冠心病血瘀证目标分子的鉴定、验证及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
课题组前期应用寡核苷酸基因芯片技术构建了冠心病血瘀证白细胞差异基因表达谱,筛选出FcγRⅢA(免疫球蛋白IgG结晶片段受体Ⅲa)、PKCβ1(蛋白激酶Cpl)、IL-8(白细胞介素-8)、HLA-DQB1(主要组织相容性复合体Ⅱβ1)、FOLR3(叶酸受体γ3)、PTGDS(前列腺素D2合成酶)6个目标基因。运用基因本体论和显著性通路分析方法,从分子水平阐明了冠心病血瘀证与炎症免疫反应的相关性;进一步通过Signal-Net网络构建,使用网络拓扑技术分析发现差异基因FcγRⅢA. PKCβ1和IL-8在冠心病血瘀证疾病网络中处于关键调控环节,并对其中的目标分子IL-8进行了进一步的临床验证和体内、外功能分析。
     本课题对另外两个目标分子PKCβ1、FcγRⅢA进行了鉴定、验证,并对FcyRIIIA在冠心病血瘀证形成中的作用进行分析。纳入冠心病血瘀证患者、冠心病非血瘀证患者和健康对照者,抽取外周血,分离白细胞,抽提总RNA,应用实时定量逆转录聚合酶链反应(Real-time reverse transcription polymerase chain reaction, Real-time RT-PCR)技术检测目标分子PKCβ1、FcγRⅢA基因表达水平,结果发现FcγRⅢA mRNA表达水平与前期基因芯片结果一致。我们进一步从临床血清学水平进行了规模验证,并就其细胞来源进行了相关分析;同时根据FcγRⅢA的功能,结合冠心病、血瘀证病理特点,体外通过构建人外周血单核细胞-脐静脉内皮细胞实验体系,观察FcγRⅢA对单核-内皮细胞粘附的影响;体内以ApoE-/-小鼠为研究对象,观察FcγRⅢA高表达及抑制其表达后对小鼠主动脉粥样硬化斑块稳定性及炎症相关因子的影响,以期探索目标分子FcγRⅢA参与冠心病血瘀证疾病过程的可能机制;同时,观察赤芍川芎有效部位对ApoE-/-小鼠FcγRⅢA蛋白水平、主动脉粥样硬化斑块稳定性以及炎症相关因子的影响,明确活血化瘀制剂对冠心病血瘀证靶标分子的干预效应。
     本课题研究分为两部分:文献综述和实验研究。
     1文献综述:本部分分别从血瘀证与炎症反应、FcγR与心血管疾病研究进展两个方面进行综述。
     2实验研究:包括以下六个部分。
     研究一冠心病血瘀证目标分子鉴定
     目的:应用Real-time RT-PCR技术,对冠心病血瘀证目标分子PKCβ1、FcyRIIIA进行鉴定。
     方法:冠心病诊断参照1999年美国心脏病学会(ACC)/美国心脏协会(AHA)/美国医师学会及美国内科学会(ACP-ASIM)联合协定关于《慢性稳定性心绞痛诊疗指南》、《不稳定性心绞痛、无ST段抬高心肌梗死诊疗指南》。同时,参考中国中西医结合学会活血化瘀专业委员会制定的血瘀证诊断标准。筛选符合冠心病、血瘀证、健康人入选标准的冠心病血瘀证组、冠心病非血瘀证组和健康对照组各20例为研究对象。冠心病血瘀证和非血瘀证患者于冠脉造影前采血,健康对照者于清晨空腹状态下抽取静脉血2 mL,分离白细胞,抽提总RNA,应用Real-time RT-PCR技术检测目标分子PKCβ1和FcγRⅢA基因表达水平。
     结果:冠心病血瘀证组、非血瘀证组和健康对照组在年龄、性别、体重指数且两疾病组在冠心病类型、冠脉病变支数、病程、合并疾病和用药情况方面无显著性差异,具有可比性。
     ①PKCβ1 mRNA表达在冠心病血瘀证组(0.74±0.30)和非血瘀证组(0.96±0.31)均较健康对照组(1.03±0.37)降低,且冠心病血瘀证组较非血瘀证组降低显著(P<0.05)。
     ②FcγRⅢA mRNA表达在冠心病血瘀证组(1.37±0.50)和非血瘀证组(1.37±0.42)均较健康对照组(0.89±0.33)显著升高(P<0.01),且冠心病血瘀证组较非血瘀证有升高趋势。
     结论:
     ①PKCβ1基因参与冠心病血瘀证过程,但与前期研究不一致,尚需进一步扩大样本量进行鉴定。
     ②FcγRⅢA与冠心病血瘀证具有一定相关性,可能在冠心病血瘀证形成过程中发挥重要作用。
     研究二FcγRⅢA血清蛋白水平以及冠心病血瘀证与动脉粥样硬化危险因素的相关性研究
     目的:应用酶联免疫吸附(ELISA)法检测FcγRⅢA血清水平(可溶性CD16,sCD16),验证其与冠心病血瘀证的临床相关性,并分析冠心病血瘀证与动脉粥样硬化危险因素如血脂、高敏C反应蛋白(hs-CPR)以及单核细胞参数的相关性。
     方法:纳入冠心病血瘀证、冠心病非血瘀证患者各50例和健康对照组40例为研究对象。冠心病血瘀证和非血瘀证患者于冠脉造影前采血,健康对照者于清晨空腹状态下抽取静脉血5 mL,采用双抗体夹心ABC-ELISA法检测血清sCD16浓度,同时对动脉粥样硬化危险因素(血脂、hs-CPR以及单核细胞计数和单核细胞百分比)进行检测。
     结果:冠心病血瘀证组、非血瘀证组和健康对照组在年龄、性别、体重指数且两疾病组在冠心病类型、冠脉病变支数、病程和合并疾病方面无显著性差异,具有可比性。
     ①血清sCD16在冠心病血瘀证组(3.67±0.98 U/mL)和非血瘀证组(2.80±0.80U/mL)均较健康对照组(1.58±0.47 U/mL)显著升高(P<0.01),且冠心病血瘀证组较非血瘀证组升高显著(P<0.05)。
     ②总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)在冠心病血瘀证组和非血瘀证组均较健康对照组显著升高(P<0.05或0.01),且冠心病血瘀证组较非血瘀证组有升高趋势;而高密度脂蛋白胆固醇(HDL-C)在冠心病血瘀证组和非血瘀证组较健康对照组显著降低(P<0.01),且冠心病血瘀证组较非血瘀证有降低趋势。
     ③hs-CRP水平在冠心病血瘀证组(2.91±1.98 mg/L)和非血瘀证组(1.43±1.29mg/L)均较健康对照组(0.56±0.09 mg/L)显著升高(P<0.01,0.05),且冠心病血瘀证组较非血瘀证组升高显著(P<0.05)。
     ④外周血单核细胞计数在冠心病血瘀证组、非血瘀证组和健康对照组之间差异无统计学意义,而单核细胞百分比在冠心病血瘀证组(6.40±1.17%)和非血瘀证组(5.35±1.62%)均较健康对照组(4.99±1.81%)升高,且冠心病血瘀证组较非血瘀证组升高显著(P<0.05)。
     结论:
     ①血清sCD16与冠心病血瘀证具有相关性,从蛋白水平验证了目标分子FcγRⅢA与冠心病血瘀证密切相关。
     ②冠心病血瘀证患者与动脉粥样硬化危险因素,特别是hs-CRP和单核细胞百分比显著相关。
     研究三FcyRIIIA来源分析
     目的:应用流式细胞术检测冠心病血瘀证患者外周血单核细胞CD14+CD16+表达以分析目标分子FcyRIIIA来源,并分析细胞间粘附分子(ICAM-1,CD54)在冠心病血瘀证患者单核细胞CD14+CD16+表面的变化,同时检测冠心病血瘀证患者炎症相关因子[可溶性CD14(sCD14)、巨噬细胞集落刺激因子(M-CSF)、肿瘤坏死因子-α(TNF-α)、白细胞介素-1(IL-1)]血清水平。
     方法:冠心病血瘀证和非血瘀证患者于冠脉造影前采血,健康对照者于清晨空腹状态下抽取静脉血,采用流式细胞术检测外周血单核细胞CD14+CD16+表达及其表面CD54平均荧光强度;采用双抗体夹心ABC-ELISA法检测sCD14、M-CSF、TNF-α和IL-1血清水平。
     结果:
     ①外周血单核细胞CD14+CD16+表达在冠心病血瘀证组(11.24±7.73%)和非血瘀证组(9.96±3.66%)均较健康对照组(5.64±2.49%)显著升高(P<0.01,0.05),且冠心病血瘀证组较非血瘀证组有升高趋势。
     ②外周血单核细胞CD14+CD16+表面CD54的平均荧光强度在冠心病血瘀证组(1760.60±457.60)和非血瘀证组(1089.27±426.76)均较健康对照组(849.00±100.91)显著升高,且冠心病血瘀证组较非血瘀证组升高显著(P<0.01)。
     ③炎症相关因子sCD14、M-CSF、TNF-α和IL-1血清水平在冠心病血瘀证组和非血瘀证组均较健康对照组显著升高(P<0.01),且冠心病血瘀证组较非血瘀证组升高显著(P<0.05)。
     结论:
     ①冠心病血瘀证患者单核细胞处于活化状态。
     ②冠心病血瘀证患者高水平血清M-CSF能刺激单核细胞CD14+CD16+高表达,进而促进单核细胞CD14+CD16+表面CD54表达升高并产生大量TNF-α和IL-1前炎症因子,从细胞来源方面再次鉴定了目标分子FcyRIIIA与冠心病血瘀证密切相关。
     ③冠心病血瘀证患者体内炎症水平特别是单核细胞来源的细胞因子处于较高水平。
     研究四FcyRIIIA在人外周血单核细胞-脐静脉内皮细胞粘附中的作用分析
     目的:研究FcyRIIIA对人单核细胞-脐静脉内皮细胞粘附的影响,对其进行体外功能分析。
     方法:①分离、鉴定并培养人外周血单核细胞,实验分为单核细胞(MC)组:单核细胞培养18 h;M-CSF组:重组人M-CSF刺激单核细胞培养18 h;免疫球蛋白IgG (IVIG)组:IVIG提前干预单核细胞30 min后再加重组人M-CSF刺激培养18 h,流式细胞术检测三组单核细胞CD14+CD16+表达情况。②分离、.鉴定并培养人外周血单核细胞、脐静脉内皮细胞,实验分为MC组:单核细胞培养18 h;M-CSF组:重组人M-CSF刺激单核细胞培养18h; IVIG组:IVIG提前干预单核细胞30min后再加重组人M-CSF刺激培养18 h。三组细胞消化后再与脐静脉内皮细胞培养1 h,Bradford法检测三组单核-内皮细胞粘附率。
     结果:瑞姬染色显微镜下细胞形态学观察和流式细胞术单核细胞CD14鉴定人外周血单核细胞,倒置相差显微镜细胞形态学观察和Ⅷ因子相关抗原间接免疫荧光方法鉴定人脐静脉内皮细胞。
     ①经重组人M-CSF刺激培养18 h后单核细胞CD14+CD16+表达较未刺激前显著升高(P<0.01);提前给予IVIG干预30 min后,单核细胞CD14+CD16+表达较重组人M-CSF刺激培养18 h显著降低(P<0.01)。
     ②经重组人M-CSF刺激培养18 h后单核-内皮细胞粘附率较单核细胞未刺激前显著升高(P<0.05);提前给予IVIG干预30 min后,单核-内皮细胞粘附率较重组人M-CSF刺激培养18 h显著降低(P<0.05)。
     结论:
     ①重组人M-CSF在体外能刺激人外周血单核细胞CD14+CD16+表达,IVIG能抑制该作用。
     ②单核细胞CD14+CD16+能介导人外周血单核-脐静脉内皮细胞粘附。
     研究五FcyRIIIA对ApoE-/-小鼠主动脉粥样硬化斑块不稳定性的作用评价
     目的:研究目标分子FcyRIIIA高表达和抑制其后对ApoE7-/-小鼠主动脉粥样硬化斑块不稳定性的影响。
     方法:66只8周龄雄性ApoE-/-小鼠分为模型组:高脂饲料喂养10 w,ApoE-/-小鼠+腹腔注射免疫球蛋白IgG组(IVIG组):连续腹腔注射IVIG 5 d+高脂饲料喂养10 w, ApoE-/-小鼠+辛伐他汀组(Sm组):Sm灌胃每日一次+高脂饲料喂养10 w,每组各22只。与ApoE-/-小鼠具有相同遗传背景的C57BL/6J小鼠22只作为对照组,普通饲料喂养10 w。
     ①主动脉组织病理学观察:主动脉根部组织石蜡切片H&E染色发现有动脉粥样硬化改变的切片进行Masson染色评价斑块胶原含量,a-actin和CD68免疫组化染色分别评价斑块平滑肌细胞含量和巨噬细胞含量,主动脉根部组织冰冻切片油红O染色评价斑块脂肪组织含量。
     ②血液学指标检测:生化法检测血脂并计算血浆致动脉粥样硬化指数;流式细胞术检测外周血单核细胞CD14+CD16+表达;双抗体夹心ABC-ELISA法检测血清TNF-α、IL-1和sE-selectin水平。
     ③MMP-9基因表达和蛋白水平检测:Real-time RT-PCR技术和Western blot法分别检测主动脉MMP-9 mRNA表达和蛋白水平。
     ④相关性分析:外周血单核细胞CD14+CD16+表达、主动脉MMP-9基因表达和血清TNF-a水平在模型组、IVIG组和Sm组的相关性分析。
     结果:
     ①模型组小鼠主动脉粥样硬化斑块含有大量脂质成分、巨噬细胞和平滑肌细胞,且胶原成分增多。IVIG能通过减少斑块内脂质含量、减少巨噬细胞聚集和平滑肌细胞增殖而发挥改善动脉粥样硬化的作用,该作用与Sm相似。
     ②模型组小鼠血脂TC、TG、LDL-C水平升高,HDL-C水平降低,外周血单核细胞CD14+CD16+高表达,血清TNF-α、IL-1和sE-selectin水平较对照组显著升高(P<0.01,0.05);上述指标在IVIG组有不同程度改善且作用与Sm组相似。
     ③模型组小鼠主动脉MMP-9基因表达和蛋白水平均较对照组显著升高(P<0.01),上述指标在IVIG组有不同程度改善且作用与Sm组相似。
     ④相关性分析发现,外周血单核细胞CD14+CD16+表达在模型组、IVIG组和Sm组均与主动脉MMP-9基因表达和血清TNF-a水平呈显著正相关。
     结论:
     ①FcyRIIIA介导主动脉粥样硬化模型小鼠炎症相关因子释放增加。
     ②FcyRIIIA一定程度上影响小鼠主动脉粥样硬化斑块的稳定性。
     研究六赤芍川芎有效部位对ApoE-/-小鼠主动脉粥样硬化斑块稳定性的干预效应研究
     目的:研究赤芍川芎有效部位(赤芍总苷、川芎总酚)对ApoE-/-小鼠主动脉粥样硬化斑块稳定性的干预效应,并分析其可能的作用靶点。
     方法:64只8周龄雄性ApoE-/-小鼠分为模型组:高脂饲料喂养10w, ApoE-/-小鼠+Sm组(Sm组):Sm灌胃每日一次+高脂饲料喂养10w, ApoE-/-小鼠+芎芍胶囊(XSC)大剂量组(XSCH组):大剂量XSC灌胃每日一次+高脂饲料喂养10 w和ApoE-/-小鼠+XSC小剂量(XSCL)组:小剂量XSC灌胃每日一次+高脂饲料喂养10 w,每组各16只。各组进行血液学指标、MMP-9基因表达和蛋白水平比较以及相关性分析。
     结果:
     ①XSC对TC、TG、LDL-C水平和AIP均有不同程度降低,同时能降低外周血单核细胞CD14+CD16+表达,不同程度降低血清TNF-α、IL-1和sE-selectin水平,对ApoE-/-小鼠体内炎症水平的改善作用XSCH与Sm相似。
     ②XSC与Sm类似均能降低ApoE-/-小鼠主动脉MMP-9基因表达和蛋白水平,对动脉粥样硬化斑块具有稳定作用,但对MMP-9基因表达的降低作用XSCH较Sm显著(P<0.05)。
     ③相关性分析发现,经XSC干预后,主动脉MMP-9基因表达和血清TNF-α水平下降均与外周血单核细胞CD14+CD16+表达降低呈显著正相关。
     结论:
     ①赤芍川芎有效部位能减轻炎症反应、稳定斑块、改善主动脉粥样硬化。
     ②赤芍川芎有效部位抗主动脉动脉粥样硬化的作用靶点与FcyRⅢA有关。
Coronary heart disease (CHD) is the leading cause of death worldwide. Genetic factors and environmental factors are responsible for the development of CHD. The underlying mechanisms of CHD have not yet been elucidated. Additionally, there is little known about the way of CHD-specific prevention and treatment therapy. Previous studies have investigated the differential gene expression profiles in peripheral leukocytes from CHD patients with blood stasis syndrome (BSS) by oligonucleotide microarray technique. We have shown that the immune inflammatory response is correlated to the development of CHD and Fc receptor III A of immunoglobulin G (FcyRIIIA, also named CD 16), protein kinase C beta 1 (PKCβ1), interleukin-8 (IL-8), HLA-DQB1, FOLR3, PTGDS were involved in the development of CHD with BSS. Of them, FcyRIIIA, PKCβ1 and IL-8 played the key role in the regulation of CHD with BSS. In our previous studies, we have shown that IL-8 was implicated in the development of CHD with BSS and its functional analysis was determined in vitro and vivo.
     In the current study, we investigated the mRNA expression of PKCβ1 and FcyRIIIA in the leukocytes in CHD patients with BSS, CHD patients with non-BSS and the healthy control by Real-time reverse transcription polymerase chain reaction (Real-time RT-PCR). There was a significant increase of FcyRIIIA at the mRNA level in leukocytes in CHD patients with BSS, consistent with our previous study. Then, we determined the protein level of both sCD16 in sera and membrane CD 16 on monocytes in CHD patients with BSS. Moreover, we investigated FcyRIIIA-induced molecular events that may be responsible for the development of CHD using human peripheral monocyte-umbilical vein endothelial cells in vitro and aortic atherosclerotic formation in ApoE-/- mouse model. Meanwhile, we determined the intervention effects of active ingredients of Chuanxiong rhizome and red peony root (Chuangxiongol and paeoniflorin) on FcyRIIIA expression, aortic atherosclerotic plaque destabilization and inflammatory factors in ApoE-/- mice.
     This study is divided into two parts:literature review and experimental research.
     1 Literature review:Including the following two reviews:BSS and inflammation and Investigation of correlation between FcyR and cardiovascular diseases.
     2 Experimental research:Including the following six parts. Study I:Identification of related molecules in CHD patients with BSS
     Objective:To identify the related molecules PKCβ1 and FcyRIIIA in CHD patients with BSS by Real-time RT-PCR.
     Methods:All cases were divided into CHD patients with BSS, CHD patients with non-BSS and the healthy control,20 in each group. CHD patients were diagnosed according to the 1999 ACC/AHA/ACP-ASIM Guidelines for the Management of Patients with Chronic Stable Angina and the 2002 ACC/AHA Guidelines for the Management of Patients with Unstable Angina and Non-ST-Segment Elevation Myocardial Infarction. A diameter stenosis of at least 50% was diagnosed by visible estimation in a major coronary artery from standard selective coronary angiography. Patients with BSS were diagnosed according to guidelines for the diagnosis of BSS. mRNA expression of PKCβ1 and FcyRIIIA in the leukocytes was determined in blood samples taken following fasting from CHD patients with BSS, CHD patients with non-BSS and the healthy control by Real-time RT-PCR.
     Results:There were no statistically significant differences of age, sex and body mass index among CHD patients with BSS, CHD patients with non-BSS and the healthy control. Additionally, there were no significant differences of subtypes of CHD, degree of coronary lesion vessels, course of disease, medical history and herbal therapy beween CHD patients with BSS and CHD patients with non-BSS.
     ①There was a significant decrease of PKCβ1 at the mRNA level in leukocytes in both CHD patients with BSS (0.74±0.30) and CHD patients with non-BSS (0.96±0.31) when compared to the healthy control (1.03±0.37). Additionally, mRNA expression of PKCβ1 in CHD patients with BSS was lower than that in CHD patients with non-BSS (P<0.05)
     ②There was a significant increase of FcyRIIIA at the mRNA level in leukocytes in both CHD patients with BSS (1.37±0.50) and CHD patients with non-BSS (1.37±0.42) when compared to the healthy control (0.89±0.33, P<0.05). Additionally, mRNA expression of FcyRIIIA in CHD patients with BSS was higher than that in CHD patients with non-BSS without significant differences.
     Conclusion:
     ①PKCβ1 may participate in the development of CHD with BSS. However, results in the current study was in contradiction with our previous study of gene chip. Identification of PKCβ1 in CHD patients with BSS should be analyzed further.
     ②There is a certain correlation between FcyRIIIA and CHD with BSS. It may be involved in the development of CHD with BSS.
     Study II:Investigation of FcyRIIIA at the protein level and the correlation of CHD patients with BSS and risk factors of atherosclerosis
     Objective:To determine the protein level of FcyRIIIA (soluble CD 16, sCD16) and analyze the correlation of CHD patients with BSS and risk factors of atherosclerosis such as blood lipid level, high-sensitivity C-reactive protein (hs-CRP) and parameters of monocytes.
     Methods:All cases were divided into CHD patients with BSS and CHD patients with non-BSS, fifty in each group and forty healthy individuals were selected as the healthy control. The protein level of sCD16 in sera was determined in blood samples taken following fasting from CHD patients with BSS, CHD patients with non-BSS and the healthy control by Enzyme-linked immunosorbent assay (ELISA). Then, levels of blood lipid and hs-CRP, and parameters of monocytes were analyzed as well.
     Results:There were no statistically significant differences of age, sex and body mass index among CHD patients with BSS, CHD patients with non-BSS and the healthy control. Additionally, there were no significant differences of subtypes of CHD, degree of coronary lesion vessels, course of disease and medical history beween CHD patients with BSS and CHD patients with non-BSS.
     ①There was a significant increase of the protein level of serum sCD16 in both CHD patients with BSS (3.67±0.98 U/mL) and CHD patients with non-BSS (2.80±0.80 U/mL) when compared to the healthy control (1.58±0.47 U/mL). Additionally, serum level of sCD16 in CHD patients with BSS was higher than that in CHD patients with non-BSS (P<0.05)
     ②There was a significant increase of blood lipid level such as total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) in both CHD patients with BSS and CHD patients with non-BSS when compared to the healthy control (P< 0.01,0.05). However, levels of TC, TG, and LDL-C were increased in CHD patients with BSS, but not significantly, compared with CHD patients with non-BSS. There was a significant decrease of high-density lipoprotein cholesterol (HDL-C) level in both CHD patients with BSS and CHD patients with non-BSS when compared to the healthy control (P<0.01). Additionally, HDL-C level was reduced in CHD patients with BSS, but not significantly, compared with CHD patients with non-BSS.
     ③There was a significant increase of hs-CRP level in both CHD patients with BSS (2.91±1.98 mg/L) and CHD patients with non-BSS (1.43±1.29 mg/L) when compared to the healthy control (0.56±0.09 mg/L) (P<0.01,0.05). Additionally, hs-CRP level in CHD patients with BSS was higher than that in CHD patients with non-BSS (P< 0.05).④There were no statistically significant differences of monocyte count in peripheral blood among CHD patients with BSS, CHD patients with non-BSS and the healthy control. There was an increase of percentage of monocytes in both CHD patients with BSS (6.40±1.17%) and CHD patients with non-BSS (5.35±1.62%) when compared to the healthy control (4.99±1.81%). Additionally, percentage of monocytes in CHD patients with BSS was higher than that in CHD patients with non-BSS (P<0.05).
     Conclusion:
     ①High level of sCD16 in CHD patients with BSS suggests that there is relevance of FcyRⅢA to CHD patients with BSS at the protein level.
     ②There was is relevance of risk facotrs of atherosclerosis, especially hs-CPR and percentage of monocytes to CHD patients with BSS.
     StudyⅢ:Original analysis of FcγRⅢA:the protein level of membrane CD16 on monocytes
     Objective:To investigate the protein level of membrane CD 16 on monocytes in CHD patients with BSS by flow cytometric analysis, and then, expression of intercellular adhesion molecule-1 (ICAM-1, also named CD54) on CD14+CD16+monocytes was determined. Meanwhile, levels of inflammatory factors such as soluble CD 14 (sCD14), macrophage colony stimulating factor (M-CSF), tumor necrosis factor-a (TNF-a) and interleukin-1 (IL-1) in sera were analyzed.
     Methods:The protein level of membrane CD 16 on monocytes was determined in blood samples taken following fasting from CHD patients with BSS, CHD patients with non-BSS and the healthy control by flow cytometry. Mean fluorescence intensity (MFI) of ICAM-1 on CD14+CD16+monocytes was analyzed as well. Levels of sCD14, M-CSF, TNF-a and IL-1 in sera were examined by ELISA.
     Results:
     ①There was a significant increase of the protein level of membrane CD 16 on monocytes in both CHD patients with BSS (11.24±7.73%) and CHD patients with non-BSS (9.96±3.66%) when compared to the healthy control (5.64±2.49%) (P< 0.01,0.05). Additionally, this protein level of membrane CD16 on monocytes in CHD patients with BSS was increased, but not significantly, compared with CHD patients with non-BSS.
     ②There was a significant increase of MFI of CD54 on CD14+CD16+monocytes in both CHD patients with BSS (1760.60±457.60, P<0.01) and CHD patients with non-BSS (1089.27±426.76) when compared to the healthy control (849.00±100.91). Additionally, MFI of CD54 on CD14+CD16+monocytes in CHD patients with BSS was higher than that in CHD patients with non-BSS (P<0.01).
     ③There was a significant increase of serum levels of inflammatory factors such as sCD14, M-CSF, TNF-a and IL-1 in both CHD patients with BSS and CHD patients with non-BSS when compared to the healthy control. Additionally, levels of all these inflammatory factors in CHD patients with BSS were higher than those in CHD patients with non-BSS (P<0.05).
     Conclusion:
     ①Activated monocytes are found in CHD patients with BSS.
     ②CD14+CD16+monocytes was stimulated by high serum M-CSF level in CHD patients with BSS, along with increased level of CD54 on CD14+CD16+monocytes and TNF-a and IL-1 in sera. Taken together, these results suggest that FcyRIIIA is correlated to CHD patients with BSS.
     ③Level of inflammatory factors, especially cytokines from monocytes increase in CHD patients with BSS.
     StudyⅣ:Effects of FcyRIIIA on the adherence of monocytes from human peripheral blood to human umbilical vein endothelial cells
     Objective:To investigate the effects of FcyRIIIA on the adherence of monocytes from human peripheral blood to human umbilical vein endothelial cells (HUVECs).
     Methods:First, we overexpressed and inhibited FcyRIIIA on monocytes by recombinant human M-CSF stimulation for 18 h or IVIG pretreatment for 1 h respectively, according to procedures as follows:monocytes randomly divided into three groups. MC group:monocytes cultured for 18 h; M-CSF group:monocytes stimulated by recombinant human M-CSF (10 ng/mL) for 18 h; IVIG group:monocytes pretreated with IVIG (5 mg/mL) for 30 min, then treated with recombinant human M-CSF (10 ng/mL) for 18 h. Monocytes in these three groups were harvested 18 h later, and the surface expression of CD 14 and CD 16 on monocytes was determined by flow cytometry. Furthermore, the adhesive efficiency of monocytes to HUVECs was determined by Bradford method. Briefly, monocytes were treated with recombinant human M-CSF stimulation for 18 h or with IVIG pretreatment for 1 h and then recombinant human M-CSF stimulation for 18 h or without any intervention. Monocytes were released from the culture dish with 3% EDTA in PBS at a density of 1×109/L. Confluent monolayers of HUVECs were added to monocytes with different treatments and allowed to incubate for 1 h at 37℃in a tissue culture incubator, and the adherent rate was determined.
     Results:Monocytes were identified by their characteristic morphology in microscope using Wright-Gimsa staining. The purity of monocyte preparations was about 90% as determined by flow cytometric analysis. HUVECs were identified to be more than 99% endothelial cells by their characteristic cobblestone morphology in an inverted microscope and by immunocytochemical demonstration of factor VIII staining.
     ①The protein level of membrane CD 16 on monocytes with stimulation by recombinant human M-CSF for 18 h was higher than that without stimulation (P<0.01). After IVIG pretreatment for 30 min, the protein level of membrane CD 16 on monocytes was decreased compared to that on monocytes with M-CSF stimulation for 18 h (P<0.01).
     ②The adhesive efficiency of monocytes to HUVECs after recombinant human M-CSF stimulation for 18 h was higher than that without M-CSF stimulation (P<0.05). The adhesive efficiency of monocytes to HUVECs after IVIG pretreatment for 30 min decreased obviously compared to that of monocytes with M-CSF stimulation for 18 h (P <0.05).
     Conclusion:
     ①The protein level of membrane CD 16 on monocytes is induced by recombinant human M-CSF in vitro, and IVIG may inhibit this effect.
     ②The elevated level of FcyRIIIA on monocytes dramatically correlate to the adhesive efficiency to HUVECs in vitro.
     Study V:Effects of FcyRIIIA on aortic atherosclerotic plaque destabilization in ApoE-/- mice
     Objective:To investigate the effects of FcyRIIIA on aortic atherosclerotic plaque destabilization in ApoE-/- mice.
     Methods:Sixty six 8-week-old male ApoE-/- mice were randomly divided into the model group, ApoE-/- mice+intraperitoneal injection immunoglobulin group and ApoE-/- mice+Simvastatin group, twenty two mice in each group. Twenty two 8-week-old male C57BL/6J mice were selected as the control group. Mice in the control group were put on a normal diet, and others fed with a high-fat diet for 10 weeks.
     ①Deteciton of aortic histopathology. Paraffins slides of aortic root tissue which were found atherosclerosis changes were dyed with Masson to evaluate plaques collagen content and immunohistochemical staining a-actin and CD68 were evaluated contents of plaques vascular smooth muscle cells (VSMCs) and macrophages, respectively. Frozen slides of aortic root tissue was dyed with oil red O to evaluate the content of plaques adipose tissue.
     ②Deteciton of hematologic indices. Levels of TC, TG, LDL-C and HDL-C were determined using standard enzymatic methods and atherogenic index of plasma (AIP) was calculated. The protein level of membrane CD 16 on monocytes in ApoE-/- mice was analyzed by flow cytometry and levels of TNF-a, IL-1 and sE-selectin in sera were examined by ELISA.
     ③Detection of mRNA expression and the protein level of MMP-9 in aorta:mRNA expression and the protein level of MMP-9 in aorta was determined by Real-time RT-PCR and Western blot, respectively.
     ④Correlation analysis:correlation of the protein level of membrane CD16 on monocytes and mRNA expression of MMP-9 in aorta or serum level of TNF-a in ApoE-/- mice with a high-fat diet for 10 w, IVIG pretreatment or Simvastatin treatment was analyzed.
     Results:
     ①Aortic atherosclerotic plaque in ApoE-/- mice contains a lot of lipid, macrophages and VSMCs, whereas collagen composition was reduced. Similar to Simvastatin, IVIG may ameliorate athersoclerosis by decreasing lipid level and macrophages contents and inhibiting VSMCs proliferation.
     ②High level of TC, TG and LDL-C and increased protein level of membrane CD 16 on monocytes were found in ApoE-/- mice, along with increased levels of TNF-a, IL-1 and sE-selectin in sera. Additionally, similar to Simvastatin, IVIG pretreatment inhibited this response in ApoE-/- mice.
     ③Increased mRNA expression and the protein level of MMP-9 in aotra were found in ApoE-/- mice compared with C57 mice (P<0.01). Additionally, similar to Simvastatin, IVIG pretreatment inhibited mRNA expression and protein level of MMP-9 in ApoE-/-mice.
     ④Correlation analyses showed that the protein level of membrane CD 16 on monocytes was positively correlated to mRNA expression of MMP-9 in aotra and serum level of TNF-a among ApoE-/- mice with a high-fat diet for 10 w, IVIG pretreatment, or Simvastatin treatment.
     Conclusion:
     ①cyRIIIA may contribute to the release of inflammatory factors such as TNF-a, IL-1 and sE-selectin in ApoE-/- mice with aortic atherosclerotic plaque.
     ②FcyRIIIA may be involved in the development of aortic atherosclerotic plaque destabilization.
     Study VI:Effects of active ingredients of Chuanxiong rhizome and red peony root on aortic atherosclerotic plaque
     Objective:To investigate the effects of active ingredients of Chuanxiong rhizome and red peony root (Chuangxiongol and paeoniflorin) on aortic atherosclerotic plaque and possible mechanisms.
     Methods:Sixty four 8-week-old male ApoE-/- mice were randomly divided into the model group, ApoE-/- mice+Simvastatin group, ApoE-/- mice+high dosage of Xiongshao Capsule (XSC) group (XSCH) and ApoE-/- mice+low dosage of XSC group (XSCL), sixteen mice in each group. Methods of detection of hematologic indices, mRNA expression and the protein level of MMP-9 in aorta and correlation analysis in this study were listed in the Study VI.
     Results:
     ①After XSC treatment for 10 weeks, levels of TC, TG, LDL-C and AIP were decreased compared with ApoE-/- mice, along with the decreased levels of both protein level of membrane CD 16 on monocytes and inflammatory factors such as TNF-a, IL-1 and sE-selectin in sera. Similar to Simvastatin, XSCH inhibited this inflammation response in ApoE-/- mice.
     ②Similar to Simvastatin, XSC inhibited mRNA expression and the protein level of MMP-9 in ApoE-/- mice aotra. However, the stabilized effect of XSCH on atherosclerotic plaques was stronger than that in ApoE-/- mice with Simvastatin treatment (P<0.05).
     lation analyses showed that decreased MMP-9 mRNA expression in aotra and serum TNF-a were positively correlated to the low protein level of membrane CD 16 on monocytes in ApoE-/- mice with XSC treatment.
     Conclusion:
     ①Active ingredients of Chuanxiong rhizome and red peony root may alleviate inflammatory reaction, stabilize atherosclerotic plaque and improve atheroslcerotic formation.
     ②The role of active ingredients of Chuanxiong rhizome and red peony root in preventing atherosclerosis is related to FcyRIIIA.
引文
1.陈可冀,史载祥.实用血瘀证学.北京:人民卫生出版社,1999.P5-8.
    2. 邢亚楠,杨冠华,刘苏宁,等.冠心病血瘀证研究概述.中国医药导报,2009,6(2):5-9.
    3.吴承玉.血瘀证的研究发展脉络与评述.南京中医药大学学报,2004,20(3):133-136.
    4.李甘地,来茂德.病理学.北京:人民卫生出版社,2001.P84-99.
    5. 陈可冀,马晓昌.关于传统血瘀证的现代分类.中国中西医结合杂志,2000,20(7):487.
    6.李莎莎,肖雪,王跃生,等.血瘀证与活血化瘀研究进展.河南中医学院学报,2009,24(1):102-104.
    7. 黄烨,殷惠军,陈可冀.心主血脉与血栓前状态.中华中医药杂志,2011,26(4):633-636.
    8.王阶,李建生,姚魁武,等.血瘀证量化诊断及病证结合研究.中西医结合学报,2003,5(1):21-24.
    9.姚魁武,王阶,朱翠玲,等.血瘀证患者实验室指标诊断贡献度比较研究.世界中西医结合杂志,2010,5(1):42-45.
    10.陈云波,叶正中.血瘀证兔模型血管内皮细胞培养的形态结构改变初探.中国中医基础医学杂志,1999,5(5):12.
    11.药立波.炎症的分子机制.第五届医学生物化学与分子生物学会——大会报告.12-16.
    12.王阶,李霁,杨戈.外周血白细胞与冠状动脉狭窄程度及冠心病中医证型之间的关系.中国中西医结合杂志,2010,30(2):130-133.
    13.王强,黄绍湘,刘钧超,等.冠心病血瘀证与超敏C-反应蛋白关系的临床探讨.广西中医药,2005,28(3):7-8.
    14. Morgan MJ, Kim YS, Liu ZG TNF alpha and reactive oxygen species in necrotic cell death. Cell Res,2008,18 (3):343-349.
    15. Bartee E, Mohamed MR, McFadden G Tumor necrosis factor and interferon: cytokines in harmony. Curr Opin Microbiol,2008,11 (4):378-383.
    16. Kato T, Kitagawa S. Regulation of neutrophil functions by proinflammatory cytokines. Int J Hematol,2006,84(3):205-209.
    17.王勇,郭淑贞,李春,等.小型猪血瘀证模型炎症因子与心功能.中华中医药杂志,2010,25(10):1563-1565.
    18. Mallat Z, Besnard S, Duriez M, et al. Protective role of interleukin-10 in atherosclerosis. Circ Res,1999,85 (8):e17-24.
    19.施毅,宋勇.现代肺部感染学.北京:人民军医出版社,1996.P116.
    20.李兵.活血化瘀中药对血液流变性及甲襞微循环改变的研究.中国血液流变学杂志,2008,18(4):519-520.
    21.黄文东.实用中医内科学.上海:上海科学技术出版社,1984.P447-448.
    22.刘毅波.血瘀证的病理及活血化瘀中药的临床应用.天津中医药,2008,25(3):246-249.
    23.吴大正,樊懿,韩志芬,等.水蛭素对凝血酶造成的血管内皮细胞单层通透性增高的抑制作用.中国实验方剂学杂志,2002,8(2):12-14.
    24.殷丽平,杜联,谢春光,等.益气养阴、活血化瘀法对2型糖尿病血管炎症患者TNF-α影响的临床研究.甘肃中医,2010,23(1):17-19.
    25.贺运河,葛金文,成战鹰,等.脑泰方对气虚血瘀型脑梗死患者血浆TXB2、6-Keto-PGF1α及血清TNF-α含量的影响.中国中医药信息杂志,2002,9(4):16-17.
    26.余志华,冯义柏.氧化苦参碱对实验性心肌缺血再灌注损伤的保护作用.中国药学杂志,2006,41(4):272-274.
    27.殷惠军,王显刚,史大卓.蒺藜总皂苷对心肌缺血再灌注损伤炎症因子TNF-α、IL-1β释放的影响.解放军医学杂志,2006,31(10):986-987.
    28.刘烨,沈惠风,王利民,等.中药循经敷贴对哮喘豚鼠肺组织IL-10 mRNA表达的影响.山东中医药大学学报,2006,30(6):483-485.
    29.雷娜,郑仕中,陆茵.活血化瘀类中药防治肝纤维化的机制及研究进展.中华中医药杂志,2010,25(2):265-268.
    30.邱颂平.活血化瘀药治疗肺纤维化之思考.福建中医学院学报,2007,17(4):8-10.
    31.曲勇,赵健雄.活血化瘀药干预治疗慢性支气管炎的研究.现代中西医结合杂志,2003,12(4):341-343.
    32.冯书梅,孙维峰.活血化瘀法治疗慢性盆腔炎探讨.贵阳中医学院学报,2010,32(1):4-5.
    33.胡佳亮,黄清春,陈秀敏.活血化瘀法治疗类风湿性关节炎41例.广东医学,2010,31(5):648-650.
    34.王平,戚天臣.活血化瘀膏对小鼠臀部急性软组织损伤抗炎作用的研究.天津中医药,2010,27(1):53-55.
    35.田金洲,王永炎,时晶,等.证候的概念及其属性.北京中医药大学学报,2005,28(5):6-8.
    1. Ravetch JV, Bolland S. IgG Fc receptor. Annu Rev Immunol,2001,19 (7): 275-290.
    2. Hulett MD, Hogarth PM. Molecular basis of Fc receptor function. Adv. Immunol, 1994,57:1-127.
    3. Nimmerjahn F, Ravetch JV. Divergent immunoglobulin-G subclass activity through selective Fc receptor binding. Science,2005,310 (5735):1510-1512.
    4. Ravetch JV, Lanier LL. Immune inhibitory receptors. Science,2000,290 (5489): 84-89.
    5. Van de Winkel J GJ, Anderson CL. Biology of human immunoglobulin G Fc receptors. J Leukocyte Biol,1991,49:511.
    6. Jan GJ,Van de Winkel J GJ, Peter JA. Human IgG Fc receptor heterogenecity: molecular aspects and clinical implications. Immunnol Today,1993,14(5):2157.
    7. Ernst L K,van de Winkel JG, Chiu IM, et al. Three genes for the human high affinity Fc receptor for IgG (FcRI) encode four distinct transcription products. J Biol Chem, 1992,267(22):15692.
    8. Brooks DG, Qiu WQ, Luster AD, et al. Structure and expression of human IgG FcRII (CD32) Functional heterogeneity is encoded by the alternatively spliced products of multiple genes. J Exp Med,1989,170 (4):1369.
    9. Hartnell A, Kay AB, Wardlaw AJ. INF-y induce expression of FcyRIII (CD 16) on human eosinophils. J Immunol,1992,148 (5):1471.
    10. Nimmerjahn F, Bruhns P, Horiuchi K, et al. FcgammaRIV:a novel FcR with distinct IgG subclass specificity. Immunity,2005,23(1):41-51.
    11. Jakus Z, Nemeth T, Verbeek JS, et al. Critical but overlapping role of FcgammaRIII and Fc gammaRIV in activation of murine neutrophils by immobilized immune complexes. J I mmunol,2008,180 (1):618-629.
    12. Jefferis R, Lund J, Pound JD. IgG-Fc-mediated effector functions:moleclar definition of interaction sites for effector ligands and the role of glycosylation. Immunol Rev,1998,163:59-76.
    13. Morgan E L,Thoman M L,Weigle WO. Enhancement of T lymphocyte functions by Fc fragments of immunoglobulins.I.Augmentation of allogeneic mixed lymphocyte culture reactions requires I-A-or I-B-subregion differences between effector and stimulator cell populations. J Exp Med,1981,153 (5):1161-1172.
    14. Kusner DJ, Hall CF, Jackson S. Fc gamma receptor-mediated activation of phospholipase D regulates macrophage phagocytosis of IgG-opsonized particles. Immunol,1999,162 (4):2266-2274.
    15. Melendez A, Floto RA, Gillooly DJ, et al. FcgammaRI coupling to phospholipase D initiates sphingosine kinase-mediated calcium mobilization and vesicular trafficking. J Biol Chem,1998,273 (16):9393-9402.
    16. Pricop L, Gokhale J, Redecha P, et al. Reactive oxygen intermediates enhance Fcγ receptor signaling and amplify phagocytic capacity. J Immunol,1999,162(12): 7041-7048.
    17. Nimmerjahn F, Ravetch JV. Fcgamma receptors:old friends and new family members. Immunity,2006,24(1):19-28.
    18. Ferrone CR, Perales MA, Goldberg SM, et al. Adjuvanticity of plasmid DNA encoding cytokines fused to immunoglobulin Fc domains. Clin Cancer Res,2006, 12(18):5511-5519.
    19. Regnault A, Lankar D, Lacabanne V, et al. Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med,1999,189 (2):371-380.
    20. Rouzer CA, Scott WA, Hamiel AL, et al. Dynamics of leukotriene C production by macrophages. J Exp Med,1980,152 (5):1236.
    21. RouzerCA, ScottWA, KempeJ, et al. Prostagland in synthesis by macrophages requires a specific receptor-ligand interaction. Proc Natl Acad Sci USA,1980,77(7): 4279.
    22. Takai T, Ono M, Hikida M, et al. Augmented humoral and anaphylactic responses in Fc gamma RⅡ-deficient mice. Nature,1996,379(6563):346-349.
    23. Bolland S, Ravetch JV. Inhibitory pathways triggered by ITIM-containing receptors. Adv Immunol,1999,72:149-177.
    24. van der Pol W, van de Winkel JG IgG receptor polymorphisms:risk factors for disease. Immunogenetics,1998,48 (3):222-232.
    25. Takai T. Roles of Fc receptors in autoimmunity. Nat Rev Immunol,2002,2 (8): 580-592.
    26. Takai T. Fc receptors and their role in immune regulation and autoimmunity. J Clin Immunol,2005,25(1):1-18.
    27. Hessner MJ, Curtis BR, Endean DJ, et al. Determination of neutrophil antigen frequencies in five ethnic groups by polymerase chain reaction with sequence specific primers. Transfusion,1996,36 (10):895-899.
    28. Ivan E, Colovai AI. Human Fc receptors:critical targets in the treatment of autoimmune diseases and transplant rejections. Hum Immunol,2006,67 (7): 479-491.
    29. Siberil S, Dutertre CA, Fridman WH, et al. FcgammaR:The key to optimize therapeutic antibodies? Crit Rev Oncol Hematol,2007,62 (1):26-33.
    30. Negi VS, Elluru S, Siberil S, et al. Intravenous immunoglobulin:an update on the clinical use and mechanisms of action. J Clin Immunol,2007,27 (3):233-245.
    31. Kzaztchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med,2001,345 (10): 747-755.
    32. Matsuura E, Kobayashi K, Inoue K, et al. Intravenous immunoglobulin and atherosclerosis. Clin Rev Allergy Immunol,2005,29 (3):311-319.
    33. Nicoletti A, Kaveri S, Caligiuri G, et al. Immunoglobulin in treatment reduces atherosclerosis in apo E knockout mice. J Clin Invest,1998,102 (5):910-918.
    34. Shapiro S, Shoenfeld Y, Gilburd B, et al. Intravenous gamma globulin inhibits the production of matrix metalloproteinase-9 in macrophages. Cancer,2002,95 (9): 2032-2037.
    35. Sherer Y, Shoenfeld Y. Immunomodulation for treatment and prevention of atherosclerosis. Autoimmun Rev,2002, 1(N1-2):21-27.
    36. Aukrust P, Yndestad A, Ueland T, et al. The role of intravenous immunoglobulin in the treatment of chronic heart failure. Int J Cardiol,2006,112 (1):40-45.
    37. Gullestad L, Aass H, Fjeld JG, et al. Immunomodulating therapy with intravenous immunoglobulin in patients with chronic heart failure. Circulation,2001,103 (2): 220-225.
    38. Udi N, Yehuda S. Intravenous immunoglobulin-indications and mechanisms in cardiovascular diseases. Autoimmun Rev,2008,7 (6):445-452.
    1. Gibbons RJ, Chatterjee K, Daley J, et al. ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina:a report of the American college of cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Chronic Stable Angina). J Am Coll Cardiol,1999,33 (7):2092-2197.
    2. Braunwald E, Antman EM, Beasley JW, et al. ACC/AHA 2002 guideline updatefor the management of patients with unstable angina and non-ST-segment elevation myocardial infarction-summary article:a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee on the Management of Patients with Unstable Angina). J Am Coll Cardiol,2002,40 (7):1366-1374.
    3. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods,2001,25 (4): 402-408.
    4. Koba S, Hirano T. Dyslipidemia and atherosclerosis. Nippon Rinsho,2011,69 (1): 138-143.
    5. Bai X, Wang X, Xu Q. Endothelial damage and stem cell repair in atherosclerosis. Vascul Pharmacol,2010,52 (5-6):224-229.
    6. Orr AW, Hastings NE, Blackman BR, et al. Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vase Res,2010, 47 (2):168-180.
    7. Bobryshev YV. Monocyte recruitment and foam cell formation in atherosclerosis. Micron,2006,37 (3):208-222.
    8. Thim T, Hagensen MK, Bentzon JF, et al. From vulnerable plaque to atherothrombosis. J Intern Med,2008,263 (5):506-516.
    9. 欧阳长生,王云开.活血化瘀中药治疗冠心病的研究进展.江西医药,2008,43(2):174-177.
    10.张京春,陈可冀.瘀毒病机与动脉粥样硬化易损斑块相关的理论思考.中国中西医结合杂志,2008;28(4):366-368.
    11.马民,张桂娟.血瘀证客观化研究进展.山东中医药大学学报,2002;2(26):155-158.
    12. Bowcock AM. Genome-wide association studies and infectious disease. Crit Rev Immunol,2010,30 (3):305-309.
    13. Musunuru K, Kethiresan S. Genetics of coronary artery disease. Annu Rev Genomics Hum Genet,2010,11:91-108.
    14. Ma XJ, Yin HJ, Chen KJ. Differential gene expression profiles in coronary heart disease patients of blood stasis syndrome in traditional Chinese medicine and clinical role of target gene. Chin J Integr Med,2009,15:101-106.
    15. Meier M, King GL. Protein kinase C activation and its pharmacological inhibition in vascular disease. Vase Med,2000,5 (3):173-185.
    16. Arckens L, Zhang F, Vanduffel W, et al. Localization of the two protein kinase C beta-mRNA subtypes in cat visual system. J Chem Neuroanat,1995,8 (2): 117-124.
    17. Murphy S, Frishman WH. Protein kinase C in cardiac disease and as a potential therapeutic target. Cardiol Rev,2005,13 (1):3-12.
    18. Serova M, Ghoul A, Benhadji KA, et al. Preclinical and clinical development of novel agents that target the protein kinase C family. Semin Oncol,2006,33 (4): 466-478.
    19. Uthra S, Raman R, Mukseh BN, et al. Protein kinase C beta (PRKCB1) and pigment epithelium derived factor (PEDF) gene polymorphisms and diabetic retinopathay in a south Indian cohort. Ophthalmic Genet,2010,31 (1):18-23.
    20. Kawakami K, Kawakami Y, Kitaura J. Protein kinase C beta (PKC beta):normal functions and diseases. J Biochem,2002,132 (5):677-682.
    21. Sledge GW Jr, Gokmen-Polar Y. Protein kinase C-beta as a therapeutic target in breast cancer. Semin Oncol,2006,33 (3):S15-18.
    22. Van de Winkel J GJ, Anderson CL. Biology of human immunoglobulin G Fc receptors. J Leukocyte Biol,1991,49:511.
    23. Nimmerjahn F, Ravetch JV. Fc gamma receptors:old friends and new family members. Immunity,2006,24 (1):19-28.
    24. Deo YM, Graziano RF, Repp R, et al. Clinical significance of IgG Fc receptors and Fc gamma R-directed immunotherapies. Immunol Today,1997,18 (3):127-135.
    25. Tsuruda T, Hatakeyama K,Kitamura K. Macrophage:pathogenesis in the progression of atherosclerosis. Nippon Rinsho,2011,69 (1):45-49.
    26. Huang Y, Jaffa A, Koskinen S, et al. Oxidized LDL-containing immune complexes induce Fc gamma receptor I-mediated mitogen-activated protein kinase activation in THP-1 macrophages. Arterioscler Thromb Vase Biol,1999,19 (7):1600-1607.
    27.袁祖贻,刘艳,岸本千晴,等.免疫球蛋白Fc区介导抑制脂蛋白E基因敲除鼠动脉粥样硬化形成.中华医学杂志,2003,83(6):489-493.
    28. Masuda A, Yoshida M, Shiomi H, et al. Role of Fc Receptors as a therapeutic target. Inflamm Allergy Drug Targets,2009,8 (1):80-86.
    29. Ivan E, Colovai AI. Human Fc receptors:critical targets in the treatment of autoimmune diseases and transplant rejections. Hum Immunol,2006,67 (7): 479-491.
    30. Gavasso S, Nygard O, Pedersen ER, et al. Fcgamma receptor IIIA polymorphism as a risk-factor for coronary artery disease. Atherosclerosis,2005,180 (2):277-282.
    31. Stefanou DC, Asimakopoulos G, Yagnik DR, et al. Monocyte Fc gamma receptor expression in patients undergoing coronary artery bypass grafting. Ann Thorac Surg, 2004,77 (3):951-955.
    32. Abe J, Jibiki T, Noma S, et al. Gene expression profiling of the effect of high-dose intravenous Ig in patients with Kawasaki disease. J Immunol,2005,174 (9): 5837-5845.
    33. Kawanaka N, NagakeY, Yamamura M, et al. Expression of Fc gamma receptor III (CD 16) on monocytes during hemodialysis in patients with chronic renal failure. Nephron,2002,90 (1):64-71.
    1. Gibbons RJ, Chatterjee K, Daley J, et al. ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina:a report of the American college of cardiology/American Heart Association task force on practice guidelines (Committee on management of patients with chronic stable angina). J Am Coll Cardiol,1999,33:2092-2197.
    2. Braunwald E, Antman EM, Kupersmith JW, et al. ACC/AHA 2002 guideline updatefor the management of patients with unstable angina and non-ST-segment elevation myocaridal infarction-summary article A report of the American college of cardiology/American Heart Association task force on proctice guidelines (committee on the management of patients with unstable angina). J Am Coll Cardiol,2002,40:1266-1374.
    3. 胡大一.转变理念做实我国心血管疾病的预防.中华心血管病杂志,2008,36(7):577-580.
    4. Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis:from pathophysiology to practice. J Am Coll Cardiol,2009,54 (23):2129-2138.
    5. Willerson JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation, 2004,109 (suppl Ⅱ):Ⅱ-2-Ⅱ-10.
    6. 陈可冀,史载祥.实用血瘀证学.北京:人民卫生出版社,1999.P5-8.
    7.药立波.炎症的分子机制.第五届医学生物化学与分子生物学会——大会报告.12-16.
    8. Cullen P, Rauterberg J, Lorkowski S. The pathogenesis of atherosclerosis. Handb Exp Pharmacol,2005,170:3-70.
    9. 欧阳长生,王云开.活血化瘀中药治疗冠心病的研究进展.江西医药,2008,43(2):174-177.
    10. Fridman WH, C Bonnerot MD, S Amigorena, et al. Strucutral bases of Fcγ receptor functions. Immunol Rev,1992,125:49.
    11. Huizinga TW, M D Haas, M Kleijer, et al. Soluble Fcγ receptor Ⅲ in human plasma originates from release by neutrophils. J Clin Invest,1990,86:416.
    12. Galon J, Gauchat JF, Mazieres N, et al. Soluble Fcgamma receptor type Ⅲ (FcgammaRIII, CD 16) triggers cell activation through interaction with complement receptors. J Immunol,1996,157(3):1184-1192.
    13.叶任高.内科学.第5版.北京:人民卫生出版社,2002.P271-280.
    14. Goldberg RB, Mellies MJ, Sacks FM, et al. Cardiovascular events and their reduction with pravastatin in diabetic and glucose-intolerant myocardial infarction survivors with average cholesterol levels:subgroup analyses in the cholesterol and recurrent events (CARE) trial. The Care Investigators. Circulation,1998,98 (23): 2513-2519.
    15. Liu L, Zhao SP, Cheng YC, et al. Xuezhikang decreases serum lipoprotein (a) and C-reactive protein concentrations in patients with coronary heart disease. Clin Chem,2003,49 (8):1347-1352.
    16. Ridker PM, Hennekens CH, Buring JE, et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000,342 (2):836-843.
    17. McGrath EE, Watt V, Anderson PB. C-reactive protein marker of inflammation or future therapeutic target? Am J Respir Crit Care Med,2007,176 (6):624.
    18. Stumpf C, Hilgers KF. C-reactive protein:more than just a marker of inflammation. J Hypertens,2009,27 (9):1748-1749.
    19. Koenig, Sund M, Frohlich, et al. C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men:results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study,1984 to 1992. Circulation, 1999,99 (2):237-242.
    20.王强,黄绍湘,刘钧超,等.冠心病血瘀证与超敏C-反应蛋白关系的临床探讨.广西中医药,2005,28(3):7-8.
    21. Abi Saleh B, Iskandar SB, Elgharib N, et al. C-reactive protein:the harbinger of cardiovascular disease. South Med J,2008,101:525-533.
    22. Danenberg HD, Kantak N, Grad E, et al. C-reactive protein protmotes monocyte-platelet aggregation:an additional link to the inflammatory-thrombotic intricacy. Eur J Haematol,2007,78:246-252.
    23. Venugopal SK, Devaraj S, Jialal I. Effect of C-reactive protein on vascular cells: evidence for a proinflammatory, proatherogenic role. Curr Opin Nephrol Hypertens, 2005,14:33-37.
    24. Verma S, Kuliszewski M, Li S, et al. C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function:further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation, 2004,109:2058-2067.
    25. Tani S, Nagao K, Anazawa T, et al. Association of leukocyte subtype counts with coronary atherosclerotic regression following pravastatin treatment. Am J Cardiol, 2009,104:464-469.
    26. May AE, Langer H, Serizer P, et al. Platelet leukocyte interactions in inflammation and atherostherombosis. Semin Thromb Hemost,2007,33:123-127.
    27. Shantsila E, YH Lip G. The role of monocytes in thrombotic disorders insights from tissue factor, monocyte platelet aggregates and novel mechanisms. Thromb Haemost,2009,102:916-924.
    28. Simon DI, Chen Z, Xu H, et al. Platelet glycoprotein Ib alpha is a counter receptor for the leukocyte integrin Mac 1 (CD11b/CD 18). J Exp Med,2000,192:193-204.
    29. Bauersachs RM, Moessmer G, Koch C, et al. Flow resistance of individual neutrophils in coronary artery disease:decreased pore transit times in acute myocardial infarction. Heart,1997,77:18-23.
    30. Johnsen SH, Fosse E, Joakimsen O, et al. Monocyte count is a predictor of novel plaque formation:a 7-year follow-up study of 2610 persons without carotid plaque at baseline:the Tromso Study. Stroke,2005,36:715-719.
    31. Tani S, Nagao K, Anazawa T, et al. Association of leukocyte subtype counts with coronary atherosclerotic regression following pravastatin treatment. Am J Cardiol, 2009,104:464-469.
    32. Griffin E, Re A, Hamel N, et al. A link between diabetes and atherosclerosis?: Glucose regulates expression of CD36 at the level of translation. Nat med,2001,7: 840-846.
    1. Woollard KJ, Geissmann F. Monocytes in atherosclerosis:subsets and function. Nat Rev Cardiol,2010,7 (2):77-86.
    2. Pamukcu B, Lip GY, Devitt A. The role of monocytes in atherosclerotic coronary artery disease. Ann Med,2010,42 (6):394-403.
    3. Saha P, Modarai B, Humphries J, et al. The monocyte/macrophage as a therapeutic target in athersoclerosis. Curr Opin Pharmacol,2009,9 (2):109-118.
    4. Shantsila E, Lip G Monocytes in acute coronary syndromes. Arterioscler Thromb Vasc Biol.2009,29:1433-1438.
    5. Kruger C, Schutt C, Obertacke U, et al. Serum CD 14 levels in polytraumatized and severely burned patients. Clin Exp Immunol,1991,85:297-301.
    6. Watanabe Y, Inaba T, Gotoda T, et al. Role of macrophage colony-stimulating factor in the initial process of atherosclerosis. Ann N Y Acad Sci,1995,748:357-364.
    7. Haghighat A, Weiss D, Whalin MK, et al. Granulocyte colony-stimulating factor and granulocyte macrophage colony-stumulating factor exacerbate atherosclerosis in apoliprotein E-deficient mice. Circulation,2007,115,2049-2054.
    8. Rallidis LS, Zolindaki MG, Pentzeridis PC, et al. Raised concentrations of macrophage colony stimulating factor in severe unstable angina beyond the acute phase are strongly predictive of long term outcome. Heart,2004,90:25-29.
    9. Rallidis, LS, Zolindaki MG, Manioudaki HS, et al. Prognostic value of C-reactive protein, fibrinogen, interleukin-6, and macrophage colony stimulating factor in severe unstable angina. Clin Cardiol,2002,25:505-510.
    10. Munn DH, Garnick MB, Cheung NK. Effects of parenteral recombinant human macrophage clony-stimulating factor on monocyte number, phenotype, and antitumor cytotoxicity in nonhuman primates. Blood,1990,75:2042-2048.
    11. Haghighat A, Weiss D, Whalin MK, et al. Granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor exacerbate atherosclerosis in apolipoprotein E-deficient mice. Circulation,2007,115 (15):2049-2054.
    12. Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterisation of a novel monocyte subpopulation in human peripheral blood. Blood,1989,74: 2527-2534.
    13. Fingerle G, Pforte A, Passlick B, et al. The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood,1993,82:3170-3176.
    14. Belge KU, et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol,2002,168:3536-3542.
    15. Thiblemont N, Weiss L, Sadeghi HM, et al. CD14 low CD16 high:a cytokine-producing monocyte subset which expands during human immunodeficiency virus infection. Eur J Immunol,1995,25:3418-3424.
    16. RIDKER PM. Inflammation, infection and cardiovascular risk how good is the clinical evidence editorial. Circulation,1998,97(17):1671-1673.
    17. TAKAHASHI M, IKEDA U, MASUYAMA J, et al. Involvement of adhesion molecules in human monocyte adhesion to and transmigration through endothelial cells in vitro. Atherosclerosis,1994,108 (1):73-81.
    18. Filippo C, Luigi MB, Antonion B, et al. Role of inflammation in the pathogenesis of unstable coronary artery disease. Am J Cardiol,1997,80:10-16.
    19. Davies MJ, Gordon, Gearing AJ, et al. The expression of the adhesion molecule ICAM-1, BCAM-1,PECAM-1 and E-selectin in human atherogenesis. J Pathol, 1993,171:223-229.
    20. Calabresi L, Gomaraschi M, Villa B, et al. Elevated soluble cellular adhesion molecules in subjects with low HDL-cholesterol. Arterioscler Thromb Vasc Biol, 2002,22:656-661.
    21. Mulvihill NT, Foley JB. Inflammation in acute coronary syndromes. Heart,2002, 87 (3):201-204.
    22. Barath P, Fishbein MC, Cao J, et al. Detection and localization of tumor necrosis factor in human atheroma. Am J Cardiol,1990,64 (5):297-302.
    23. Merhi-Soussi F, Kwak BR, Magne D, et al. Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice. Cardiovasc Res,2005,66:583-593.
    24. Isoda K, Sawada S, Ishigami N, et al. Lack of interleukin-1 receptor antagonist modulates plaque composition in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol,2004,24:1068-1073.
    1. Marsh, CBRJ, Pomerantz, JM, Parker AV, et al. Regulation of monocyte survival invitro by deposited IgG:role of MCSF. J Immunol,1999,162:6217.
    2. Jaffe EA. Culture of huamn endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest,1973,52: 2745-2754.
    3.朱陵群,王硕仁,秦英,等.活血注射液对人单核-血管内皮细胞粘附及粘附分子表达的影响.中国中西医结合杂志,2009,29(3):238-241.
    4. Ross R. Atherosclerosis-an inflammtory disease. N Engl J Med,1999,340(2): 115-126.
    5. Ross R. The pathogenesis of atherosclerosis:a perspective for the 1990s. Nature, 1993,362:801-809.
    6. Mestas J, Ley K. Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends Cardiovasc Med,2008,18:228-232.
    7. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation,2002, 105:1135-1143.
    8. Lusis AJ. Atherosclerosis. Nature,2000,407:233-241.
    9. Versari D, Daghini E, Virdis A, et al. Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care,2009,32 (Suppl 2):S314-321.
    10. Yuri V Bobryshey. Monocyte recruitment and foam cell formation in atherosclerosis. Micron,2006,37:208-222.
    11. Lkeda U, Takahashi M, Shimada K, et al.Monocyte-endothelial cell interaction in atherogenesis and thrombosis. Chin Cardiol,1998,21:11-14.
    12. Muller WA, Randolph G. Migration of leukocytes across endothelium and beyond: molecules involved in the transmigration and fate of monocyte. J Leukoc Biol, 1999,66:698-704.
    13. Munn DH, Garnick MB, Cheung NK. Effects of parenteral recombinant human macrophage clony-stimulating factor on monocyte number, phenotype, and antitumor cytotoxicity in nonhuman primates. Blood,1990,75:2042-2048.
    14. Ichiyama T, Ueno Y, Hasegawa M, et al. Intravenous immunoglobulin inhibits NF-κB activation and affects Fey receptor expression in monocytes/macrophages. Naunyn-Schmiedeberg's Arch Pharmacol,2004,369:428-433.
    1. Shah PK, Nilsson J, Kaul S, et al. Effects of recombinant apolipoprotein A-I(Milano) on aortic atherosclerosis in apolipoprotein E-deficient mice. Circulation,1998,97 (8):780-785.
    2.徐叔云,卞如濂,陈修.药理实验方法学.3版.北京:人民卫生出版社,2002:P202-204.
    3. Dobiasova M, Frohlich J. The plasma parameter log (TG/HDL-C) as an atherogenic index:correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma [FER (HDL)]. Chlin Biochem,2001,34 (7): 583-588.
    4. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods,2001.25: 402-408.
    5. Noble JE, Bailey MJ. Quantitation of protein. Methods Enzymol,2009,463:73-95.
    6. 王阶,何庆勇,马长生,等.基于冠脉造影的冠心病冠脉病变与血瘀证的相关性研究.中国中西医结合杂志,2008,28(12):1074-1078.
    7. Halvorsen B, Otterdal K, Dahl TB, et al. Atherosclerotic plaque stability-what determines the fate of a plaque? Prog Cardiovasc Dis,2008,51 (3):183-194.
    8. Hansson GK. Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol,2001,21 (12):1876-1890.
    9. Breslow JL. Mouse models of atherosclerosis. Science,1996,272 (5262):685-688.
    10. Zhang SH, Reddick RL, Piedrahita JA, et al. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science,1992,258 (5081): 468-471.
    11. Johnson J,Carson K,Williams H, et al. Plaque rupture after short periods of fat feeding in the apolipoprotein E-knockout mouse:model characterization and effects of pravastatin treatment. Circulation,2005,111 (11):1422-1430.
    12. van Bochove GS, Straathof R, Krams R, et al. MRI-determined carotid artery flow velocities and wall shear stress in a mouse model of vulnerable and stable atherosclerotic plaque. MAGMA,2010,23 (2):77-84.
    13. Zhang SH, Reddick RL, Piedrahita JA, et al. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein. Science,1992,258 (5081): 468-471.
    14. Nakashima Y, Plump AS, Raines EW, et al. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arteriosclerosis and Thrombosis,1994,14:133-140.
    15.胡琴,张运.基因工程小鼠动脉粥样硬化模型的研究进展.中国动脉粥样硬化杂志,2006,14(8):725-727.
    16. Ichiyama T, Ueno Y, Hasegawa M, et al. Intravenous immunoglobulin inhibits NF-κB activation and affects Fcγ receptor expression in monocytes/macrophages. Naunyn-Schmiedeberg's Arch Pharmacol,2004,369:428-433.
    17. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation,2002, 105(9):1135-1143.
    18. Newby AC. Metalloproteinase expression in monocytes and macrophages and its relationship to athersclerotic plaque instability. Arterioscler Thromb Vasc Biol, 2008,28 (12):2108-2114.
    19. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol,2007,8 (3):221-233.
    20. Johnson JL, George SJ, Newby AC, et al. Divergent effects of matrix metalloproteinases 3,7,9, and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries. Proc Natl Acad Sci USA,2005,102 (43):15575-15580.
    21. Schafers M, Schober O, Hermann S. Matrix-metalloproteinases as imaging targets for inflammatory activity in atherosclerotic plaques. J Nucl Med,2010,51 (5): 663-666.
    22. Shah PK. Inflammation and plaque vulnerability. Cardiovasc Drugs Ther,2009,23 (1):31-40.
    23. Steppich BA, Moog P, Matissek C, et al. Cytokine profiles and T cell function in acute coronary syndromes. Atherosclerosis,2007,190 (2):443-451.
    24. Stefanadi E, Tousoulis D, Papageorgiou N, et al. Inflammatory biomarkers predicting events in atherosclerosis. Curr Med Chem,2010,17 (16):1690-1707.
    25. McKellar GE, McCarey DW, Sattar N, et al. Role of TNF in atherosclerosis? Lessons from autoimmune disease. Nat Rev Cardiol,2009,6 (6):410-417.
    26. Popa C, Netea MG, van Riel PL, et al. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res,2007,48 (4):751-762.
    27. Biasillo G, Leo M, Della Bona R, et al. Inflammatory biomarkers and coronary heart disease:from bench to bedside and back. Intern Emerg Med,2010,5 (3): 225-233.
    28. Tani S, Nagao K, Anazawa T, et al. Association of leukocyte subtype counts with coronary atherosclerotic regression following pravastatin treatment. Am J Cardiol, 2009,104 (4):464-469.
    29. Bevilacqua MP, Stengelin S, Gimbrone MA, et al. Endothelial leukocyte adhesion molecule-1:an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science,1989,243 (6):1160-1165.
    30. Bums MP, DePaola N. Flow-conditioned HUVECs support clustered leukocyteadhesion by coexpressing ICAM-1 and E-selectin. Am J Physiol Heart Circ Physiol,2005,288 (1):H194-H204.
    31. Atalar E, Aytemir K, Haznedaroglu I. Increased plasma levels of soluble selectins in patients with unstable angina. Int J Cardiol,2001,78 (1):69-73.
    32. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient:a call for new definitions and risk assessment strategies:part Ⅰ and part Ⅱ. Circulation, 2003,108 (14-15):1664-1672,1772-1778.
    33. Tabas I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis:the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol,2005,25 (1):2255-2264.
    34. Boyle JJ. Macrophage activation in atherosclerosis:pathogenesis and pharmacology of plaque rupture. Curr Vasc Pharmacol,2005,3 (1):63-68.
    35. Broz P, Marsch S, Hunzike P, et al. Targeting of vulnerable plaque macrophages with polymer-based nanostructures. Trends Cardiovasc Med,2007,17 (6):190-196.
    36. Pyo RT, Sato Y, Mackman N, et al. Mice deficient in tissue factor demonstrate attenuated intimal hyperplasia in response to vascular injury and decreased smooth muscle cell migration. Thromb Haemost,2004,92 (3):451-458.
    37. Adiguzel E, Ahmad PJ, Franco C. Collagens in the progression and complications of atherosclerosis. Vasc Med,2009,14 (1):73-89.
    1. Shah PK, Nilsson J, Kaul S, et al. Effects of recombinant apolipoprotein A-I(Milano) on aortic atherosclerosis in apolipoprotein E-deficient mice. Circulation,1998,97 (8):780-785.
    2.徐叔云,卞如濂,陈修.药理实验方法学.3版.北京:人民卫生出版社,2002:P202-204.
    3. Chen Kj, Shi DZ, Xu H, et al. XS0601 reduces the incidence of restenosis:a prospective study of 335 patients undergoing percutaneous coronary intervention in China. Chin Med J (Engl),2006,119 (1):6-13.
    4.徐凤芹,陈可远,马晓昌,等.芎芍胶囊治疗冠心病心绞痛的临床观察.中国中西医结合杂志,2003,23(1):16-19.
    5.李立志,刘剑刚,马鲁波,等.芎芍胶囊对兔动脉粥样硬化模型脂质代谢及血小板聚集的影响.中国中西医结合杂志,2008,28(12):1100-1105.
    6.徐凤芹,徐浩,刘剑刚,等.芎芍胶囊对动脉粥样硬化兔血管平滑肌细胞增殖的影响.中国中西医结合杂志,2008,28(10):912-917.
    7.梁日欣,黄璐琦,刘菊福,等.药对川芎和赤芍对高脂血症大鼠降脂、抗氧化及血管内皮功能的实验观察.中国实验方剂学杂志,2002,8(1):43-45.
    8. Schoenhagen P, Tuzcu EM, Ellis SG Plaque vulnerability, plauqe rupture, and acute coronary syndromes:(multi)-focal manifestation of a systemic disease process. Circulation,2002,106 (7):760-762.
    9. Crisby M, Nordin-Fredriksson G, Shah PK, et al. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques:implications for plaque stabilization. Circulation,2001,103 (7):926-933.
    10. Solem J, Levin M, Karlsson T, et al. Composition of coronary plaques obtained by directional atherectomy in stable angina:its relation to serum lipids and statin treatment. J Int Med,2006,259 (3):267-275.
    11. Filip-Ciubotaru FM, Manciuc C, Foia L. Statins and endothelial dysfunction. Rev Med Chir Soc Med Nat Iasi,2009,113 (4):975-983.
    12. Shaw SM, Fildes JE, Yonan N, et al. Pleiotropic effects and cholesterol-lowering therapy. Cardiology,2009,112 (1):4-12.
    13. Etoh T, Joffs C, Deschamps AM, et al. Myocardial and interstitial matrix metalloproteinase activity after acute myocardial infarction in pigs. Am J Physiol Heart Circ Physiol,2001,281 (3):H987-994.
    14. Back M, Ketelhuth DF, Agewall S. Matrix metalloproteinases in atherothrombosis. Prog Cardiovasc Dis,2010,52 (5):410-428.
    15. Alvarez B, Ruiz C, Chacon P, et al. Serum values of metalloproteinase-2 and metalloproteinase-9 as related to unstable plaque and inflammatory cells in patients with greater than 70% carotid artery stenosis. J Vasc Surg,2004,40 (3):469-475.
    16. Loftus IM, Naylor AR, Goodall S, et al. Increased matrix metalloproteinase-9 activity in unstable carotid plaques. A potential role in acute plaque disruption. Stroke,2000,31(1):40-47.
    17. Longo GM, Xiong W, Greiner TC, et al. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest,2002,110 (5):625-632.
    18. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation,2002, 105:1135-1143.
    19. Tedgui A, Mallat Z. Cytokines in atherosclerosis:pathogenic and regulatory pathways. Physiol Rev,2006,86 (2):515-518.
    20. Jovinge S, Hultgardh-Nilsson A, Regnstrom J, et al. Tumor necrosis factor-alpha activates smooth muscle cell migration in culture and is expressed in the balloon-injured rat aorta. Arterioscler Thromb Vasc Biol,1997,17 (3):490-497.
    21. Isner JM, Keamey M, Bortman S, et al. Apoptosis in human atherosclerosis andrestenosis. Circulation,1995,91 (1):2703-2711.
    22. Calis ZS, Sukhova GK, Lark MW, et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest,1994,94:249-253.
    23. Apostolakis S, Vogiatzi K, Krambovitis E, et al. IL-1 cytokines in cardiovascular disease:diagnostic, prognostic and therapeutic implications. Cardiovasc Hematol Agents Med Chem,2008,6 (2):150-158.
    24. Vanhoutte PM. Endothelial dysfunction:the first step toward coronary rteriosclerosis. Circ J,2009,73 (4):595-601.
    25. Lefer AM, Weyrich AS, Buerke M. Role of selectins, a new family of adhesion molecules, in ischaemia reperfusion injury. Cardiovasc Res,1994,28:289-293.
    26. Lin GQ, Jiang HH, Li YQ. Changes of plasma von Willebrond factor and soluble E-selectin levels in patients with coronary artery disease. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2005,30 (4):399-402.
    27. Atalar E, Aytemir K, Haznedaroglu I, et al. Increased plasma levels of soluble selectins in patients with unstable angina. Int J Cardiol,2001,78 (1):69-73.
    28. Hwang SJ, Ballantyne CM, Sharrett AR, et al. Circulation adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases:The Atherosclerosis Risk in Communities (ARIC) study. Circulation,1997,96 (12):4219-4225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700