非线性GaAs光电导开关电流传导特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GaAs光电导开关具有时间抖动小、电流上升速度快、重复频率高等特点,特别是耐高压及大功率容量等优点,使其在超高速电子学和大功率脉冲产生与整形技术领域具有广泛的应用前景。然而非线性工作模式下伴随有丝状电流现象,且电场锁定时间长达数十个微秒,这对开关材料造成很大的损伤,极大地影响了开关再次使用的输出功率和开关的使用寿命。
     通过实验分析了电极间隙和触发激光脉冲的能量对开关输出功率的影响。指出GaAs材料的转移电子效应是光电导开关产生非线性的主要原因。得出光电导开关非线性工作模式下高场畴形成的必要条件。使用EL2能级缺陷理论解释了开关在光电阈值附近的奇特的输出电流波形。在光激发电荷畴理论的基础上提出了光电导开关中的流注模型,使用泊松方程计算得出开关中的电场满足了流注传播的条件。使用Franz-Keldysh效应和Burstein-Moss效应解释了丝状电流的快速传导特性,得出丝状电流的快速传播是光子参与载流子输运的结果。分析了光电导开关的输出电流。解释了输出电流的快速上升特性和非线性光电导开关的lock-on电流。得出在高偏置电场的作用下,丝状电流通过芯片时对路径具有选择性。丝状电流引起了PCSS's的击穿,而热击穿最终导致了开关的失效。指出光电导开关存在完全击穿和不完全击穿两种击穿状态,光电导开关的不完全击穿是由于偏置电压不是足够大,雪崩倍增不是非常剧烈,新产生的载流子数不足以发生足够的晶格散射,打破GaAs中的化学键,并没有完全破坏开关材料的结构,设计了多光纤耦合诱导多丝放电实验方法。
GaAs Photoconductive semiconductor switches (PCSS) has been taken an important part in the pulse power technology for the virtue of no trigger jitter, switching speed, a small parasitic inductance and capacitors, high-repetition-rate, simple structure and high voltage, etc. It has broad application prospects. But associated with the non-linear work mode, the current filaments and the field, which locked for tens of microseconds, cause great damage to the PCSS, and has greatly affected to the re-used output and the life of the switch.
     Thorough the experiments, the paper analyze the impact of the electrode gap and the energy of the trigger laser to the output of the switch. Indicate that the transfer of electronic effect is the main factor of the non-linear work mode. The carrier concentration must come to a particular scope, which is the necessary condition for the formation of the high-field domain. Use the EL2 level defect theory to explain the peculiar output waveform in the vicinity of the threshold value. Propose a streamer mode based on the gas discharge theory and the theory of optically activated charge domain. Calculate the field, in which the streamer propagates, by Poisson equation. Get conclusion that the photon plays an important role in the propagation of the streamer, the Franz-Keldysh (F-K) effect and the Burstein-Moss (B-M) effect is the main factor that affect the current filaments speed. Analyze the output current of the photoconductive switch. Explain the rapid increase character of output current, and the lock-on current. In the role of the high-bias electric field, the path that the current filaments come though the switch is selective. It is the Filamentary currents caused PCSS's the breakdown, while the thermal breakdown eventually led to the switch failure. There are two kinds of breakdown stages, the complete breakdown and incomplete breakdown. The incomplete breakdown is due to the bias voltage is not large enough and the avalanche multiplication is not very severe, the new generated carrier can not make sufficient number of lattice scattering, to break the chemical bonds in GaAs, and not completely destroyed the structure of switch material. Design a multi-filaments discharge experimental method, which is induced by coupled multi-fiber.
引文
[1]刘锡三.高功率脉冲功率技术[M].北京:国防工业出版社,2005:9,333-335,379.
    [2]T. Namihira, D. Y Wang, S. Katsuki, R. Hackam, H. Akiyama. Propagation velocity of pulsed streamer discharges in atmospheric air [J]. IEEE Trans.Plasma Sci.,2003,31(5):1091-1094.
    [3]K. H. Schoenbach, S. Katsuki, R. H.Stark, E. S. Buescher, S. J. Beebe. Bioelectrics-new applications for pulsed power technology [J]. IEEE Trans Plasma Sci.,2002,30(1):293-300.
    [4]王莹.高功率脉冲电源[M].北京:原子能出版社,1991:3-4.
    [5]M. D. Pocha, R. L. Druce.35-kV GaAs subnanosecond photoconductive switches [J].IEEE Transaction on Electron Devices,1990,37(12):2486-2492.
    [6]K. S. Kelkar, N. E. Islam, C. M. Fessler, W. C. Nunnally. Silicon carbide photoconductive switch for high-power, linear-mode operations through sub-band-gap triggering [J]. Journal of Applied Physics, 2005,98(9):1-6.
    [7]S. Jayaraman C. H. Lee, Observation of two-photon conductivity in GaAs with nanosecond and picosecond light pulse, Appl. Phys. Lett., Vol.20,1972,392-395.
    [8]D. H. Auston. Picosecond optoelectronic switching and gating in silicon, Appl. Phys. Lett., Vol. 26,1975,101-103.
    [9]C. H. Lee et al. Picosecond optoelectronic switching in GaAs, Appl. Phys. Lett., Vol.30,1977, 84-86.
    [10]W. C. Nunnally, R. B. Hammond.80MW photoconductor power switch, Appl. Phys. Letter. Vol.4,1984,980-982.
    [11]G. M. Loubriel, M. W O' Mally, F. J. Zutavern. High gain photoconductive semiconductor switches for impulse source [J]. Proc. SPIE Optically Activated Switching Ⅳ,1994,2343:180-184.
    [12]D. krokell, D. Grischkowsky, M. B. Ketchen. Subpicosecond Electrical pulse generation Using Photoconductive Switches with Long Carrier Lifetime[J]. Appl. Phys. Lett.,1989,54(11):1046-1047.
    [13]N. C. Anderson. Photoconductive power switches [C] IEE Colloquium on Pulsed Power Technology, 1992:4/1-4/5.
    [14]K. Kambour, H. P. Hjalmarson, C. W. Myles. A collective theory of lock-on in photoconductive semiconductor switches [C] Proc 14th IEEE International Pulsed Power Conference,2003,1:345-348.
    [15]Gundersen MA, Hur JH and Zhao H, et al. Lock-on effect in pulsed power semiconductor switches [J]. J. Appl. Phys,1992,71(6):3036-3038.
    [16]K. Kambour. A theory of lock-on and electrical breakdown [D]. Ann Arbor:ProQuest Information and Learning Company,2003:49-54,68.
    [17]张显斌,施卫,李琦,等.用红外激光触发半绝缘GaAs光电导开关的实验研究[J].强激光与粒子束,2002,14(6):815-818.
    [18]施卫,戴慧莹,张显斌.用1064nm激光脉冲触发半绝缘GaAs光电导开关的奇特光电导现象[J].2005,半导体学报,26(3):460-464.
    [19]R. P. Brinkmann, K. H. Schoenbach. Modeling of electron-beam controlled diamond switches. SPIE, 1992,1632 (Optically Activated Switching II):242-252.
    [20]Dogan, S. Teke, A. Huang, et al.4H-SiC photoconductive switching devices for use in high-power applications [J]. Applied Physics Letters,2003,82(18):3107-3109.
    [21]F. J. Zutavern, G. M. Loubriel, M. W. O'Malley, et al. Rise time recovery of GaAs photoconductive semiconductor switches. SPIE Vol.1378, Optically Activated Switching,1990:271-278.
    [22]F. J. Zutavern, G. M. Loubriel, M. W. O'Malley, et al. High gain photoconductive semiconductor switching[C]. IEEE 8th Pulsed Power Conference, San Diego, CA,1991:23-28.
    [23]G. M. Loubriel, Zutaven F J, M. W. O'Malley, et al. Measurement of filament velocity reduced trigger energy. SPIE Vol.2343 Optically Activated Switching IV,1994:21-31.
    [24]G. M. Loubriel, F. J. Zutavern, A. Mar. et al. Longevity of optically activated, high gain GaAs photoconductive semiconductor switches. IEEE 11 th Pulsed Power Conf., Vol.1,1997:405-413.
    [25]J.C.Adams, R. A. Falk, C. D. Capps, et al. Characterization of current filamention in GaAs photoconductive switches. SPIE Vol.1873 Optically Activated Switching III, Los Angeles, CA. 1993:10-20.
    [26]F. J. Zutavern, G. M. Loubriel, W. D. Heigeson, et al. Fiber-optic control of current filaments in high gain potoconductive semiconductor switches. Proc.21st Power Modulator Symp., Costa Mesa, CA, 1994:116-119.
    [27]MaKal, Urata. Rvohei. Low-temperature growth of GaAs on Si used for ultrafast photoconductive switches. IEEE Journal of Quantum Electronics,2004,40(6):800-804.
    [28]Gunda, Rahul, Gleason, et al. Radio-frequency heating of GaAs and SiC photoconductive switch for high-power applications. IEEE Transactions on Plasma Science,2006,34(51):1697-1701.
    [29]W. T. White, C. G. Dease, M. D. Pocha, et al. Modeling GaAs High-Voltage Sub-nanosecond Photoconductive Switches in One Spatial Dimension, IEEE Trans. Electron Devices.1990,37(12), 2532-2541.
    [30]L. Parrtain, D. Day, R. Powell. Metastable impact ionization of traps model for lock-on in GaAs photoconductive switches [J]. Appl. Phys. Letter.,1993,74(1):335-340.
    [31]R. P. Brinkmann, K. H. Schoenbach, D. C. Stoudt, et al. Nonlinear behavior of optically activated switches at high electrical fields[J]. IEEE Trans. Electron Devices,1991,38(4):701-709.
    [32]Zhao H. Hadizad P. Hur J H. et al. Avalanche injection model for lock-on effect in Ⅲ-Ⅴpower photoconductive switches [J]. Appl. Phys. letter.,1993,73(4):1807-1811.
    [33]C. D. Capps, R. Falk. Time dependent model of optically triggered GaAs switch[J]. Appl. Phys. Letter.,1993,74(11):6645-6654.
    [34]K. Kambour, S. Kang, C. W. Myles, and H. P. Hjalmarson. Steady-state properties of lock-on current filaments in GaAs. IEEE Transactions on Plasma Science,2000,28(5):1497-1499.
    [35]H. P. Hjalmarson, K. Kambour, C. W. Myles, et al. Continuum models for electrical breakdown in photoconductive semiconductor switches. IEEE Pulsed Power Conference,2007,1-4:446-450.
    [36]施卫,梁振宪.高倍增高压超快GaAs光电导开关中的光激发畴现象[J].半导体学报,1999,20(1):53-57.
    [37]M. O. Manaserh, W. C. Mitchel, D. W. Fischer. Obervation of the second energy level of the EL2 defect in GaAs by the infrared absorption technique [J]. Appl. Phys. Letter,1989,55(9):864-866.
    [38]J. C. Bourgoin, T. Neffati. Detection of the metastable state of the EL2 defect in GaAs [J]. J Appl. Phys.1997,82(8):4124-4126.
    [39]ShiWei, ChenErzhu, ZhangXianbin, et al. Monople charge domain in high-gain gallium arsenide photoconductive switch [J]. Chinese Physics Letters,2002,19(8):1119-1122.
    [40]Adamsjc, Falkra, Cappscd, et al. Characterization of current filamention in GaAs photoconductive switches [C]. SPIE,1993,1873:10220.
    [41]LiangHuawei, ShiShunxiang, LiJiali. Study on Characteristics of a novel waveguide array electro-optic scanner [J]. Acta Photonica Sinica,2008,37(1):125.
    [42]N. G. Basov, A. G. Molchonhanov, A. S.Nasibov, A. Z. Obidin, A. N. Pechenov, AND YU. M. Popov. Journal of Quantum Electronics,1977,8(13):699-704.
    [43]F. J. Zutavern, G. M. Loubriel, M. W. O'Malley, W. D. Helgeson, D.L.Mclaughlin, Proc.8th IEEE Pulsed Power Conference, San Diego, CA,29(1991).
    [44]Wei Shi, Guanghui Qu, Ming Xu, Hong Xue, Weili Ji, Lin Zhang, and Liqiang Tian. Current limiting effects of photoactivated charge domain in semi-insulatingGaAs photoconductive switch [J] Appl. Phys. Letter.,2009,94(7):072110.
    [45]ShiWei, ZhangJian, WuShengjiang, ChenSuguo, MaCheng. Streamer mode in high gain gallium arsenide photoconductive switches. Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials,3,2009:1227-1230.
    [46]孙承伟,陆启生,范生修等.激光辐照效应[M].北京:国防工业出版社,2002:58-67.
    [47]吴云峰,叶玉堂,杨先明等.10.6μm激光诱导扩散中热致破坏的抑制[J].光学学报,2004,24(12):1638-1642.
    [48]舒柏宏,侯静,陆启生等.砷化稼材料与激光相互作用的实验研究[J].红外与激光,1999,28(1):40-42.
    [49]杨瑞霞等.非有意掺杂LEC-SI-GaAs中EL2分布特性的研究[J].电子科学学刊,1995,17(1):94-99.
    [50]R. Aleksiejunas, M. Sudzius, K. Jarasiunas. Direct determination of EL2 thermal recovery rate at 300K [J]. Optics Communications.2001,198:115-120.
    [51]姜节俭.光电物理基础[M].成都电讯工程学院出版社,1986:45-51.
    [52]施卫,田立强.半绝缘GaAs光电导开关的击穿特性[J].半导体学报,2004,25(6):691-696.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700