内皮特异性分子-1在慢性阻塞性肺疾病中的变化和可能的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的探讨经腹腔注射香烟提取物(cigarette smoke extract, CSE)建立肺气肿小鼠模型,并评价模型的病理改变,肺功能,细胞凋亡,蛋白酶表达,抗氧化能力。
     方法21只SPF级BALB/C小鼠随机分为PBS组(n=7)和CSE组(n=14),制备香烟提取物。两组分别在0,11,22天经腹腔注射0.3mlPBS或CSE,第28天处理两组小鼠,收集标本。
     PLY3211小动物肺功能检测系统进行小鼠肺功能检查;采用静脉留置针行灌洗术留取支气管肺泡灌洗液(BALF),并用终点比色法检测BALF总抗氧化能力(T-AOC);肺组织病理切片苏木素-伊红(HE)染色后观察形态学改变并定量测定肺泡平均截距(MLI),肺泡破坏指数(DI)和平均肺泡隔厚度(MAST);末端转移酶标记技术(TUNEL法)测定肺组织细胞凋亡指数(AI);免疫组织化学法测定肺组织MMP-2和MMP-9表达。
     结果
     (1)与PBS组比较,CSE组小鼠动态肺顺应性减低(p<0.05),气道阻力升高(p<0.05)。
     (2)病理学观察示:CSE组小鼠肺组织肺泡腔扩大、部分肺泡间隔断裂、肺气肿形成,气道上皮排列紊乱、部分气道上皮增生、周围炎症细胞浸润并伴有平滑肌增生。部分小血管管腔狭窄,甚至闭锁,血管壁增厚,平滑肌增殖。病理形态学定量分析显示:与PBS组比较,CSE组小鼠肺泡平均截距及肺泡破坏指数增高(均p<0.05),、平均肺泡隔厚度减少(p<0.05)。
     (3)与PBS组比较,CSE组小鼠肺组织细胞凋亡率升高(p<0.05)。
     (4)与PBS组比较,CSE组小鼠肺组织MMP-2及MMP-9表达增高(p<0.05)。
     (5)与PBS组比较,CSE组小鼠支气管肺泡灌洗液抗氧化能力减低(p<0.05)。
     结论经腹腔注射CSE可以建立肺气肿小鼠模型,该模型稳定可靠,与人类慢性阻塞性肺疾病高度相似。
     目的探讨内皮特异性分子-1(Endothelial cell specific molecule-1, ESM-1)在经腹腔注射香烟提取物所致慢性阻塞性肺疾病小鼠中的变化情况,了解其与肺组织结构细胞凋亡的相关性。
     方法21只6周雄性SPF级BALB/C小鼠随机分为2组:PBS组,CSE组。PBS组7只,CSE组14只。分别在0,11,22天经腹腔注射PBS/CSE,第28天处死小鼠。留取肺组织,冻存在—86℃冰箱中,提取组织蛋白,采用Western Blotting法检测肺组织ESM-1的表达。肺组织包埋切片,用免疫组织化学法检测肺组织ESM—1原位表达情况。用ELISA法测定小鼠血清ESM-1浓度。
     结果
     (1)与PBS组比较,CSE组小鼠肺组织ESM-1表达(Western Blotting)降低(p<0.05)。
     (2)与PBS组比较,CSE组小鼠肺组织ESM-1表达(免疫组织化学法)降低(p<0.05)。
     (3)与PBS组比较,CSE组小鼠血清ESM-1浓度降低(p<0.05)。
     (4)肺组织细胞凋亡指数(AI)与肺组织ESM-1表达(Western Blotting法) (r=-0.998,p<0.001)呈负相关,与血清ESM-1浓度呈负相关(r=-0.774,p<0.05)。
     结论本研究证明了肺气肿小鼠肺组织ESM-1的表达以及血清浓度降低,且与AI呈负相关。ESM-1可能参与了COPD细胞凋亡/修复失衡机制。
     目的探讨内皮特异性分子-1(Endothelial cell specific molecule-1, ESM-1)在慢性阻塞性肺疾病(Chronic obstructive pulmonary disease, COPD)患者体内的变化情况,了解其与肺组织结构细胞凋亡及肺功能的相关性。
     方法收集COPD患者及正常人的肺组织、血清。肺组织分组:A组:非吸烟(?)COPD者;B组:吸烟并COPD组(稳定期轻度);C组:吸烟并COPD患者(稳定期中度)。血清分组:D组:健康不吸烟者;E组:吸烟并COPD组(稳定期中度);F组:吸烟并COPD患者(稳定期重度);G组:吸烟并COPD患者(稳定期极重度)。肺组织病理切片苏木素-伊红(HE)染色后观察形态学改变并定量测定肺泡平均截距(MLI),肺泡破坏指数(DI)和平均肺泡隔厚度(MAST);末端转移酶标记技术(TUNEL法)测定肺组织细胞凋亡指数(AI);免疫组织化学法检测肺组织ESM-1原位表达情况。ELISA法测定人血清ESM-1浓度。
     结果
     (1)病理学观察示:B组及C组人肺组织肺泡腔扩大、部分肺泡间隔断裂、肺气肿形成,气道上皮排列紊乱、部分气道上皮增生周围炎症细胞浸润并伴有平滑肌增生。部分小血管管腔狭窄,甚至闭锁,血管壁增厚,平滑肌增殖。
     病理形态学定量分析显示:B组及C组MLI较A组明显增高,差异有统计学意义(p<0.05)。C组MLI较B组明显增高,差异有统计学意义(p<0.05)。B组及C组DI较A组明显增高,差异有统计学意义(p<0.05)。C组DI较B组明显增高,差异有统计学意义(p<0.05)。B组及C组MAST较A组明显降低,差异有统计学意义(p<0.05)。C组MAST较B组明显降低,差异有统计学意义(p<0.05)。
     (2)B组及C组凋亡细胞指数(AI)较A组明显增高,差异有统计学意义(p<0.05)。C组AI较B组明显增高,差异有统计学意义(p<0.05)。
     (3)B组及C组ESM-1蛋白表达较A组明显降低,差异有统计学意义(p<0.05)。C组ESM-1蛋白表达较B组明显降低,差异有统计学意义(p<0.05)
     (4)E组、F组、G组血清ESM-1浓度较D组明显降低,差异有统计学意义(p<0.05)。F组、G组血清ESM-1浓度较E组明显降低,差异有统计学意义(p<0.05)。G组血清ESM-1浓度较F组明显降低,差异有统计学意义(p<0.05)
     (5)肺组织细胞凋亡指数(AI)与肺组织ESM-1表达(r--0.886,p<0.001)呈负相关
     结论本研究证明了COPD患者肺组织ESM-1的表达以及血清浓度降低,且与AI呈负相关,且与肺功能相关。ESM-1可能参与了COPD细胞凋亡/修复失衡机制。
Objective To set and evaluate a mice model of emphysema induced by cigarette smoke extract.
     Methods BALB/c mice were injected with PBS/CSE(cigarette smoke extract) at day 0,11,22, and were sacrificed at day 28. Pulmonary function, pathology of lung tissue(Mean linear intercept, Destructive index, Mean alveolar septal thickness), antioxidant activity of bronchoalveolar lavage fluid, pulmonary parenchymal apoptosis index, expression of MMP-2, MMP-9 were measured. Results
     (1)Compared to PBS-group, airway resistance were higher in CSE-group (p<0.05), and airway dynamic compliance were lower in CSE-group(p<0.05).
     (2)Compared to PBS-group, destructive index and mean linear intercept were higher in CSE-group (p<0.05), and mean alveolar septum thickness were lower in CSE-group (p<0.05).
     (3)Compared to PBS-group, apoptosis index (AI) were higher in CSE-group (p<0.05).
     (4)Compared to PBS-group, antioxidant activity were lower in CSE-group (p<0.05).
     (5)Compared to PBS-group, expression of MMP-2 and MMP-9 increased in CSE-group (p<0.05).
     Conclusions Intraperitoneal injection of CSE causes emphysema and increase of alveolar septal cell apoptosis in mice.
     Objective A characteristic pathogenesis of COPD is pulmonary vascular endothelial apoptosis. Endothelial cell specific molecule-1 (ESM-1) is a proteoglycan mainly secreted by pulmonary endothelium. It playes an important role in angiogenesis and proliferation of endothelium. We hypothesized that ESM-1 might be involved in pathogenesis of COPD. To investigate expression of ESM-1 and apoptosis of alveolar septal cells.
     Methods BALB/c mice were injected with PBS/CSE(cigarette smoke extract) at day 0,11,22, and were sacrificed at day 28. ESM-1 in lung tissue, and concentration of ESM-1 in serum were measured. Results
     (1)Expression of ESM-1 in lung tissue and concentration of ESM-1 in serum were lower in CSE-group compared with PBS-group (p<0.05).
     (2)Expression of ESM-1 in lung tissue was inversely correlated with AI (r =-0.998, p<0.001). Concentration of ESM-1 in serum was inversely correlated with AI (r=-0.774, p<0.05).
     Conclusions ESM-1 decreases in emphysema mice and relates to pulmonary parenchymal apoptosis. It suggestes that ESM-1 may be involved in pathogenesis of COPD.
     Objective A characteristic pathogenesis of COPD is pulmonary vascular endothelial apoptosis. Endothelial cell specific molecule-1 (ESM-1) is a proteoglycan mainly secreted by pulmonary endothelium. It playes an important role in angiogenesis and proliferation of endothelium. We hypothesized that ESM-1 might be involved in pathogenesis of COPD.This research investigated expression of ESM-1 and apoptosis of alveolar septal cells in COPD patients.
     Methods Collecting lung tissue and serum of COPD patients and normal people. Lung group:A group:non-smoking non-COPD; B Group: Smoking and COPD group (stable period I); C group:smoking and COPD patients (stable period II). Serum group:D:non-smokers health; E Group:Smoking and COPD group (stable period II); F Group: Smoking and COPD patients (stable period III); G Group:Smoking and COPD patients (stable period IV). Pulmonary function, pathology of lung tissue, ESM-1 in lung tissue, and concentration of ESM-1 in serum were measured. Results
     (1)Compared to A Group, the MLI and DI were significantly increased and the MAST was decreased in B Group and C Froup(All p<0.05).
     (2)Compared to A Group, the AI were significantly increased in B Group and C Froup(All p<0.05).
     (3)Compared to A Group, the expression of ESM-1 in lung tissue was significantly decreased in B Group and C Froup(All p<0.05).
     (4)Compared to A Group, the concentration of ESM-1 in serum was significantly decreased in B Group and C Froup(All p<0.05).
     (5)Expression of ESM-1 in lung tissue was inversely correlated with AI (r =-0.886, p<0.05).
     Conclusions ESM-1 decreases in COPD patients and relates to pulmonary parenchymal apoptosis. It suggestes that ESM-1 may be involved in pathogenesis of COPD.
引文
[1]中华医学会呼吸病学分会慢性阻塞性肺疾病组.慢性阻塞性肺疾病诊治指南
    (2007年修订版).中华呼吸结核杂志,2007,30:8-17.
    [2]Wright JL, Churg A. Cigarette smoke causes physiologic and morphologic changes of emphysema in the guinea pig. Am Rev Respir Dis,1990,142: 1422-1428.
    [3]Escolar JD, Martinez MN, Escolar MA, et al. Tobacco smoke and age as risk factors in emphysema, morphometrical study on the rat. Histol Histopathol,1996,7-16.
    [4]Hautamaki R D, Kobayashi D K, Senior R M,et al. Requirement for macrophage elastase for cigarette smoke induced emphysema in mice. Science,1997,277:2002-2004.
    [5]迟春花,何冰,汤秀英,等.烟草雾吸入导致慢阻肺机制的实验研究2大鼠Clara细胞结构及其分泌蛋白的变化.心肺血管病杂志,2000,19(3):224-227.
    [6]Stolk J, Rudolphus A, Davies P, et al. Induction of emphysema and bronchial mucus cell hyperplasia by intratracheal instillation of lipopolysaccharide in the hamster. Pathol,1992,167:349-356.
    [7]许浒,熊密,黄庆华,等.细菌感染导致慢性阻塞性肺疾病大鼠模型的探讨.中华结核和呼吸杂志,1999,22(12):739-742
    [8]Raub JA, Mercer RR, Miller FJ, et al. Dose response of elastase induced emphysema in hamsters. Am Rev Respir Dis,1982,125:432-435.
    [9]Lucey EC, Goldstein RH, Stone PJ, et al. Remodel ing of alveolar walls after elastase treatment of hamsters. Am J Respir Crit Care Med,1998, 158:555-564.
    [10]Boyd RL, Fisher MJ, Jaeger MJ. Non-invasive lung function tests in rats with progressive papain-induced emphysema. Respir Physiol,1980,40: 181-190.
    [11]Chitano P, Hosselet JJ, Mapp CE. Effect of oxidant air pollutants on the respiratory system:insights from experimental animal research. Eur Respir J,1995,8:1357-1371.
    [12]许建英,杜永成,赵鸣武,等.大鼠慢性阻塞性肺疾病模型的建立.中国病理生理杂志,2000,16:383-384.
    [13]Snider GL, Lucey EC, Faris B, et al. Cadmium chloride induced air space enlargement with interstitial pulmonary fibrosisis not associated with destruction of lung elastin. Implications for the pathogenesis of lung elastin. AM Rev Respir Dis,1998,137:918-923.
    [14]Taraseviciene-Stewart L, Scerbavicius R, Choe KH, et al. An animal model of autoimmune emphysema. Am J Respir Crit Care Med,2005,171: 734-742.
    [15]宋一平,崔德健,茅培英.慢性阻塞性肺病大鼠模型的建立及药物干预的影响.军医进修学院报,2001,22(2):99102.
    [16]邹海峰,赵春玲,陈燕,等.慢性阻塞性肺疾病大鼠肺牵张反射对心率的影响.西部医学,2007,19(1):9-11.
    [17]田素增,谢敏,刘涛,等.慢性阻塞性肺疾病大鼠Ⅱ型肺泡上皮细胞凋亡水平的变化及吸入糖皮质激素对其的影响.中国呼吸与危重监护杂志,2007,6(5)381-384.
    [18]金焱,庞宝森,武维屏,等.一种实验性大鼠慢性阻塞性肺疾病模型的建立.心肺血管病杂志,2004,23(3):179-181.
    [19]Kodavanti UP, JacksonMC, Ledbetter AD, et al. The combination of elastase and sulfur dioxide exposure causes COPD like lesions in the rat. Chest,2000,117:299-302.
    [20]李建生,李素云,王又红,等.慢性阻塞性肺疾病急性加重期模型大鼠肺组织基质金属蛋白酶的变化及通塞颗粒的治疗作用.中国老年学杂志,2005,25(2):174-175.
    [21]严桂珍,郑家,许少峰,等.巳申亥时辰不同疗法对脾阳虚家兔免疫功能的影响.福建中医学院学报,2000,2(10):14.
    [22]李亚光,曹柏龙,贾东岩.慢性阻塞性肺疾病“肺脾气虚证”复合证型动物模型的研究.内蒙古中医药,2005,24(5):18-19.
    [23]张炜,毕小利.慢性阻塞性肺病复合肾虚证大鼠模型的建立.实验动物与比 较医学,2005,25(3):157-161.
    [24]Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNF alpha in pulmonary pathophysiology. Respir Res,2006,7:125.
    [25]Taraseviciene-Stewart L, Kraskauskas D, Lee JH, et al. Cigarette smoke extract (CSE)-induced emphysema in mice. Am J Respir Crit Care Med, 2007,175:A529.
    [26]Taraseviciene-Stewart L, Burns N, Kraskauskas D, Nicolls MR, et al. Mechanisms of autoimmune emphysema. Proc Am Thorac Soc,2006,3:486-487.
    [27]Chen Y, Hanaoka M, Chen P, et al. Protective effect of beraprost sodium, a stable prostacyclin analog, in the development of cigarette smoke extract-induced emphysema. Am J Physiol Lung Cell Mol Physiol,2009,296: 648-656.
    [28]Nana-Sinkam SP, Lee JD, Sotto-Santiago S, et al. Prostacyclin prevents pulmonary endothelial cell apoptosis induced by cigarette smoke. Am J Respir Crit Care Med,2007,175:676-685.
    [29]常福厚,刘素珍,满达,等.尼古丁,焦油半数致死量的测定.内蒙古医学院学报,1999,21(3):190-191.
    [30]项轶,黄绍光,万欢英,等.吸烟者肺泡破坏指数的测定及其与肺功能损害的相关性研究.中国呼吸与危重监护杂志,2004,3(6):376-379.
    [31]项轶,黄绍光,万欢英,等.吸烟者肺小气道病理形态学半定量化标准研究及其与肺功能相关性研究.上海医学,2005,28(12):1007-1009.
    [32]Choe KH, Taraseviciene-Stewart L, Scerbavicius R, et al. Methylprednisolone causes matrix metalloproteinase-dependent emphysema in adult rats. Am J Respir Crit Care Med,2003,167:1516-1521.
    [33]Saetta M, Shiner RJ, Angus GE, et al. Destructive index:a measurement of lung parenchyma] destruction in smokers. Am Rev Respir Dis,1985,131: 764-769.
    [34]曹君.内皮祖细胞在烟雾暴露所致慢性阻塞性肺疾病小鼠模型中的作用及机制:[博士学位论文].长沙:中南大学,2010.
    [35]Glaab T, Mecker H, Stephan M, et al. Comparison of non-invasive measures of cholinergic and allergic airway responsiveness in rats. Acta Physiol,2006,184:301-308.
    [36]郑鸿翱,何韶.建立慢性阻塞性肺疾病动物模型方法的研究进展.中国实验动 物学报,2003,11:249-252.
    [37]Pennisi E. Genomics. Sequence tells mouse, human genome secrets. Science,2002,298:1863-1865.
    [38]Paigen K. A miracke enough:the power of mice.Nature Med,1995,1:215-220.
    [1]Tuder RM, Petrache I, Elias JA, et al. Apoptosis and emphysema:the missing link. Am. J. Respir. Cell Mol. Biol,2003,28:551-554.
    [2]Yang Q, Underwood MJ, Hsin MK, et al. Dysfunction of pulmonary vascular endothelium in chronic obstructive pulmonary disease:basic considerations for future drug development. Curr Drug Metab,2008,9: 661-667.
    [3]Demedts IK, Demoor T, Bracke KR, et al. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res,2006,7:53-63.
    [4]Chen Y, Hanaoka M, Chen P, et al. Protective effect of beraprost sodium, a stable prostacyclin analog, in the development of cigarette smoke extract-induced emphysema. Am J Physiol Lung Cell Mol Physiol,2009,296: 648-656.
    [5]Cai S, Zhang C, Chen P, et al. Oral N-acetylcysteine attenuates pulmonary emphysema and alveolar septa apoptosis in smoking-induced COPD rats. Respirology,2009,14:354-359.
    [6]Zhang C, Cai S, Chen P, et al. Inhibition of TNF-a reduces alveolar septal cell apoptosis in passive smoking rats. Chinese Medical Journal, 2008,121:597-601.
    [7]Yang YM, Liu GT. Damaging effect of cigarette smoke extract on primary cultured human umbilical vein endothelial cells and its mechanism. Biomed Environ Sci,2004,17:121-134.
    [8]Hegab AE, Kubo H, Yamaya M, et al. Intranasal HGF administration ameliorates the physiologic and morphologic changes in lung emphysema. Mol Ther,2008,16:1417-1426.
    [9]Shigcmura N, Okumura M, Mizuno S, et al. Autologous transplantation of adipose tissue-derived stromal cells ameliorates pulmonary emphysema. Am J Transplant,2006,6:2592-2600.
    [10]Shigemura N, Okumura M, Mizuno S, et al. Lung tissue engineering technique with adipose stromal cells improves surgical outcome for pulmonary emphysema. Am J Respir Crit Care Med,2006,174:1199-1205.
    [11]Shigemura N, Sawa Y, Mizuno S, et al. Amelioration of pulmonary emphysema by in vivo gene transfection with hepatocyte growth factor in rats. Circulation,2005,111:1407-1414.
    [12]Shigemura N, Sawa Y, Mizuno S, et al. Induction of compensatory lung growth in pulmonary emphysema improves surgical outcomes in rats. Am J Respir Crit Care Med,2005,171:1237-1245.
    [13]Plantier L, Marchand-Adam S, Marchal-Somme J, et al. Defect of hepatocyte growth factor production by fibroblasts in human pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol,2005,288:641-647.
    [14]Kasahara Y, Tuder RM, Taraseviciene-Stewart L, et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest, 2000,106:1311-1319.
    [15]Tang K, Rossiter HB, Wagner PD, et al. Lung-targeted VEGF inacti vat ion leads to an emphysema phenotype in mice. J Appl Physiol,2004,97: 1555-1566.
    [16]Suzuki M, Betsuyaku T, Nagai K, et al. Decreased airway expression of vascular endothelial growth factor in cigarette smoke-induced emphysema in mice and COPD patients. Inhal Toxicol,2008,20:349-359.
    [17]Plataki M, Tzortzaki E, Rytila P, et al. Apoptotic mechanisms in the pathogenesis of COPD. Int J Chron Obstruct Pulmon Dis,2006,1:161-171.
    [18]Lassalle P, M oletS, Janin A, et al. ESM-1 is a novel human endothelialcell-specific molecule expressed in lung and regulated by cytokines. J BiolChem,1996,271:20458-20464.
    [19]Tsai JC, Zhang J, Minami T, et al. Cloning and characterization of the human lung endothelial-cell-specif ic moleculc-1 promoter. J Vase Res, 2002,39:148-159.
    [20]Lassalle, P. Genbank Accession#,1999, Q9QYY7.
    [21]Bechard D, Gentina T, Delehedde M, et al. Endocan is a novel chondroitin sulfate/dermatan sulfate proteoglycan that promotes hepatocyte growth factor/scatterfactormitogenic activity. J Biol Chem, 2001,276:48341-48349.
    [22]Aitkenhead M, Wang SJ, Nakatsu MN, et al. Identification of endothelial cell genes expressed in an in vitro model of angiogenesis: induction of ESM-1, (beta)ig-h3, and NrCAM. Microvasc Res,2002,63: 159-171.
    [23]Grigoriu BD, Depontieu F, Scherpereel A, et al. Endocan Expression and Relationship with Survival in Human Non-Small Cell Lung Cancer. Clin Cancer Res,2006,12:4575-4582.
    [24]Shin JW, Huggenberger R, Detmar M. Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothelial-specific molecule-1 as a novel mediator of lymphangiogenesis. Blood,2008,112:2318-2326.
    [25]Nana-Sinkam SP, Lee JD, Sotto-Santiago S, et al. Prostacyclin prevents pulmonary endothelial cell apoptosis induced by cigarette smoke. Am J Respir Crit Care Med,2007,175:676-685.
    [26]Cella G, Saetta M, Baraldo S, et al. Endothelial cell activity in chronic obstructive pulmonary disease without severe pulmonary hypertension. Clin Appl Thromb Hemost,2005,11:435-440.
    [27]D'Agostino B, Sullo N, Siniscalco D, et al. Mesenchymal stem cell therapy for the treatment of chronic obstructive pulmonary disease. Expert Opin Biol Ther,2010,10:681-687.
    [28]Ohnishi S, Nagaya N. Tissue regeneration as next-generation therapy for COPD—potential applications. Int J Chron Obstruct Pulmon Dis,2008, 3:509-514.
    [29]Henson PM, Vandivier RW, Douglas IS. Cell death, remodeling, and repair in chronic obstruct ive pulmonary disease?. Proc Am Thorac Soc,2006, 3:713-717.
    [30]Su Y, Cao W, Han Z, et al. Cigarette smoke extract inhibits angiogenesis of pulmonary artery endothelial cells:the role of calpain. Am J Physiol Lung Cell Mol Physiol,2004,287:794-800.
    [31]Bechard D, M eignin V, ScherpereelA, et al. Characterization of the secreted form of endothelial-cell-specific molecule 1 by specific monoclonalantibodies. JVasc Res.2000,37:417-425.
    [32]Burnett D, Chamba A, Hill SL, et al. Effects of plasma, tumour necrosis factor, endotoxin and dexamethasone on extracellular proteolysis by neutrophils from healthy subjects and patients with emphysema. Clin Sci (Lond),1989,77:35-41.
    [33]Majori M, Corradi M, Caminati A, et al. Predominant TH1 cytokine pattern in peripheral blood from subjects with chronic obstructive pulmonary disease. J Allergy Clin Immunol,1999,103:458-462.
    [34]Wang Z, Zheng T, Zhu Z, et al. Interferon gamma induction of pulmonary emphysema in the adult murine lung, J Exp Med,2000; 192:1587-1600.
    [1]中华医学会呼吸病学分会慢性阻塞性肺疾病组.慢性阻塞性肺疾病诊治指南(2007年修订版).中华呼吸结核杂志,2007,30:8-17
    [2]Tuder RM, Petrache I, Elias JA, et al. Apoptosis and emphysema:the missing link. Am. J. Respir. Cell Mol, Biol,2003; 28:551-554.
    [3]Yang Q, Underwood MJ, Hsin MK, et al. Dysfunction of pulmonary vascular endothelium in chronic obstructive pulmonary disease:basic considerations for future drug development. Curr Drug Metab,2008,9: 661-667.
    [4]Demedts IK, Demoor T, Bracke KR, et al. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res,2006,7:53-63.
    [5]Chen Y, Hanaoka M, Chen P, et al. Protective effect of beraprost sodium, a stable prostacyclin analog, in the development of cigarette smoke extract-induced emphysema. Am J Physiol Lung Cell Mol Physiol,2009,296: 648-656.
    [6]Cai S, Zhang C, Chen P, et al. Oral N-acetylcysteine attenuates pulmonary emphysema and alveolar septa apoptosis in smoking-induced COPD rats. Respirology,2009,14:354-359.
    [7]Zhang C, Cai S, Chen P, et al. Inhibition of TNF-a reduces alveolar septal cell apoptosis in passive smoking rats. Chinese Medical Journal, 2008,121:597-601.
    [8]Yang YM, Liu GT. Damaging effect of cigarette smoke extract on primary cultured human umbilical vein endothelial cells and its mechanism. Biomed Environ Sci,2004,17:121-134.
    [9]Hegab AE, Kubo H, Yamaya M, et al. Intranasal HGF administration ameliorates the physiologic and morphologic changes in lung emphysema. Mol Ther,2008,16:1417-1426.
    [10]Shigemura N, Okumura M, Mizuno S, et al. Autologous transplantation of adipose tissue-derived stromal cells ameliorates pulmonary emphysema. Am J Transplant,2006,6:2592-2600.
    [11]Shigemura N, Okumura M, Mizuno S, et al. Lung tissue engineering technique with adipose stromal cells improves surgical outcome for pulmonary emphysema. Am J Respir Crit Care Med,2006,174:1199-1205.
    [12]Shigemura N, Sawa Y, Mizuno S, et al. Amelioration of pulmonary emphysema by in vivo gene transfection with hepatocyte growth factor in rats. Circulation,2005,111:1407-1414.
    [13]Shigemura N, Sawa Y, Mizuno S, et al. Induction of compensatory lung growth in pulmonary emphysema improves surgical outcomes in rats. Am J Respir Crit Care Med,2005,171:1237-1245.
    [14]Plantier L, Marchand-Adam S, Marchal-Somme J, et al. Defect of hepatocyte growth factor production by fibroblasts in human pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol,2005,288:641-647.
    [15]Kasahara Y, Tuder RM, Taraseviciene-Stewart L, et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest, 2000,106:1311-1319.
    [16]Tang K, Rossiter HB, Wagner PD, et al. Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice. J Appl Physiol,2004,97: 1555-1566.
    [17]Suzuki M, Betsuyaku T, Nagai K, et al. Decreased airway expression of vascular endothelial growth factor in cigarette smoke-induced emphysema in mice and COPD patients. Inhal Toxicol,2008,20:349-359.
    [18]Plataki M, Tzortzaki E, Rytila P, et al. Apoptotic mechanisms in the pathogenesis of COPD. Int J Chron Obstruct Pulmon Dis,2006,1:161-171.
    [19]Lassalle P, M oletS, Janin A, et al. ESM-1 is a novel human endothelialcell specific molecule expressed in lung and regulated by cytokines. J BiolChem,1996,271:20458-20464.
    [20]Tsai JC, Zhang J, Minami T, et al. Cloning and characterization of the human lung endothelial-cell-specific molecule-1 promoter. J Vasc Res, 2002,39:148-159.
    [21]Lassalle, P. Genbank Accession #,1999, Q9QYY7.
    [22]Bechard D, Gentina T, Delehedde M, et al. Endocan is a novel chondroitin sulfate/dermatan sulfate proteoglycan that promotes hepatocyte growth factor/scatterfactormitogenic activity. J Biol Chem, 2001,276:48341-48349.
    [23]Aitkenhead M, Wang SJ, Nakatsu MN, et al. Identification of endothelial cell genes expressed in an in vitro model of angiogenesis: induction of ESM-1, (beta)ig-h3, and NrCAM. Microvasc Res,2002,63: 159-171.
    [24]Grigoriu BD, Depontieu F, Scherpereel A, et al. Endocan Expression and Relationship with Survival in Human Non-Small Cell Lung Cancer. Clin Cancer Res,2006,12:4575-4582.
    [25]Shin JW, Huggenberger R, Detmar M. Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothelial-specif ic molecule-1 as a novel mediator of lymphangiogenesis. Blood,2008,112:2318-2326.
    [26]Nana-Sinkam SP, Lee JD, Sotto-Santiago S, et al. Prostacyclin prevents pulmonary endothelial cell apoptosis induced by cigarette smoke. Am J Respir Crit Care Med,2007,175:676-685.
    [27]Cella G, Saetta M, Baraldo S, et al. Endothelial cell activity in chronic obstructive pulmonary disease without severe pulmonary hypertension. Clin Appl Thromb Hemost,2005,11:435-440.
    [28]D'Agostino B, Sullo N, Siniscalco D, et al. Mesenchymal stem cell therapy for the treatment of chronic obstructive pulmonary disease. Expert Opin Biol Ther,2010,10:681-687.
    [29]Ohnishi S, Nagaya N. Tissue regeneration as next-generation therapy for COPD—potential applications. Int J Chron Obstruct Pulmon Dis,2008, 3:509-514.
    [30]Henson PM, Vandivier RW, Douglas IS. Cell death, remodeling, and repair in chronic obstructive pulmonary disease?. Proc Am Thorac Soc,2006, 3:713-717.
    [31]Su Y, Cao W, Han Z, et al. Cigarette smoke extract inhibits angiogenesis of pulmonary artery endothelial cells:the role of calpain. Am J Physiol Lung Cell Mol Physiol,2004,287:794-800.
    [32]刘绍坤,陈平,陈剑波等.慢性阻塞性肺疾病肺血管内皮细胞和肺泡上皮细胞凋亡的实验研究.中华结核和呼吸杂志,2008,31(8):581-585.
    [33]谢丽华,陈平,陈芳等.香烟提取物对人内皮细胞基质金属酶9和组织金属蛋白酶抑制剂1分泌的影响.中华结核和呼吸杂志,2006,29(1()):715-716.
    [34]曹蔚,陈平,等.腺病毒介导MnSOD基因转染对香烟提取物致内皮细胞损伤及凋亡的影响.中国呼吸与危重监护杂志,2007,6(6):436-439.
    [35]刘采虹,陈平.香烟烟雾提取物对人内皮细胞细胞色素C氧化酶活性及细胞凋亡的影响.世界科技研究与发展,2009,31(5):922-925.
    [36]杨敏,陈平,等.细胞色素C氧化酶在慢性阻塞性肺疾病中的表达及其与肺血管皮细胞凋亡的关系.中华结核和呼吸杂志,2010,33(9):665-669.
    [37]沈芹.前列环素在慢性阻塞性肺疾病患者肺组织的表达及其在香烟提取物诱导的内皮细胞凋亡中的保护作用:[硕士学位论文].长沙:中南大学,2009.
    [38]曹君.内皮祖细胞在烟雾暴露所致慢性阻塞性肺疾病小鼠模型中的作用及机制:[博士学位论文].长沙:中南大学,2010.
    [39]Bechard D, M eignin V, ScherpereelA, et al. Characterization of the secreted form of endothelial-cell-specific molecule 1 by specific monoclonalantibodies. J Vasc Res,2000,37:417-425.
    [40]Burnett D, Chamba A, Hill SL, et al. Effects of plasma, tumour necrosis factor, endotoxin and dexamethasone on extracellular proteolysis by neutrophils from healthy subjects and patients with emphysema. Clin Sci (Lond),1989,77:35-41.
    [41]Majori M, Corradi M, Caminati A, et al. Predominant TH1 cytokine pattern in peripheral blood from subjects with chronic obstructive pulmonary disease. J Allergy Clin Immunol,1999,103:458-462.
    [42]Wang Z, Zheng T, Zhu Z, et al. Interferon gamma induction of pulmonary emphysema in the adult murine lung. J Exp Med,2000,192:1587-1600.
    [43]Yong-hong Y, Dao-xin W. The relationship between the lung function and the level of TNF-a in serum in COPD department of respiratory. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi,2010,26(9):887-888.
    [44]Zhang M, Li Q, Zhang XY, et al. Relevance of lower airway bacterial colonization, airway inflammation, and pulmonary function in the stable stage of chronic obstructive pulmonary disease. Eur J Clin Microbiol Infect Dis,2010,29(12):1487-1493.
    [45]Eickmeier 0, Huebner M, Herrmann E, et al. Sputum biomarker profiles in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) and association between pulmonary function. Cytokine,2010,50(2): 152-157.
    [46]Brindicci C, Kharitonov SA, Ito M, et al. Nitric oxide synthase isoenzyme expression and activity in peripheral lung tissue of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2010,181(1):21-30.
    [47]Polatli M, Tuna HT, Yenisey C, et al. Lung function and IFN-gamma levels in the sera of silica-exposed workers. J Interferon Cytokine Res, 2008,28(5):311-316.
    [48]Valipour A, Schreder M, Wolzt M, et al. Circulating vascular endothelial growth factor and systemic inflammatory markers in patients with stable and exacerbated chronic obstructive pulmonary disease. Clin Sci (Lond),2008,115(7):225-232.
    [49]Siafakas NM, Antoniou KM, Tzortzaki EG. Role of angiogenesis and vascular remodeling in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis,2007,2(4):453-462.
    [50]Cheng SL, Wang HC, Yu CJ, et al. Increased expression of placenta growth factor in COPD. Thorax,2008,; 63 (6):500-506.
    [1]Betsuyaku T, Nishimura M, Takeyabu K, et al. Neutrophil granule proteins in bronchoalveolar lavage fluid from subjects with subclinical emphysema. Am J Respir Crit Care Med,1999,159:1985-1991.
    [2]Chung KF. Cytokines in chronic obstructive pulmonary disease. Eur Respir J Suppl,2001,34:50-59.
    [3]Aoshiba K, Yokohori N, Nagai A. Alveolar wall apoptosis causes lung destruction and emphysematous changes. Am J Respir Cell Mol Biol,2003, 28:555-562.
    [4]Hodge S, Hodge G, Scicchitano R, et al. Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol Cell Biol,2003,81:289-296.
    [5]Majo J, Ghezzo H, Cosio MG. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J,2001,17: 946-953.
    [6]Petrache I, Fijalkowska I, Zhen L, et al. A novel antiapoptotic role for alphal-antitrypsin in the prevention of pulmonary emphysema. Am J Respir Crit Care Med,2006,173:1222-1228.
    [7]Majo J, Ghezzo H, Cosio MG. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J,2001,17: 946-953.
    [8]Tuder RM, Zhen L, Cho CY, et al. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am J Respir Cell Mol Biol,2003,29:88-97.
    [9]Yokohori N, Aoshiba K, Nagai A. Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest,2004,125:626-632.
    [10]Agusti A, MacNee W, Donaldson K, et al. Hypothesis:does COPD have an autoimmune component?. Thorax,2003,58:832-834.
    [11]Taraseviciene-Stewart L, Burns N, Kraskauskas D, et al. Mechanisms of autoimmune emphysema. Proc Am Thorac Soc,2006,3:486-487.
    [12]Lassalle P, M oletS, Jan in A, et al. ESM-1 is a novel human endothelialcell-specific molecule expressed in lung and regulated by cytokines. J BiolChem,1996,271:20458-20464.
    [13]Bechard D, Gentina T, Delehedde M, et al. Endocan is a novel chondroitin sulfate/dermatan sulfate proteoglycan that promotes hepatocyte growth factor/scatterfactormitogenic activity. J Biol Chem, 2001,276:48341-48349.
    [14]Zemans RL, Colgan SP, Downey GP. Transepithelial migration of neutrophils:mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol,2009,40:519-535.
    [15]Domagala-Kulawik J. Effects of cigarette smoke on the lung and systemic immunity. J Physiol Pharmacol,2008,59:19-34.
    [16]Winkler AR, Nocka KH, Sulahian TH, et al. In vitro modeling of human alveolar macrophage smoke exposure:enhanced inflammation and impaired function. Exp Lung Res,2008,34:99-629.
    [17]Yang Q, Underwood MJ, Hsin MK, et al. Dysfunction of pulmonary vascular endothelium in chronic obstructive pulmonary disease:basic considerations for future drug development. Curr Drug Metab,2008,9: 661-667.
    [18]Woodside DG, Vanderslice P. Cell adhesion antagonists:therapeutic potential in asthma and chronic obstructive pulmonary disease. BioDrugs,2008,22:85-100.
    [19]Papi A, Luppi F, Franco F, et al. Pathophysiology of exacerbations of chronic obstructive pulmonary disease. Proc Am Thorac Soc,2006,3: 245-51.
    [20]Zandvoort A, van dcr Geld YM, Jonkor MR, et al. High ICAM-1 gene expression in pulmonary fibroblasts of COPD patients:a reflection of an enhanced immunological function. Eur Respir J,2006,28:113-122.
    [21]Dentener MA, Creutzberg EC, Pennings HJ, et al. Effect of infliximab on local and systemic inflammation in chronic obstructive pulmonary disease:a pilot study. Respiration,2008,76:275-282.
    [22]Pang B, Hong W, West-Barnette SL, et al. Diminished ICAM-1 expression and impaired pulmonary clearance of nontypeable Haemophilus influenzae in a mouse model of chronic obstructive pulmonary disease/emphysema. Infect Immun,2008,76:4959-4967.
    [23]Wilker EH, Alexeeff SE, Poon A, et al. Candidate genes for respiratory disease associated with markers of inflammation and endothelial dysfunction in elderly men. Atherosclerosis,2009,206:480-485.
    [24]Kim S, Nadel JA. Fibrinogen binding to ICAM-1 promotes EGFR-dependent mucin production in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol,2009,297:174-183.
    [25]Hollander C, Sitkauskiene B, Sakalauskas R, et al. Serum and bronchial lavage fluid concentrations of IL-8, SLPI, sCD14 and sICAM-1 in patients with COPD and asthma. Respir Med,2007,101:1947-1953.
    [26]Bechard D, ScherpereelA, Hammad H, et al. Human endothelial-cellspecific molecule-1 binds directly to the integrin CD11a/CD18 (LFA-1) and blocks binding to intercellular adhesionmolecule-1. J Immunol,2001,167:3099-3106.
    [27]van der Strate BW, Postma DS, Brandsma CA, et al. Cigarette smoke-induced emphysema:A role for the B cell?. Am J Rerpir Crit Care Med, 2006,173:751-758.
    [28]Sullivan AK, Simonian PL, Falta MT, et al. Oligoclonal CD4+T cells in the lungs of patients with severe emphysema. Am J Respir Crit Care Med, 2005,172:590-596.
    [29]Glader PS, Lofdahl CG, von Wachenfeldt KA. alphaEbeta7 expression on CD8+T-cells in COPD BAL fluid and on TGF-beta stimulated T-cells in vitro. Lung,2005,183:123-138.
    [30]Brusselle GG, Demoor T, Bracke KR, et al. Lymphoid follicles in (very) severe COPD:beneficial or harmful?. Eur Respir J,2009,34:219-230.
    [31]Roos-Engstrand E, Pourazar J, Behndig AF, et al. Cytotoxic T cells expressing the co-stimulatory receptor NKG2 D are increased in cigarette smoking and COPD. Respir Res,2010,11:128.
    [32]Urbanowicz RA, Lamb JR, Todd I, et al. Enhanced effector function of cytotoxic cells in the induced sputum of COPD patients. Respir Res,2010, 11:76.
    [33]Freeman CM, Han MK, Martinez FJ. Cytotoxic potential of lung CD8(+) T cells increases with chronic obstructive pulmonary disease severity and with in vitro stimulation by IL-18 or IL-15. J Immunol,2010,184: 6504-6513.
    [34]Lee SH, Goswami S, Grudo A, et al. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med,2007,13:567-569.
    [35]Feghali-Bostwick CA, Gadgil AS, Otterbein LE, et al. Autoantibodies in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med,2008,177:155-163
    [36]Brandsma CA, Timens W, Geerlings M, et al. Induction of autoantibodies against lung matrix proteins and smoke-induced inflammation in mice. BMC Pulm Med,2010,10:64.
    [37]Karayama M, Inui N, Suda T, et al. Antiendothelial Cell Antibodies in Patients With COPD. Chest,2010,138:1303-1308.
    [38]Wood AM, de Pablo P, Buckley CD, et al. Smoke exposure as a determinant of autoantibody titre in α1-antitrypsin deficiency and COPD. Eur Respir J,2011,37:32-38.
    [39]Kuo YB, Chang CA, Wu YK, et al. Identification and clinical association of anti-cytokeratin 18 autoantibody in COPD. Immunol Lett, 2010,128:131-136.
    [40]Tarasevieiene-Stewart L, Scerbavicius R, Choe KH,et al. An animal model of autoimmune emphysema. Am J Respir Crit Care Med,2005,171: 734-742.
    [41]Taraseviciene-Stewart L, Douglas IS, Nana-Sinkam PS, et al. Is alveolar destruction and emphysema in chronic obstructive pulmonary disease an immune disease?. Proc Am Thorac Soc,2006,3:687-690.
    [42]Smith A, Stanley P, Jones K, et al. The role of the integrin LFA-1 in T-lymphocyte migration. Immunol Rev,2007,218:135-146.
    [43]Zimmerman T, Blanco FJ. Inhibitors targeting the LFA-1/ICAM-1 cell-adhesion interaction:design and mechanism of action. Curr Pharm Des, 2008,14:2128-2139.
    [44]Yang Q, Underwood MJ, Hsin MK, et al. Dysfunction of pulmonary vascular endothelium in chronic obstructive pulmonary disease:basic considerations for future drug development. Curr Drug Metab,2008,9: 661-667.
    [45]Demedts IK, Demoor T, Bracke KR, et al. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res,2006,7:53-63.
    [46]Yang YM, Liu GT. Damaging effect of cigarette smoke extract on primary cultured human umbilical vein endothelial cells and its mechanism. Biomed Environ Sci,2004,17:121-134.
    [47]Hegab AE, Kubo H, Yamaya M, et al. Intranasal HGF administration ameliorates the physiologic and morphologic changes in lung emphysema. Mol Ther,2008,16:1417-1426.
    [48]Shigemura N, Okumura M, Mizuno S, et al. Autologous transplantation of adipose tissue-derived stromal cells ameliorates pulmonary emphysema. Am J Transplant,2006,6:2592-2600.
    [49]Shigemura N, Okumura M, Mizuno S, et al. Lung tissue engineering technique with adipose stromal cells improves surgical outcome for pulmonary emphysema. Am J Respir Crit Care Med,2006,174:1199-1205.
    [50]Shigemura N, Sawa Y, Mizuno S, et al. Amelioration of pulmonary emphysema by in vivo gene transfection with hepatocyte growth factor in rats. Circulation,2005,11:1407-1414.
    [51]Shigemura N, Sawa Y, Mizuno S, et al. Induction of compensatory lung growth in pulmonary emphysema improves surgical outcomes in rats. Am J Respir Crit Care Med,2005,171:1237-1245.
    [52]Plantier L, Marchand-Adam S, Marchal-Somme J, et al. Defect of hepatocyte growth factor production by fibroblasts in human pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol,2005,288:641-647.
    [53]Kasahara Y, Tuder RM, Taraseviciene-Stewart L, et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest, 2000,106:1311-1319.
    [54]Tang K, Rossiter HB, Wagner PD, et al. Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice. J Appl Physiol,2004,97: 1555-1566.
    [55]Suzuki M, Betsuyaku T, Nagai K, et al. Decreased airway expression of vascular endothelial growth factor in cigarette smoke-induced emphysema in mice and COPD patients. Inhal Toxicol,2008,20:349-359.
    [56]Plataki M, Tzortzaki E, Rytila P, et al. Apoptotic mechanisms in the pathogenesis of COPD. Int J Chron Obstruct Pulmon Dis,2006,1:161-171.
    [57]Zhang C, Cai S, Chen P, et al. Inhibition of TNF-α reduces alveolar septal cell apoptosis in passive smoking rats. Chinese Medical Journal, 2008,121:597-601.
    [58]Chen Y, Hanaoka M, Chen P, et al. Protective effect of beraprost sodium, a stable prostacyclin analog, in the development of cigarette smoke extract-induced emphysema. Am J Physiol Lung Cell Mol Physiol,2009,296: 648-656.
    [59]Cai S, Zhang C, Chen P, et al. Oral N-acetylcysteine attenuates pulmonary emphysema and alveolar septa apoptosis in smoking-induced COPD rats. Respirology,2009,14:354-359.
    [60]Bellusci S, Grindley J, Emoto H, et al. Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development,1997,124:4867-4878.
    [61]Ulich TR, Yi ES, Longmuir K, et al. Keratinocyte growth factor is a growth factor for type Ⅱ pneumocytes in vivo. J Clin Invest, 1994,93:1298-1306.
    [62]Weinstein M, Xu X, Ohyama K, et al. FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development, 1998,125:3615-3623.
    [63]Bostrom H, Willetts K, Pekny M, et al. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell,1996,85:863-873.
    [64]Kumar VH, Lakshminrusimha S, El Abiad MT, et al. Growth factors in lung development. Adv Clin Chem,2005,40:261-316.
    [65]Voelkel NF, Vandivier RW, Tuder RM. Vascular endothelial growth factor in the lung. Am J Physiol Lung Cell Mol Physiol,2006,290:209-221.
    [66]Chung KF. Cytokines as targets in chronic obstructive pulmonary disease. Curr Drug Targets,2006,7:675-681.
    [67]Shi W, Chen F, Cardoso WV. Mechanisms of lung development: contribution to adult lung disease and relevance to chronic obstructive pulmonary disease. Proc Am Thorac Soc,2009,6:558-563.
    [68]Shigemura N, Okumura M, Mizuno S, et al. Autologous transplantation of adipose tissue-derived stromal cells ameliorates pulmonary emphysema. Am J Transplant,2006,6:2592-2600.
    [69]Shigemura N, Okumura M, Mizuno S, et al. Lung tissue engineering technique with adipose stromal cells improves surgical outcome for pulmonary emphysema. Am J Respir Crit Care Med,2006,174:1199-1205.
    [70]Shigemura N, Sawa Y, Mizuno S, et al. Amelioration of pulmonary emphysema by in vivo gene transfection with hepatocyte growth factor in rats. Circulation,2005,111:1407-1414.
    [71]Shigemura N, Sawa Y, Mizuno S, et al. Induction of compensatory lung growth in pulmonary emphysema improves surgical outcomes in rats. Am J Respir Crit Care Med,2005,171:1237-1245.
    [72]Plantier L, Marchand-Adam S, Marchal-Somme J, et al. Defect of hepatocyte growth factor production by fibroblasts in human pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol,2005,288:641-647.
    [73]Hristov M, Erl W, Weber PC. Enothelial progenitor cells:mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol,2003, 23(7);1185-1189.
    [74]黄河,汤耀卿.内皮祖细胞在炎症损伤修复中的作用和机制.生命科学,2008,20(2):225-230.
    [75]Palange P, Testa U, Huertas A, et al. Circulating haemopoietic and endothelial progenitor cells re decreased in COPD. Eur Respi J,2006, 27(3):529-541.
    [76]Lee JH, Kim EK, Oh D, et al. Decreased number of Circulating Endothelial Progenitor Cells in Patients with Emphysema. The Proceedings of the American Thoracid Society,2006,3:545.
    [77]杨锐.内皮祖细胞在慢性阻塞性肺疾病中的变化和作用:[博士学位论文].长沙:中南大学.2009.
    [78]Aitkenhead M, Wang SJ, Nakatsu MN, et al. Identification of endothelial cell genes expressed in an in vitro model of angiogenesis: induction of ESM-1, (beta)ig-h3, and NrCAM. Microvasc Res,2002,63: 159-171.
    [79]Grigoriu BD, Depontieu F, Scherpereel A, et al. Endocan Expression and Relationship with Survival in Human Non-Small Cell Lung Cancer. Cl in Cancer Res,2006,12:4575-4582.
    [80]Shin JW, Huggenberger R, Detmar M. Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothel ial-specific molecule-1 as a novel mediator of lymphangiogenesis. Blood,2008,112:2318-2326.[81]Anderson ME, Siahaan TJ. Targeting ICAM-1/LFA-1 interaction for controlling autoimmune diseases:designing peptide and small molecule inhibitors. Peptides,2003,24:487-501.
    [82]曹君.内皮祖细胞在烟雾暴露所致慢性阻塞性肺疾病小鼠模型中的作用及机 制:[博士学位论文].长沙:中南大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700