond strength of reinforcing bars in normal strength and high- strength concrete(HSC). ACI, Structure Journal, 1998, (3-4):96-106.
    [90] M. Reza Esfahani, ect. Bond between normal strength and high-strength concrete and Reinforcing bars in spices in beams. ACI, Structure Journal, 1998, (5-6): 272-280.
    [91] D. Ngo, A C Scordelis. Finite element analysis of reinforced concrete beams. ACI Journal, 1967, 64(3):152-163
    [92] L A Lutz. Analysis of stresses in concrete near a reinforcing bar due to bond and transverse cracking. ACI, 1993, 167(10):778-787
    [93] 宋启根.用有限元法探讨钢筋混凝土粘结试件.南京工学院学报,1981,11(4):100-115
    [94] 牟小光.高强预应力钢筋粘结性能试验研究及数值模拟.博士学位论文,大连理工大学,2005
    [95] B. Johnston, K C Cox. The bond strength of rusted deformed bars. ACI Journal, 1941, 37:37-72
    [96] E.L Kemp, etc. Effect of rust and scale on the bond characetistics of deformed reinforcing bars. ACI Journal, Vol. 65, No. 9, 1968:743-758
    [97] 徐港,王青.锈蚀钢筋与混凝土粘结性能研究.混凝土,Vol.199,No.5,2006:13-17
    [98] Al-Sulaimani G. J, Kaleemullah M, etc. Influence of Corosion and Cracking on Bond Behavior and Strength of Reinforced Concrete Members. ACI Structural Journal, 1990, 87(2): 220-231.
    [99] 袁迎曙,余索等.锈蚀钢筋混凝土的粘结性能退化研究.工业建筑,1999,29(11):47-50
    [100] 赵羽习.钢筋混凝土结构粘结性能和耐久性能的研究.博士学位论文,浙江大学,2001
    [101] 何世钦.氯离子环境下钢筋混凝土构件耐久性能试验研究.博士学位论文,大连理工大学,2004
    [102] Diederichs U, Schneider U. Bond Strength at High Temperatures. Magazine of Concrete Research, 1981, 33(115): 75—84
    [103] Modcy P D, Royles R. Response of the Bond in Reinforced Concrete to High Temperatures. Magazine of Concrete Research, 1985, 35(123):67—74
    [104] Royles R, Morley P D. Further Response of the Bond in Reinforced Concrete to High Temperatures. Magazine of Concrete Research, 1985,35(124):157—163
    [105] 周新刚,吴江龙.高温后混凝上与钢筋粘结性能的试验研究.工业建筑,1995,25(5):37—40
    [106] 郭操.高温对钢筋混凝土粘结性能和梁受力性能影响的研究.硕士学位论文,中国矿业大学,2004
    [107] 袁广林,郭操等.高温下钢筋混凝土粘结性能的试验与分析.工业建筑,2006,36(2):57-61
    [108] T.S. Shih, G.C. Lee. Effect of freezing cycles on bond strength of concrete. Journal of structural engineering, 1988, 114(3):717-726
    [109] 过镇海,王传志.多轴应力下混凝土的强度和破坏准则研究.土木工程学报,1991,24(3):1-14
    [110] 宋玉普,赵国藩.应变空间混凝土的破坏准则.大连理工大学学报,1991,31(4):455-462
    [111] 杨木秋.混凝土二轴受压与二轴拉压强度及其在拱坝设计中的应用.人民长江,1992,23(6):36-39
    [112] 宋玉普,赵国藩.钢筋混凝土结构分析中的有限单元法.大连:大连理工大学出版社,1994
    [113] 中华人民共和国国家标准.混凝土结构设计规范(GB50010-2002).北京:中国建筑工业出版社,2002
    [114] 中华人民共和国国家标准.普通混凝土力学性能试验方法(GB50202—2002).北京:中国建筑工业出版社,2002
    [115] 陈飞.冻融条件下引气混凝土多轴强度的试验研究:(硕士学位论文).大连:大连理工大学,2005.12
    [116] 过镇海.混凝土的强度和本构关系.北京:中国建筑工业出版社,2004.3
    [117] 蔡昊.混凝土抗冻耐久性预测模型:(博士学位论文).北京:清华大学,1998
    [118] 施士升.冻融循环对混凝土力学性能的影响.土木工程学报,1998,30(4):35-42
    [119] 葛修润,任建喜等.岩土损伤力学宏细观试验研究.北京:科学出版社,2004
    [120] 杨光松.损伤力学与复合材料损伤.北京:国防工业出版社,1995
    [121] 王军.损伤力学的理论与应用.北京:科学出版社,1997
    [122] 沈聚敏,王传志等.钢筋混凝土有限元与板壳极限分析.北京:清华大学出版社,1991
    [123] 宋玉普.多种混凝土材料的本构关系和破坏准则.北京:中国水利水电出版社,1997
    [124] 江见鲸,陆新征等.混凝土结构有限元分析.北京:清华大学出版社,2004
    [125] N.S. Ottosen, A failure criterion for concrete, ASCE 1977, 103(4)
    [126] N.S. Ottosen, Constitutive model for short-time loading of concrete, ASCE 1979, 104(1)
    [127] 唐光普,刘西拉.混凝土冻融损伤破坏面的研究.深圳沿海地区混凝土结构耐久性设计科技论坛暨第六届全国混凝土结构耐久性学生交流会,2004
    [128] Organisation for Economic Co-operation and Development, "Durability of Concrete Road Bridges", 1990
    [129] S. Sorotz and H. Holzenbein. Influence of ribdimensions of reinforcing bars or bond and bend ability. ACI journal, proceedings, 1979, 76 (1): 111-125
    [130] 中华人民共和国标准.金属材料室温拉伸试验方法(GB/T228-2002).北京:中国标准出版社,2002.
    [131] 王传志,滕智明.钢筋混凝土结构理论.北京:中国建筑工业出版社,1985
    [132] L.A. Lutz. Analysis of stresses in concrete near a reinforcing bar due to bond and transverse cracking. ACI Journal, 1970, 67(10):778-787
    [133] 徐有邻.我国混凝土结构用钢筋的现状及发展.土木工程学报,1999,15(5):56-58
    [134] 蔡昊.混凝土抗冻耐久性预测模型: (博士学位论文).北京:清华大学,1998.4:P24-26
    [135] Pigeon M, Lachance M. Critical air void spacing factors for concretes submitted to slow freeze-thaw cycle. ACI Journal, 1981, 78(4):282-291
    [136] 唐明述.混凝土的抗冻性.南京:南京化工学院硅酸盐研究室,1984
    [137] 李天媛.试论混凝土冻害机理.混凝土与水泥制品,1989,5:8-11
    [138] Powers T.C. The air requirement of frost-resistance concrete. Proceedings, Highway research board, 1949, 29:184-202
    [139] CRC Handbook of chemistry and physics, 70th Edition CRC press, 1989-1990
    [140] Powers T.C. Structure .and Physical Properties of Hardened Portland Cement Paste. Journal of the American ceramic society, 1958, 41(1):1-6
    [141] R. PARK, T. PAULAY. Reinforced Concrete Structures. Canada: John Wiley & Sons, Inc. 1975:392-425.
    [142] J.M. Plowman, The measurement of bond strength. RILEM Symposium. Stockholm, 1957
    [143] 温诗铸,黄平.摩擦学原理.北京:清华大学出版社,2002
    [144] Rales Tepfers. Cracking of concrete cover along anchored deformed reinforcing bars. Magazine of concrete research, 1979, 31(106):3-12
    [145] M. Reza Esfahani and B. Vijaya Rangan. Loacal bond strength of reinforcing bars in normal strength and high-strength concrete. ACI Struc. Journal., 1998, 95(3):272-280
    [146] 藤智明,罗福午等.钢筋混凝土基本构件.北京:清华大学出版社,1997
    [147] 赵国藩等.结构可靠度理论.大连:大连理工大学出版社,2000
    [148] 贡金鑫等.工程结构可靠度计算方法.大连:大连理工大学出版社,2003
    [149] 李清富,高建磊等.工程结构可靠性原理.郑州:黄河水利出版社,1999
    [150] 何水清,王善.结构可靠性分析与设计.北京:国防工业出版社,1993
    [151] 李田,刘西拉.混凝土结构耐久性分析与设计.北京:科学出版社,1999.
    [152] 杨庆生.复合材料细观结构力学与设计.北京:中国铁道出版社,2000:116-203
    [153] 唐春安,朱万成.混凝土损伤与断裂-数值实验.北京:科学出版社,2003.
    [154] Thomas Telford. Durable Concretes Structures design Guide. Switzerland, 1992.
    [155] 蒋仁言.威布尔模型族特性、参数估计和应用.北京:科学出版社,1998.
    [156] Clifton J R. Predicting the life of concrete. ACI Mater J, 1993, 90(6): 611-617.
    [157] 李金玉,彭小平,等.混凝土抗冻性的定量化设计.混凝土,2000,134(9):61-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700