单链抗体介导狂犬病毒shRNA靶向制剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
狂犬病是由狂犬病病毒引起的一种动物源性人兽共患传染病,病死率极高,在世界范围内广泛流行,我国是狂犬病流行最严重的国家之一。人被带狂犬病毒的犬咬伤后,控制的基本策略是暴露后治疗(Post exposure treatment, PET),高危暴露(Ⅲ级)时,WHO推荐使用抗狂犬病免疫球蛋白作为被动免疫制剂。动物源免疫球蛋白可能导致轻重不等的过敏反应,而人抗狂犬病免疫球蛋白又有传播血液疾病的危险。因此,寻找有效和特异的治疗狂犬病的新方法显得十分重要。
     RNA干扰(RNA interference, RNAi)是内源性或外源性双链RNA (double stranded RNA, dsRNA)诱导的mRNA水平的基因表达沉默现象,将21-23nt的干扰性双链小RNA (short interfering RNA, siRNA)导入目的细胞,可以诱导高效且特异的RNAi效应。目前,RNAi已经成为替代基因敲除技术进行基因功能研究的有力工具。随着RNAi机制及其应用研究的不断深入,在癌症和一些病毒性疾病如艾滋病、乙型肝炎等,用siRNA治疗研究已进入一期或二期临床试验,有望成为新型的治疗制剂。
     RNA干扰可由人工合成双股siRNA或者将表达shRNA (small hairpin RNA, shRNA)的载体转入细胞中,在Dicer酶作用下,shRNA被加工成siRNA。由于体外合成的siRNA导入机体后易被降解,而shRNA良好的重复性和较长的细胞内效应期,价格经济,也是以siRNA进行基因治疗的首选方式。所以本研究选择以质粒载体表达shRNA进行靶向药物效果评价。
     治疗性小干扰RNA面临最大的问题是在体内安全运送而不被RNA酶、内质网的滞留作用、肾脏代谢等复杂的体内降解消耗机制作用而减少或消失,目前解决这个难题的有效方法之一是将siRNA用能识别感染细胞表面特异受体的蛋白与siRNA作用,将siRNA包裹起来,既保护了siRNA又使其实现靶向运送。体内细胞类型特异性的基因沉默可以通过siRNA与细胞类型特异性亲和配体或单克隆抗体结合而实现。即抗体指导的siRNA复合物通过内吞作用进入靶细胞,随后释放到细胞浆,通过RNA干扰路径,特异性地沉默靶基因的表达。抗体成份与小核酸分子结合后能在体内实现有效运送siRNA。已在体内证明了这种运送方式不使机体产生特异免疫反应和毒性,成为有前景的治疗性方法。
     本研究以针对人源狂犬病毒G糖蛋白二硫键稳定单链抗体(single chain disulfide-stabilized antibody, scdsFv)来特异识别感染细胞表面出芽的狂犬病毒,用绿脓杆菌外毒素跨膜区ETA部分实现穿膜,以酵母DNA结合结构域GAL4与含有特异shRNA的质粒结合,制备了狂犬病毒靶向药物,并对该药物在体内外抑制RV的复制情况进行了探索,以期为狂犬病暴露后乃至发病后的治疗积累必要的实验数据。
     本研究针对狂犬病毒N蛋白编码基因,设计合成了4对shRNA,以随机序列shRNA为阴性对照,将shRNA分别连接到表达载体pRNATU6.3上,转染BHK-21细胞后,在潮霉素抗性压力下,筛选获得稳定表达shRNA的BHK-21细胞株。在体外检测其对狂犬病毒标准攻击毒CVS-11的抑制效果,用直接免疫荧光、荧光定量PCR、Western blot检测表明,筛选出具有高效抑制RV复制的2个靶位点N-489和N-701。
     为获得能良好识别RV感染细胞的单链抗体,根据已发表的具有广谱中和效力的人源RVG单抗序列,设计点突变位点,人工合成scdsFv序列,连接到pET-22b (+)载体上,经大肠杆菌表达,获得包涵体表达的scdsFv蛋白。亲和力、特异性和中和能力检测表明该scdsFv具有特异识别狂犬病毒感染细胞的能力。
     为了制备能与含shRNA的质粒载体结合的具有导向作用的嵌合蛋白,设计引物从质粒PE40-GAL4-T上扩增获得了绿脓杆菌外毒素穿细胞膜区-酵母DNA结合结构域ETA-GAL4基因,将ETA-GAL4、scdsFv通过搭桥PCR,获得了scdsFv-ETA-GAL4基因,即SEG,在原核表达载体pET28a中表达了融合蛋白SEG。此蛋白以包涵体表达为主,经包涵体变性、Ni-柱纯化、复性后获得有活性SEG蛋白,实验表明此融合蛋白明显保留有抗原结合活性,可特异结合细胞膜上的病毒抗原。
     SEG可以结合并转运shRNA到狂犬病毒感染细胞。凝胶阻滞实验检测表明,SEG蛋白具有与shRNA结合的能力,且这种结合存在着剂量依赖关系:1nM SEG可以结合约10nM shRNA;绿色荧光蛋白(GFP)显示SEG蛋白可将含shRNA的质粒特异性运送到病毒感染的细胞。MTT检测表明SEG-shRNA复合物对细胞生长没有毒性作用。在感染细胞中,病毒RNA水平和蛋白水平检测结果均表明,SEG靶向转运shRNA能够有效地抑制病毒的复制。
     在小鼠后肢肌肉注射CVS-24毒以制备动物模型。在小鼠感染模型中,取50LD50 RV标准攻击毒CVS-24攻毒后,尾静脉注射SEG-shRNA复合物,进行狂犬病毒的体内靶向效应试验。结果显示,靶向药物SEG-shRNA注射后30h,流式细胞仪检测表明仅在注射病毒的右侧后腿肌肉检测到GFP,其余组织和内脏器官均无GFP表达。表明此复合物在体内可实现靶向性运送。小鼠保护性试验表明,注射病毒后8h尾静脉注射SEG-shRNA,5d后检测小鼠脑内RV含量:RT-PCR、Western blot检测表明使用靶向药物组RV含量明显少于病毒对照组,条带亮度变弱;qRT-PCR表明靶向药物组比病毒对照减少4.88倍;小鼠发病时间比病毒对照组晚48h,用SEG-shRNA组动物存活率达50%,而病毒对照100%死亡。检测小鼠体内IFN-a未见升高,与正常组差异不明显,证明在动物体内产生的保护作用是由针对病毒RNA的特异shRNA所介导。结果表明SEG-shRNA对小鼠有明显保护作用。总之,试验结果显示,SEG蛋白可以特异性转运含shRNA质粒进入细胞,并沉默靶基因的表达,因此可以用于狂犬病毒感染的特异辅助性救治研究。
Rabies is a lethal zoonotic infection disease induced by Rabies virus and its case fatality ratio (CFR) is 100 percent approximately. China is one of the most severe regions of rabies spread. According to the recommendations of WHO rabies experts committee, post-exposure treatment (PET) must be taken as soon as possible after a bite or a scratch occurred. Immunoglobulin is one of the regents in PET, but the zoogenous immunoglobulin is a kind of allergen, and the products made from human blood are infective agents of some body fluid transmitted diseases. Thus, new antiviral approaches that allow efficient and specific destruction of rabies virus are required.
     RNA interference (RNAi) refers to the small dsRNA-guided gene silencing phenomenon conserved in a wide range of eukaryotic organisms from plants to mammals. It is an important mechanism of cellular defense and differentiation regulation and plays an important role in the regulation of gene expression, the prevention of viral infection and the control of gene transposition. RNAi in target cells could be induced specifically and effectively by 21nt to 23nt short interfering RNA (siRNA) and has become a powerful tool to explore gene functions replacing the knock-out technique. With the progressions of the research about RNAi, some investigations have been performed successfully to inhibit the replication of viruses.
     RNAi can be induced by the introduction of synthesized double-stranded siRNA or by the intracellular generation of siRNA from the vector-driven expression of precursor small hairpin RNA (shRNA) which is subsequently processed in the cytoplasm by Dicer into siRNA. Synthesized siRNA has a very short half-life of a few minutes in vivo. The gene-silencing effects of the shRNA are long-lasting and reproducible which make the results more reliability, and it can be prepared and produced large-scale at low cost. ShRNA seems to be ideal for delivering of siRNA in vivo. In this study we selected expression plasmids for shRNA to research targeted inhibition rabies virus replication.
     The field of RNAi is moving forward at a remarkable pace.Because of their ability to induce transient and reversible effects, siRNAs offer a drug-like approach to disease treatment and thus, several clinical trails are being inducted to assess the safety and efficacy of this approach.
     A major challenge to the development of RNAi-based therapeutics is specific and efficient in vivo delivery to target cells. Naked siRNA has a very short half-life of a few minutes in serum owing to degradation by ribonucleases (RNAase), rapid renal excretion, uptake by the reticuloendothelial system (RES) and aggregation with serum proteins. Recent studies suggest that cell type-specific gene silencing in vivo can be achieved by combining therapeutic RNAi with cell type-specific affinity ligands or monoclonal antibodies. The antibody-directed siRNA complex enters target cells through endocytosis and is subsequently released to the cytosol to specifically silence target gene expression through biologically conserved RNAi pathways. Antibody fragments fused with a small basic nucleic acid-binding protein is an effective delivery vehicle in vivo. The demonstrated specificity of in vivo gene silencing and the lack of nonspecific immune activation and systemic toxicity encourage further delivery of therapeutic RNAi.
     Based on the multidomain structure of the bacterial Pseudomonas exotoxin A, a recombinant fusion protein was constructed which serves as a target cell-specific carrier for the transfer of DNA via receptor-mediated endocytosis. The protein consists of three functional domains:1)a RV G-specific single chain disulfide-stabilized antibody confers target cell specificity.2) the exotoxin A translocation domain facilitates endosome escape, and 3) a DNA binding domain derived from the yeast GAL4 protein enables sequence-specific high bacterial lysates displayed both RV infected cells specific and DNA sequence-specific binding in vitro and in vivo. We successful obtain the SEG-shRNA complexes, which targeted the RV infected cells. In this thesis, the replication of rabies virus was inhibited by SEG-shRNA complexes in vivo and in vitro experimentally in order to accumulate essential data of single-chain Fv antibody (scFv) mediated shRNA targeted therapy in the research of rabies virus the PET.
     Targeting N gene of RV, four shRNA were designed and constructed based on the vector pRNATU6.3-Hygro which expresses fusion protein of green fluorescent protein (GFP) as a report gene. Four cell strains (N1, N2, N3, N4) expressing the short hairpin RNAs (shRNA) were obtained after the plasmids were transfected into the BHK-21 cell line and screened under the pressure of Hygromycin B (300μg/ml).These cell strains were infected rabies virus CVS-11 strain respectively, the virus replication were detected and evaluated by directed immunofluorescence assay (DFA) and real-time PCR and 50% tissue culture infective dose (TC1D50). The three detected results were coincidence. We selected effective inhibition RV siRNA targeting N gene, in which N-489 and N-701 were proved that they can specifically inhibit the virus production in BHK-21 cells.
     To produce a scFv which can specific recognize the RV infected cells, the heavy (VH) and light chain variable region (VL) sequence of monoclonal antibody SO57 which obtained from Genbank were assembled into a scFv gene using a linker sequence. To construct the recombinant human anti-rabies virus single-chain disulfide-stabilized Fv (scdsFv), Cys sites were introduced into framework region (FR) of VH and VL gene using genetic point mutation technology. The scdsFv gene was cloned into expression vector pET-22b (+) and transformed into E.coli BL21(DE3). The target protein was expressed in form of inclusion bodies. The avidity, specificity characteristics and neutralization capacity of scdsFv showed that scdsFv could bind antigen specifically.
     In order to prepare the chimeric protein which could realize targeting transfer DNA which express shRNA into the RV infected cells, rabies virus scdsFv(G) gene and ETA-GAL4 gene were amplified by PCR from vector scdsFv(G)-T and PE40-GAL4-T respectively. Then, the chimeric gene scdsFv(G)-ETA-GAL4 (SEG) was obtained by lapextension PCR and cloned into the prokaryotic expression vector pET28a(+). Recombinant expression plasmid of pET28a(+)-scdsFv(G)-ETA-GAL4 (pET28a-SEG) was transformed into the competent E.coli BL21(DE3) cells for expression under the induction of IPTG. The SEG proteins mainly expressed to form inclusion bodies. The SEG proteins were purified by Ni-NTA column and renatured to obtain the biological activity. The experiment results showed that the fusion protein SEG could bind affinity to RV and the RV infected cells.
     We next tested whether SEG could bind and deliver shRNA to RV-infected cells and found that the fusion protein was able to bind shRNA in a dose-dependent manner in a gel-shift assay and 1nM SEG can bind 10nM shRNA molecules. The fusion protein SEG with plasmid pRNATU6.3-shRNA were added to BHK-21 cells culture medium that infected with RV and then green fluorescent protein (GFP) was observed after 24 hours. It was showed that SEG could realize targeting transfer DNA which expressed shRNA into the RV infected cells. Cell viability caused by SEG-shRNA complexes was also determined by MTT assay and the result confirmed that the complexes were almost non-toxic to cell viability. The levels of viral particles from SEG-shRNA-treated infected cells was reduced as demonstrated by RV mRNA and proteins. These results demonstrated that the complex effectively inhibited RV replication in BHK-21 cells.
     Because there is no good mouse model for rabies virus, we injected mice intramuscular with CVS-24 as a RV infected animal model to test the ability of SEG fusion protein to specifically deliver shRNA into RV-infected cell in vivo.50LD50 RV-infected mice were injected intravenous with complexes SEG-shRNA. Single-cell suspensions from the hind lambs were examined by flow cytometry, which showed that SEG could specific delivery of shRNA into RV-infected hind lamb cells. The results showed SEG protein could deliver shRNA to RV infected cells specifically. To evaluate the therapeutic potential of antibody-mediated shRNA delivery, we injected SEG-shRNA intravenously 8h after the mice infected lethal dose RV CVS-24. On five days when the RV in brain tissue of mice were detected by RT-PCR and western blot shown that mice treated with SEG-shRNA had lower RV RNA and protein levels than untreated controls. Real-time PCR showed that RV was reduced about 4.88 fold compared to the mock cells. The incubation period of the challenged mice were prolonged significantly (P<0.01). Evaluation of mouse survival of RV-infected mice showed a significant protection from RV infection by SEG-shRNA treatment. The survival was up to 50% while the virus control all died.
     To rule out the possibility that non-specific interferon (IFN) production mediated the protection, we measured serum IFN levels after administration of SEG-shRNA, and found that IFN was not induced in SEG-shRNA treated animals. Taken together, our results showed that SGE enables the specific delivery of shRNA to silence gene expression and SEG-shRNA can be used for adjutant treatment for rabies.
引文
[1]Fire A, Xu S, Montgomery Mk, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature,1998,391(6669):806-11.
    [2]Bosher Jm and Labouesse M. RNA interference:genetic wand and genetic watchdog[J]. Nat Cell Biol,2000,2(2):E31-6.
    [3]Wiebusch L, Truss M and Hagemeier C. Inhibition of human cytomegalovirus replication by small interfering RNAs[J]. Journal of General Virology,2004,85(1):179.
    [4]Wang Z, Ren L, Zhao X, et al. Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells[J]. The Journal of Virology,2004,78(14):7523.
    [5]Lu W, Hsu Y, Yang J, et al. Selective inhibition of enterovirus 71 replication by short hairpin RNAs[J]. Biochemical and biophysical research communications,2004,325(2):494-499.
    [6]Kahana R, Kuznetzova L, Rogel A, et al. Inhibition of foot-and-mouth disease virus replication by small interfering RNA[J]. Journal of General Virology,2004,85(11):3213.
    [7]Ni B, Shi X, Li Y, et al. Inhibition of replication and infection of severe acute respiratory syndrome-associated coronavirus with plasmid-mediated interference RNA[J]. Antivir Ther,2005, 10(4):527-33.
    [8]Lee N, Dohjima T, Bauer G, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells[J]. Nature biotechnology,2002,20(5):500-505.
    [9]Bass Bl. RNA interference. The short answer[J]. Nature,2001,411(6836):428-9.
    [10]Elbashir S, Lendeckel W and Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs[J]. Genes & development,2001,15(2):188.
    [11]Liu J, Carmell M, Rivas F, et al. Argonaute2 is the catalytic engine of mammalian RNAi[J]. Science's STKE,2004,305(5689):1437.
    [12]Song J, Smith S, Hannon G, et al. Crystal structure of Argonaute and its implications for RISC slicer activity[J]. Science,2004,305(5689):1434.
    [13]Manche L, Green S, Schmedt C, et al. Interactions between double-stranded RNA regulators and the protein kinase DAI[J]. Molecular and cellular biology,1992,12(11):5238.
    [14]Player M and Torrence P. The 2-5 A system:Modulation of viral and cellular processes through acceleration of RNA degradation[J]. Pharmacology & Therapeutics,1998,78(2):55-113.
    [15]Bernstein E, Caudy A, Hammond S, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference[J]. Nature,2001,409(6818):363-366.
    [16]Elbashir S, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature,2001,411(6836):494-498.
    [17]Weitzer S and Martinez J. The human RNA kinase hClpl is active on 30 transfer RNA exons and short interfering RNAs[J]. Nature,2007,447222-226.
    [18]Corey D. RNA learns from antisense[J]. Nature chemical biology,2007,3(1):8-11.
    [19]Sen G and Blau H. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies[J]. Nature cell biology,2005,7(6):633-636.
    [20]Bertrand J, Pottier M, Vekris A, et al. Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo[J]. Biochemical and biophysical research communications,2002,296(4): 1000-1004.
    [21]Grunweller A, Wyszko E, Bieber B, et al. Comparison of different antisense strategies in mammalian cells using locked nucleic acids,2'-O-methyl RNA, phosphorothioates and small interfering RNA[J]. Nucleic Acids Research,2003,31(12):3185.
    [22]Watanabe A, Arai M, Yamazaki M, et al. Phospholamban ablation by RNA interference increases Ca2+uptake into rat cardiac myocyte sarcoplasmic reticulum[J]. Journal of molecular and cellular cardiology,2004,37(3):691-698.
    [23]Christoph T, Bahrenberg G, De Vry J, et al. Investigation of TRPV1 loss-of-function phenotypes in transgenic shRNA expressing and knockout mice[J]. Molecular and Cellular Neuroscience,2008,37(3): 579-589.
    [24]Yeung M, Bennasser Y and Jeang K. miRNAs in the biology of cancers and viral infections[J]. Current medicinal chemistry,2007,14(2):191-197.
    [25]Holen T, Amarzguioui M, Wiiger M, et al. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor[J]. Nucleic Acids Research,2002,30(8):1757.
    [26]Kurreck J. siRNA Efficiency:Structure or sequence-that is the question[J]. Journal of Biomedicine and Biotechnology,2006,23.
    [27]Khvorova A, Reynolds A and Jayasena S. Functional siRNAs and miRNAs exhibit strand bias[J]. Cell,2003,115(2):209-216.
    [28]Schwarz D, Hutv"(?)Gner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex[J]. Cell,2003,115(2):199-208.
    [29]Tomari Y, Matranga C, Haley B, et al. A protein sensor for siRNA asymmetry[J]. Science,2004, 306(5700):1377.
    [30]Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference[J]. Nature biotechnology,2004,22(3):326-330.
    [31]Huesken D, Lange J, Mickanin C, et al. Design of a genome-wide siRNA library using an artificial neural network[J]. Nature biotechnology,2005,23(8):995-1001.
    [32]Hong J, Wei N, Chalk A, et al. Focusing on RISC assembly in mammalian cells[J]. Biochemical and biophysical research communications,2008,368(3):703-708.
    [33]Patzel V, Rutz S, Dietrich I, et al. Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency[J]. Nature biotechnology,2005,23(11):1440-1444.
    [34]Krueger U, Bergauer T, Kaufmann B, et al. Insights into effective RNAi gained from large-scale siRNA validation screening[J]. Oligonucleotides,2007,17(2):237-250.
    [35]孙建国,廖荣霞 and 陈正堂. RNA干涉分子机制研究进展[J].生物化学与生物物理进展,2002,29(05):678-681.
    [36]Ui-Tei K, Naito Y, Takahashi F, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference[J]. Nucleic Acids Res,2004,32(3):936-948.
    [37]R HI T and Kurreck J. RNA interference in pain research[J]. J. Neurochem,2006,99371-380.
    [38]Seibler J, Kleinridders A, Kuter-Luks B, et al. Reversible gene knockdown in mice using a tight, inducible shRNA expression system[J]. Nucleic Acids Research,2007,35(7):e54.
    [39]Schubert S, Gr"'nweller A, Erdmann V, et al. Local RNA target structure influences siRNA efficacy:systematic analysis of intentionally designed binding regions[J]. Journal of molecular biology, 2005,348(4):883-893.
    [40]Shao Y, Chan C, Maliyekkel A, et al. Effect of target secondary structure on RNAi efficiency[J]. Rna,2007,13(10):1631.
    [41]Westerhout E and Berkhout B. A systematic analysis of the effect of target RNA structure on RNA interference[J]. Nucleic Acids Research,2007,35(13):4322.
    [42]Ding Y, Chan C and Lawrence C. Sfold web server for statistical folding and rational design of nucleic acids[J]. Nucleic Acids Research,2004,32(Web Server Issue):W135.
    [43]Kim D, Behlke M, Rose S, et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy Nat[J]. Biotechnol,2005,23222-226.
    [44]Siolas D, Lerner C, Burchard J, et al. Synthetic shRNAs as potent RNAi triggers Nat[J]. Biotechnol,2005,23227-231.
    [45]Martinez J, Patkaniowska A, Urlaub H, et al. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi[J]. Cell,2002,110(5):563-574.
    [46]Zhang H, Du Q, Wahlestedt C, et al. RNA Interference with chemically modified siRNA[J]. Current topics in medicinal chemistry,2006,6(9):893-900.
    [47]Lorenz C, Hadwiger P, John M, et al. Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells[J]. Bioorganic & medicinal chemistry letters,2004,14(19): 4975-4977.
    [48]Harborth J, Elbashir S, Vandenburgh K, et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing[J]. Antisense and Nucleic Acid Drug Development,2003,13(2):83-105.
    [49]Braasch D, Jensen S, Liu Y, et al. RNA Interference in Mammalian Cells by Chemically-Modified RNA[J]. Biochemistry,2003,42(26):7967-7975.
    [50]Chiu Y and Rana T. siRNA function in RNAi:a chemical modification analysis[J]. Rna,2003,9(9): 1034.
    [51]Grunweller A and Hartmann R. Locked nucleic acid oligonucleotides:the next generation of antisense agents?[J]. BioDrugs,2007,21(4):235-243.
    [52]Kauppinen S, Vester B and Wengel J. Locked nucleic acid:high-affinity targeting of complementary RNA for RNomics Handb[J]. Exp. Pharmacol,2006,405422.
    [53]Kaur H, Babu B and Maiti S. Perspectives on Chemistry and Therapeutic Applications of Locked Nucleic Acid (LNA)[J]. Chem. Rev,2007,107(11):4672-4697.
    [54]Elmen J, Thonberg H, Ljungberg K, et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality[J]. Nucleic Acids Research,2005,33(1):439-447
    [55]Mook O, Baas F, De Wissel M, et al. Evaluation of locked nucleic acid modified small interfering RNA in vitro and in vivo[J]. Molecular Cancer Therapeutics,2007,6(3):833.
    [56]Schubert S, Rothe D, Werk D, et al. Strand-specific silencing of a picornavirus by RNA interference:Evidence for the superiority of plus-strand specific siRNAs[J]. Antiviral research,2007, 73(3):197-205.
    [57]Morrissey D, Blanchard K, Shaw L, et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication[J]. Hepatology,2005,41(6):1349-1356.
    [58]Shi Y. Mammalian RNAi for the masses[J]. TRENDS in Genetics,2003,19(1):9-12.
    [59]Brummelkamp T, Bernards R and Agami R. A system for stable expression of short interfering RNAs in mammalian cells[J]. Science,2002,296(5567):550.
    [60]Carmell M, Zhang L, Conklin D, et al. Germline transmission of RNAi in mice[J]. nature structural biology,2003,10(2):91-92.
    [61]Seibler J, Kuter-Luks B, Kern H, et al. Single copy shRNA configuration for ubiquitous gene knockdown in mice[J]. Nucleic Acids Research,2005,33(7):e67.
    [62]Hasuwa H, Kaseda K, Einarsdottir T, et al. Small interfering RNA and gene silencing in transgenic mice and rats[J]. FEBS letters,2002,532(1-2):227-230.
    [63]Golding Mc, Long Cr, Carmell Ma, et al. Suppression of prion protein in livestock by RNA interference[J]. Proc Natl Acad Sci U S A,2006,103(14):5285-5290.
    [64]Kappel S, Matthess Y, Kaufmann M, et al. Silencing of mammalian genes by tetracycline-inducible shRNA expression[J]. Nature Protocols,2007,2(12):3257-3269.
    [65]Kappel S, Matthess Y, Zimmer B, et al. Tumor inhibition by genomically integrated inducible RNAi-cassettes[J]. Nucleic Acids Research,2006,34(16):4527.
    [66]Rothe D, Werk D, Dutkiewicz M, et al., "Inhibition of picomaviruses by means of RNA interference," 2008, p.63.
    [67]Reynolds A, Anderson E, Vermeulen A, et al. Induction of the interferon response by siRNA is cell type-Cand duplex length"Cdependent[J]. Rna,2006,12(6):988-993.
    [68]Buchholz F, Kittler R, Slabicki M, et al. Enzymatically prepared RNAi libraries[J]. Nature methods,2006,3(9):696-700.
    [69]Mccown M, Diamond M and Pekosz A. The utility of siRNA transcripts produced by RNA polymerase i in down regulating viral gene expression and replication of negative-and positive-strand RNA viruses[J]. Virology,2003,313(2):514-524.
    [70]An D, Xie Y, Mao S, et al. Efficient lentiviral vectors for short hairpin RNA delivery into human cells[J]. Human gene therapy,2003,14(12):1207-1212.
    [71]Hui E, Yap E, An D, et al. Inhibition of influenza virus matrix (M1) protein expression and virus replication by U6 promoter-driven and lentivirus-mediated delivery of siRNA[J]. Journal of General Virology,2004,85(7):1877-1884.
    [72]Devroe E and Silver P. Retrovirus-delivered siRNA[J]. BMC biotechnology,2002,2(1):15-19.
    [73]Yang G, Thompson J, Fang B, et al. Silencing of H-ras gene expression by retrovirus-mediated siRNA decreases transformation efficiency and tumorgrowth in a model of human ovarian cancer[J]. Oncogene,2003,22(36):5694-5701.
    [74]Abbas-Terki T, Blanco-Bose W, D" Glon N, et al. Lentiviral-mediated RNA interference[J]. Human gene therapy,2002,13(18):2197-2201.
    [75]Matta H, Hozayev B, Tomar R, et al. Use of lentiviral vectors for delivery of small interfering RNA[J]. CANCER BIOLOGY AND THERAPY,2003,2(2):206-210.
    [76]Tiscornia G, Singer O, Ikawa M, et al. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(4):1844-1848.
    [77]Xia H, Mao Q, Paulson H, et al. siRNA-mediated gene silencing in vitro and in vivo[J]. Nature biotechnology,2002,20(10):1006-1010.
    [78]Shen C, Buck A, Liu X, et al. Gene silencing by adenovirus-delivered siRNA[J]. FEBS letters, 2003,539(1-3):111-114.
    [79]Watanabe T, Totoki Y, Toyoda A, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes[J]. Nature,2008,453(7194):539-543.
    [80]Babiarz J, Ruby J, Wang Y, et al. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs[J]. Genes & development,2008,22(20): 2773-2785.
    [81]Castanotto D and Rossi J. The promises and pitfalls of RNA-interference-based therapeutics[J]. Nature,2009,457(7228):426-433.
    [82]Manjunath N, Kumar P, Lee S, et al. Interfering antiviral immunity:application, subversion, hope?[J]. Trends in immunology,2006,27(7):328-335.
    [83]Kleinman M, Yamada K, Takeda A, et al. Sequence-and target-independent angiogenesis suppression by siRNA via TLR3[J]. Nature,2008,452(7187):591-597.
    [84]Check E. A crucial test[J]. Nature medicine,2005,11(3):243-244.
    [85]Devincenzo J, Cehelsky J, Alvarez R, et al. Evaluation of the safety, tolerability and pharmacokinetics of ALN-RSV01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus (RSV)[J]. Antiviral research,2008,77(3):225-231.
    [86]Chappelow A and Kaiser P. Neovascular age-related macular degeneration:potential therapies[J]. Drugs,2008,68(8):1029-1036.
    [87]Kirchhoff F. Silencing HIV-1 in vivo[J]. Cell,2008,134(4):566-568.
    [88]Grimm D and Kay M. Therapeutic application of RNAi:is mRNA targeting finally ready for prime time?[J]. Journal of Clinical Investigation,2007,117(12):3633-3641.
    [89]Akhtar S and Benter I. Nonviral delivery of synthetic siRNAs in vivo[J]. Journal of Clinical Investigation,2007,117(12):3623-3632.
    [90]Aagaard L and Rossi J. RNAi therapeutics:principles, prospects and challenges[J]. Advanced drug delivery reviews,2007,59(2-3):75-86.
    [91]Detzer A, Overhoff M, Mescalchin A, et al. Phosphorothioate-stimulated cellular uptake of siRNA: a cell culture model for mechanistic studies[J]. Current pharmaceutical design,2008,14(34): 3666-3673.
    [92]Juliano R and Alam M. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides[J]. Nucleic Acids Research,2008,36,4158-4171.
    [93]Dykxhoorn D, Palliser D and Lieberman J. The silent treatment:siRNAs as small molecule drugs[J]. Gene therapy,2006,13(6):541-552.
    [94]Lewis D, Hagstrom J, Loomis A, et al. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice[J]. Nature genetics,2002,32(1):107-108.
    [95]Rippe B, Rosengren B, Carlsson O, et al. Transendothelial transport:the vesicle controversy[J]. Journal of vascular research,2000,39(5):375-390.
    [96]Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors:a royal gate for targeted anticancer nanomedicines[J]. Journal of drug targeting,2007,15(7):457-464.
    [97]Zamecnik J, Vargova L, Homola A, et al. Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumours[J]. Neuropathology and applied neurobiology,2003,30(4):338-350.
    [98]Oliveira S, Van Rooy I, Kranenburg O, et al. Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes[J]. International journal of pharmaceutics,2007, 331(2):211-214.
    [99]Song E, Lee S, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis[J]. Nature medicine,2003,9(3):347-351.
    [100]Fattal E and Bochot A. State of the art and perspectives for the delivery of antisense oligonucleotides and siRNA by polymeric nanocarriers[J]. International journal of pharmaceutics,2008, 364(2):237-248.
    [101]Hornung V, Guenthner-Biller M, Bourquin C, et al. Sequence-specific potent induction of IFN-A by short interfering RNA in plasmacytoid dendritic cells through TLR7[J]. Nature medicine,2005, 11(3):263-270.
    [102]Kim D and Rossi J. Strategies for silencing human disease using RNA interference[J]. Nature Reviews Genetics,2007,8(3):173-184.
    [103]Liu B. Exploring cell type-specific internalizing antibodies for targeted delivery of siRNA[J]. Briefings in Functional Genomics and Proteomics,2007,6(2):112-119.
    [104]Chiu Y, Ali A, Chu C, et al. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells[J]. Chemistry & biology,2004,11(8):1165-1175.
    [105]Rossi J. Receptor-targeted siRNAs[J]. Nature biotechnology,2005,23(6):682-683.
    [106]Urban-Klein B, Werth S, Abuharbeid S, et al. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo[J]. Gene therapy,2004,12(5): 461-466.
    [107]Kumar P, Wu H, Mcbride J, et al. Transvascular delivery of small interfering RNA to the central nervous system[J]. Nature,2007,448(7149):39-43.
    [108]Kumar P, Ban H, Kim S, et al. T cell-specific siRNA delivery suppresses HTV-1 infection in humanized mice[J]. Cell,2008,134(4):577-586.
    [109]Zimmermann T, Lee A, Akinc A, et al. RNAi-mediated gene silencing in non-human primates[J]. Nature,2006,441(7089):111-114.
    [110]Kawakami S and Hashida M. Targeted delivery systems of small interfering RNA by systemic administration[J]. Drug Metabolism and Pharmacokinetics,2007,22(3):142-151.
    [111]Jeong J, Mok H, Oh Y, et al. siRNA conjugate delivery systems[J]. Bioconjugate Chem,2009, 20(1):5-14.
    [112]Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs[J]. Nature,2004,432(7014):173-178.
    [113]Tompkins S, Lo C, Tumpey T, et al. Protection against lethal influenza virus challenge by RNA interference in vivo[J]. Proceedings of the National Academy of Sciences,2004,101(23):8682-8686.
    [114]De Fougerolles A, Vornlocher H, Maraganore J, et al. Interfering with disease:a progress report on siRNA-based therapeutics[J]. Nature Reviews Drug Discovery,2007,6(6):443-453.
    [115]Kumar P, Lee S, Shankar P, et al. A single siRNA suppresses fatal encephalitis induced by two different flaviviruses[J]. PLoS Medicine,2006,3(4):505.
    [116]Pardridge W. shRNA and siRNA delivery to the brain[J]. Advanced drug delivery reviews,2007, 59(2-3):141-152.
    [117]Zhang Y, Bryant J, Charles A, et al. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer[J]. Clinical Cancer Research,2004,10(11):3667-3677.
    [118]Pirollo K, Zon G, Rait A, et al. Tumor-targeting nanoimmunoliposome complex for short interfering RNA delivery[J]. Human gene therapy,2006,17(1):117-124.
    [119]Hogrefe R, Lebedev A, Zon G, et al. Chemically modified short interfering hybrids (siHYBRIDS):nanoimmunoliposome delivery in vitro and in vivo for RNAi of HER-2[J]. Nucleosides, Nucleotides and Nucleic Acids,2006,25(8):889-907.
    [120]Morrissey D, Lockridge J, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs[J]. Nature biotechnology,2005,23(8):1002-1007.
    [121]Ma Z, Li J, He F, et al. Cationic lipids enhance siRNA-mediated interferon response in mice[J]. Biochemical and biophysical research communications,2005,330(3):755-759.
    [122]Peer D, Park E, Morishita Y, et al. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target[J]. Science,2008,319(5863):627-630.
    [123]Akinc A, Zumbuehl A, Goldberg M, et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics[J]. Nature biotechnology,2008,26(5):561-569.
    [124]Shim M and Kwon Y. Controlled delivery of plasmid DNA and siRNA to intracellular targets using ketalized polyethylenimine[J]. Biomacromolecules,2008,9(4):1355-1366.
    [125]Tan P, Yang L, Shih H, et al. Gene knockdown with intrathecal siRNA of NMDA receptor NR2B subunit reduces formalin-induced nociception in the rat[J]. Gene therapy,2004,12(1):59-66.
    [126]Thomas M, Lu J, Ge Q, et al. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung[J]. Proceedings of the National Academy of Sciences, 2005,102(16):5679-5684.
    [1.27]Chiu S, Ueno N and Lee R. Tumor-targeted gene delivery via anti-HER2 antibody (trastuzumab, Herceptin(R)) conjugated polyethylenimine[J]. Journal of Controlled Release,2004,97(2):357-369.
    [128]Kim S, Mok H, Jeong J, et al. Comparative Evaluation of Target-Specific GFP Gene Silencing Efficiencies for Antisense ODN, Synthetic siRNA, and siRNA Plasmid Complexed with PEI-PEG-FOL Conjugate[J]. Bioconjugate Chem,2006,17(1):241-244.
    [129]Guo S, Huang F and Guo P. Construction of folate-conjugated pRNA of bacteriophage phi29 DNA packaging motor for delivery of chimeric siRNA to nasopharyngeal carcinoma cells[J]. Gene therapy,2006,13(10):814-820.
    [130]Pirollo K, Rait A, Zhou Q, et al. Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system[J]. Cancer research,2007,67(7):2938-2943.
    [131]Park J, Hong K, Kirpotin D, et al. Anti-HER2 Immunoliposomes[J]. Clinical Cancer Research, 2002,8(4):1172-1181.
    [132]Mamot C, Drummond D, Noble C, et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo[J]. Cancer research,2005,65(24):11631.
    [133]Schiffelers R, Ansari A, Xu J, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle[J]. Nucleic Acids Research,2004,32(19):e149.
    [134]Alshamsan A, Haddadi A, Incani V, et al. Formulation and delivery of siRNA by oleic acid and stearic acid modified polyethylenimine[J]. Molecular Pharmaceutics,2008,6(1):121-133.
    [135]Zintchenko A, Philipp A, Dehshahri A, et al. Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity[J]. Bioconjugate Chem,2008,19(7):1448-1455.
    [136]Howard K, Rahbek U, Liu X, et al. RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticle system[J]. Molecular Therapy,2006,14(4):476-484.
    [137]Zhang W, Yang H, Kong X, et al. Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene[J]. Nature medicine,2004,11(1):56-62.
    [138]Hu-Lieskovan S, Heidel J, Bartlett D, et al. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma[J]. Cancer research,2005,65(19):8984-8992.
    [139]Aouadi M, Tesz G, Nicoloro S, et al. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation[J]. Nature,2009,458(7242):1180-1184.
    [140]Vangasseri D, Han S and Huang L. Lipid-protamine-DNA-mediated antigen delivery[J]. Current Drug Delivery,2005,2(4):401-406.
    [141]Song E, Zhu P, Lee S, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors[J]. Nature biotechnology,2005,23(6):709-717.
    [142]Peer D, Zhu P, Carman C, et al. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1[J]. Proceedings of the National Academy of Sciences,2007,104(10):4095-4100.
    [143]Schwarze S, Ho A, Vocero-Akbani A, et al. In vivo protein transduction:delivery of a biologically active protein into the mouse[J]. Science,1999,285(5433):1569-1572.
    [144]Torchilin V, Rammohan R, Weissig V, et al. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors[J]. Proceedings of the National Academy of Sciences of the United States of America,2001, 98(15):8786-8791.
    [145]Kim W, Christensen L, Jo S, et al. Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma[J]. Molecular Therapy, 2006,14(3):343-350.
    [146]Mcnamara J, Andrechek E, Wang Y, et al. Cell type Cspecific delivery of siRNAs with aptamer-siRNAchimeras[J]. Nature biotechnology,2006,24(8):1005-1015.
    [1]扈荣良,狂犬病理论、技术与防治.北京:科学出版社,2007,2.
    [2]俞永新,狂犬病和狂犬病疫苗,第二版.北京:中国医药科技出版社,2009,5.
    [3]WHO Expert Consultation on Rabies:first repori(2004:Geneva, Switzerland)[J]
    [4]Shope Re. Rabies-related viruses[J]. Yale J Biol Med,1982,55(3-4):271-275.
    [5]Kurilla M, Cabradilla C, Holloway B, et al. Nucleotide sequence and host La protein interactions of rabies virus leader RNA[J]. Journal of virology,1984,50(3):773-778.
    [6]Chenik M, Chebli K, Gaudin Y, et al. In vivo interaction of rabies virus phosphoprotein (P) and nucleoprotein (N):existence of two N-binding sites on P protein[J]. Journal of General Virology,1994, 75(11):2889-2896.
    [7]Kouznetzoff A, Buckle M and Tordo N. Identification of a region of the rabies virus N protein involved in direct binding to the viral RNA[J]. Journal of General Virology,1998,79(5):1005-1013.
    [8]Kawai A, Anzai J, Honda Y, et al. Monoclonal antibody# 5-2-26 recognizes the phosphatase-sensitive epitope of rabies virus nucleoprotein[J]. Microbiology and immunology,1997, 41(1):33-42.
    [9]Wu X, Gong X, Foley H, et al. Both viral transcription and replication are reduced when the rabies virus nucleoprotein is not phosphorylated[J]. The Journal of Virology,2002,76(9):4153-4161.
    [10]Toriumi H and Kawai A. Association of rabies virus nominal phosphoprotein (P) with viral nucleocapsid (NC) is enhanced by phosphorylation of the viral nucleoprotein (N)[J]. Microbiology and immunology,2004,48(5):399-409.
    [11]Jacob Y Re, Tordo N. Functional interaction map of lyssavirus phosphoprotein identification of the minimal transcription domain[J]. Journal of virology,2001,75(20):9613-9622.
    [12]Hiramatsu K, Mannen K, Mifune K, et al. Comparative sequence analysis of the M gene among rabies virus strains and its expression by recombinant vaccinia virus[J]. Virus genes,1993,7(1):83-88.
    [13]Hiramatsu K, Mifune K, Mannen K, et al. Mapping of the antigenic determinants recognized by monoclonal antibodies against the M2 protein of rabies virus[J]. Virology,1992,187(2):472-479.
    [14]Finke S, Mueller-Waldeck R and Conzelmann K. Rabies virus matrix protein regulates the balance of virus transcription and replication[J]. Journal of General Virology,2003,84(6):1613-1621.
    [15]Finke S and Conzelmann K. Dissociation of rabies virus matrix protein functions in regulation of viral RNA synthesis and virus assembly[J]. The Journal of Virology,2003,77(22):12074-12082.
    [16]Mebatsion T, Weiland F and Conzelmann K. Matrix protein of rabies virus is responsible for the assembly and budding of bullet-shaped particles and interacts with the transmembrane spike glycoprotein G[J]. Journal of virology,1999,73(1):242-250.
    [17]Prehaud C, Lay S, Dietzschold B, et al. Glycoprotein of nonpathogenic rabies viruses is a key determinant of human cell apoptosis[J]. The Journal of Virology,2003,77(19):10537-10547.
    [18]Tordo N, Poch O, Ermine A, et al. Completion of the rabies virus genome sequence determination: highly conserved domains among the L (polymerase) proteins of unsegmented negative-strand RNA viruses[J]. Virology,1988,165(2):565-576.
    [19]Conzelmann K, Cox J, Schneider L, et al. Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19[J]. Virology,1990,175(2):485-489.
    [20]Poch O, Blumberg B, Bougueleret L, et al. Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses:theoretical assignment of functional domains[J]. Journal of General Virology,1990,71(5):1153-1162.
    [21]Murphy F and Bauer S. Early street rabies virus infection in striated muscle and later progression to the central nervous system[J]. Intervirology,1974,3(4):256-268.
    [22]Charlton K, Casey G, Wandeler A, et al. Early events in rabies virus infection of the central nervous system in skunks (Mephitis mephitis)[J]. Acta neuropathologica,1995,91(1):89-98.
    [23]Jackson A, Warrell M, Rupprecht C, et al. Management of rabies in humans[J]. Clinical Infectious Diseases,2003,36(1):60-63.
    [24]Fu Z, Amsterdam J, Kao M, et al. Detection of Borna disease virus-reactive antibodies from patients with affective disorders by Western immunoblot technique[J]. Journal of affective disorders, 1993,27(1):61-68.
    [25]Thoulouze M, Lafage M, Schachner M, et al. The neural cell adhesion molecule is a receptor for rabies virus[J]. Journal of virology,1998,72(9):7181-7190.
    [26]Bagasra O, Michaels F, Zheng Y, et al. Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis[J]. Proceedings of the National Academy of Sciences, 1995,92(26):12041.
    [27]Tsiang H. Evidence for an intraaxonal transport of fixed and street rabies virus[J]. Journal of Neuropathology & Experimental Neurology,1979,38(3):286-299.
    [28]Tsiang H, Ceccaldi P and Lycke E. Rabies virus infection and transport in human sensory dorsal root ganglia neurons[J]. Journal of General Virology,1991,72(5):1191-1194.
    [29]Jackson A. Rabies pathogenesis[J]. Journal of NeuroVirology,2002,8(4):267-269.
    [30]Gosztonyi G, Dietzschold B, Kao M, et al. Rabies and borna disease. A comparative pathogenetic study of two neurovirulent agents[J]. Laboratory investigation; a journal of technical methods and pathology,1993,68(3):285-295.
    [31]Fu Z and Jackson A. Neuronal dysfunction and death in rabies virus infection[J]. Journal of NeuroVirology,2005,11(1):101-106.
    [32]Prosniak M, Hooper D, Dietzschold B, et al. Effect of rabies virus infection on gene expression in mouse brain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(5):2758-2763.
    [33]Srinivasan A, Burton E, Kuehnert M, et al. Transmission of rabies virus from an organ donor to four transplant recipients[J]. The New England journal of medicine,2005,352(11):1103-1111
    [34]Crepin P, Audry L, Rotivel Y, et al. Intravitam diagnosis of human rabies by PCR using saliva and cerebrospinal fluid[J]. Journal of Clinical Microbiology,1998,36(4):1117-1121
    [35]WHO Expert Committee on Rabies,1st report, Genera, World Health Organization Technical Report Series[J].2005,931.
    [36]World Health Organization. Export Committe on Rabies. Eight Report. WHO Tech. Rep.Ser[J]. 1992,8241-8284.
    [37]张永振.贵州省安龙县21例人狂犬病的流行病学调查[J].中华流行病学杂志,2004,25(1):870-872.
    [38]张永振.中国狂犬病的流行病学[J].中国计划免疫,2005,11(3):140-143.
    [39]Tang X, Luo M, Zhang S, et al. Pivotal role of dogs in rabies transmission, China[J]. Emerg Infect Dis,2005,11(12):1970-1972.
    [40]Zhang Y, Xiong C, Xiao D, et al. Human rabies in China[J]. Emerg Infect Dis,2005,11(12): 1983-1984.
    [41]Chhabra M Ir, Tewari Kn. Human rabies in Delhi[J]. India J Pediatr 2004,71(3):217-220.
    [42]Dietzschold B, Faber M and Schnell M. New approaches to the prevention and eradication of rabies[J]. Expert Review of Vaccines,2003,2(3):399-406.
    [43]De Kruif J, Bakker A, Marissen W, et al. A Human Monoclonal Antibody Cocktail as a Novel Component of Rabies Postexposure Prophylaxis*[J].2007,58:359-368.
    [44]Benmansour A, Leblois H, Coulon P, et al. Antigenicity of rabies virus glycoprotein[J]. Journal of virology,1991,65(8):4198-4203.
    [45]Alexander B. H. Bakker Wem, R. Arjen Kramer, Amy B. Rice. Novel Human Monoclonal Antibody Combination Effectively Neutralizing Natural Rabies Virus Variants and Individual In Vitro Escape Mutants[J]. Journal of Virology,2005,79(14):9062-9068.
    [46]Dietzschold B, Gore M, Casali P, et al. Biological characterization of human monoclonal antibodies to rabies virus[J]. Journal of virology,1990,64(6):3087-3090.
    [47]Dietzschold B, Wunner W, Wiktor T, et al. Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus[J]. Proceedings of the National Academy of Sciences,1983,80(1):70-74.
    [48]Kankanamge P, Irie T, Mannen K, et al. Mapping of the low pH-sensitive conformational epitope of rabies virus glycoprotein recognized by a monoclonal antibody# 1-30-44[J]. Microbiology and immunology,2003,47(7):507-519.
    [49]Goudsmit J, Marissen W, Weldon W, et al. Comparison of an Anti(?)\Rabies Human Monoclonal Antibody Combination with Human Polyclonal Anti(?)\Rabies Immune Globulin[J]. The Journal of infectious diseases,2006,193(6):796-801.
    [50]Hanlon C, Demattos C, Demattos C, et al. Experimental utility of rabies virus-neutralizing human monoclonal antibodies in post-exposure prophylaxis[J]. Vaccine,2001,19(28-29):3834-3842.
    [51]Prosniak M, Faber M, Hanlon C, et al. Development of a cocktail of recombinant(?)\expressed human rabies virus Cneutralizing monoclonal antibodies for postexposure prophylaxis of rabies[J]. The Journal of infectious diseases,2003,18853-56.
    [52]贾茜,徐葛林,赵伟,等.重组人抗狂犬病病毒单抗SO57、SOJB对不同狂犬病病毒毒株中和作用的研究[J].病毒学报,2006,22(4):256-261.
    [53]Kramer R, Marissen W, Goudsmit J, et al. The human antibody repertoire specific for rabies virus glycoprotein as selected from immune libraries[J]. European journal of immunology,2005,35(7): 2131-2145.
    [54]Christiansen J and Rajasekaran A. Biological impediments to monoclonal antibody Cbased cancer immunotherapy[J]. Molecular Cancer Therapeutics,2004,3(11):1493-1501.
    [55]Szardenings M. Phage display of random peptide libraries:applications, limits, and potential[J]. Journal of Receptors and Signal Transduction,2003,23(4):307-349.
    [56]Petrenko V. Evolution of phage display:from bioactive peptides to bioselective nanomaterials[J]. Expert Opinion on Drug Delivery,2008,5(8):825-836.
    [57]Kawakami S, Higuchi Y and Hashida M. Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide[J]. Journal of pharmaceutical sciences,2007,97(2):726-745.
    [58]Sapra P and Allen T. Ligand-targeted liposomal anticancer drugs[J]. Progress in lipid research, 2003,42(5):439-462.
    [59]Ikeda Y and Taira K. Ligand-targeted delivery of therapeutic siRNA[J]. Pharmaceutical research, 2006,23(8):1631-1640.
    [60]Sofou S and Sgouros G Antibody-targeted liposomes in cancer therapy and imaging[J]. Expert Opinion on Drug Delivery,2008,5(2):189-204.
    [61]Song E, Zhu P, Lee S, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors[J]. Nature biotechnology,2005,23(6):709-717.
    [62]Peer D, Zhu P, Carman C, et al. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1[J]. Proceedings of the National Academy of Sciences,2007,104(10):4095-4100.
    [63]Peer D, Park E, Morishita Y, et al. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target[J]. Science,2008,319(5863):627-630.
    [64]Stuart D, Kao G and Allen T. A novel, long-circulating, and functional liposomal formulation of antisense oligodeoxynucleotides targeted against MDR1[J]. Cancer gene therapy,2000,7(3):466-475.
    [65]Pagnan G, Stuart D, Pastorino F, et al. Delivery of c-myb antisense oligodeoxynucleotides to human neuroblastoma cells via disialoganglioside GD2-targeted immunoliposomes:antitumor effects[J]. JNCI Journal of the National Cancer Institute,2000,92(3):253-261.
    [66]Horneff G, Winkler T, Kalden J, et al. Human anti-mouse antibody response induced by anti-CD4 monoclonal antibody therapy in patients with rheumatoid arthritis[J]. Clinical immunology and immunopathology,1991,59(1):89-103.
    [67]Blottiere H, Douillard J, Koprowski H, et al. Immunoglobulin class and immunoglobulin G subclass analysis of human anti-mouse antibody response during monoclonal antibody treatment of cancer patients[J]. Cancer research,1990,50(3 Supplement):1051-1054.
    [68]He X, Archer G, Wikstrand C, et al. Generation and characterization of a mouse/human chimeric antibody directed against extracellular matrix protein tenascin[J]. Journal of neuroimmunology,1994, 52(2):127-137.
    [69]Morrison S, Johnson M, Herzenberg L, et al. Chimeric human antibody molecules:mouse antigen-binding domains with human constant region domains[J]. Proceedings of the National Academy of Sciences of the United States of America,1984,81(21):6851-6855.
    [70]Denton G, Sekowski M, Spencer D, et al. Production and characterization of a recombinant anti-MUC1 scFv reactive with human carcinomas[J]. British journal of cancer,1997,76(5):614-621.
    [71]Pavlinkova G, Beresford G, Booth B, et al. Pharmacokinetics and biodistribution of engineered single-chain antibody constructs of MAb CC49 in colon carcinoma xenografts[J]. Journal of Nuclear Medicine,1999,40(9):1536-1546.
    [72]Harrison J, Gill A and Hoare M. Stability of a single-chain Fv antibody fragment when exposed to a high shear environment combined with air-liquid interfaces[J]. Biotechnology and bioengineering, 2000,59(4):517-519.
    [73]Heslop-Harrison J, Brandes A, Taketa S, et al. The chromosomal distributions of Tyl-copia group retrotransposable elements in higher plants and their implications for genome evolution[J]. Genetica, 1997,100(1):197-204.
    [74]Kobayashi H, Han E, Kim I, et al. Similarities in the biodistribution of iodine-labeled anti-Tac single-chain disulfide-stabilized Fv fragment and anti-Tac disulfide-stabilized Fv fragment[J]. Nuclear medicine and biology,1998,25(4):387-393.
    [75]Bera T, Onda M, Brinkmann U, et al. A bivalent disulfide-stabilized Fv with improved antigen binding to erbB2[J]. Journal of molecular biology,1998,281(3):475-483.
    [76]Muller B, Lafay F, Demangel C, et al. Phage-displayed and soluble mouse scFv fragments neutralize rabies virus[J]. Journal of virological methods,1997,67(2):221-233.
    [77]Ray K, Embleton M, Jailkhani B, et al. Selection of single chain variable fragments (scFv) against the glycoprotein antigen of the rabies virus from a human synthetic scFv phage display library and their fusion with the Fc region of human IgG1[J]. Clinical and experimental immunology,2001,125(1): 94-101.
    [78]赵小玲,荫俊.人源抗狂犬病毒单链抗体基因原核表达质粒的构建及高效表达[J].生物技术通讯,2004,15(2):115-117.
    [79]赵小玲,荫俊,王慧,等.人源抗狂犬病毒单链抗体库的构建及体外亲和筛选[J].细胞与分子免疫学杂志,2004,20(2):243-247.
    [80]Brinkmann U, Reiter Y, Jung S, et al. A recombinant immunotoxin containing a disulfide-stabilized Fv fragment[J]. Proceedings of the National Academy of Sciences of the United States of America,1993,90(16):7538-7542.
    [81]Reiter Y, Brinkmann U, Webber K, et al. Engineering interchain disulfide bonds into conserved framework regions of Fv fragments:improved biochemical characteristics of recombinant immunotoxins containing disulfide-stabilized Fv[J]. Protein Engineering Design and Selection,1994, 7(5):697-704.
    [82]Reiter Y, Brinkmann U, Lee B, et al. Engineering antibody Fv fragments for cancer detection and therapy:Bisulfide-stabilized Fv fragments[J]. Nature biotechnology,1996,14(10):1239-1245.
    [83]赵小玲,荫俊,张素娟,等.人源抗狂犬病毒二硫键稳定性Fv抗体的生物学特性研究[J].生物工程学报,2005,21(2):265-269.
    [84]王丁丁,许天敏,余丽江,等.应用毕赤酵母分泌表达筛选人抗狂犬病毒抗体scFv-Fv[J].吉林大学学报,33(6):963-967.
    [85]闭兰,张爱华,孙可芳,等.人源抗狂犬病毒G蛋白单链抗体的表达和鉴定[J].中国生物制品学杂志,2005,18(6):445-447.
    [86]闭兰,朱蓉,张爱华,等.人源抗狂犬病毒G蛋白单链抗体的生物学鉴定及其在小鼠体内中和活性测定[J].中国人兽共患病杂志,2005,21(5):397-399.
    [87]Rajagopal V, Pastan I and Kreitman R. A form of anti-Tac (Fv) which is both single-chain and disulfide stabilized:comparison with its single-chain and disulfide-stabilized homologs[J]. Protein Engineering Design and Selection,1997,10(12):1453-1459.
    [88]蔡昆,王慧,包士中,等.人源抗狂犬病毒单链二硫键稳定抗体的重组设计与表达[J].微生物学报,2007,47(4):673-676.
    [89]Li Wang J, Ling Zheng Y, Ma R, et al. Disulfide-stabilized single-chain antibody-targeted superantigen:Construction of a prokaryotic expression system and its functional analysis[J]. World Journal of Gastroenterology,2005,11(3):4899-4903.
    [90]Young N, Mackenzie C, Narang S, et al. Thermal stabilization of a single-chain Fv antibody fragment by introduction of a disulphide bond[J]. FEBS letters,1995,377(2):135-139.
    [91]Mousli M, Turki I, Kharmachi H, et al. Recombinant single-chain Fv antibody fragment-alkaline phosphatase conjugate:A novel in vitro tool to estimate rabies viral glycoprotein antigen in vaccine manufacture[J]. Journal of virological methods,2007,146(1-2):246-256.
    [92]Willoughby Re Jr Tk, Hoffman Gm, Et Al. Survival after treatment of rabies with induction of coma[J]. The new England journal of medicine,2005,352(24):2508-2514.
    [93]Champion J, Kean R, Rupprecht C, et al. The development of monoclonal human rabies virus-neutralizing antibodies as a substitute for pooled human immune globulin in the prophylactic treatment of rabies virus exposure[J]. Journal of immunological methods,2000,235(1-2):81-90.
    [94]Dietzschold B. Antibody-mediated clearance of viruses from the mammalian central nervous system[J]. Trends in Microbiology,1993,1(2):63-66.
    [1]Rajagopal V, Pastan I and Kreitman R. A form of anti-Tac (Fv) which is both single-chain and disulfide stabilized:comparison with its single-chain and disulfide-stabilized homologs[J]. Protein Engineering Design and Selection,1997,10(12):1453-1454.
    [2]Kabat E, Te Wu T, Perry H, et al., Sequences of proteins of immunological interest,5th ed:Diane Pub Co,1992.
    [3]Dietzschold B, Gore M, Casali P, et al. Biological characterization of human monoclonal antibodies to rabies virus[J]. Journal of virology,1990,64(6):3087-3090.
    [4]萨姆布鲁克J,分子克隆实验指南,第三版.北京:科学出版社,2002.
    [5]巴德年,当代免疫学技术与应用.北京:北京医科大学,中国协和医科大学联合出版,1998.
    [6]Macdonald R, Hosking C and Jones C. The measurement of relative antibody affinity by ELISA using thiocyanate elution[J]. Journal of immunological methods,1988,106(2):191-194.
    [7]Muller B, Lafay F, Demangel C, et al. Phage-displayed and soluble mouse scFv fragments neutralize rabies virus[J]. Journal of virological methods,1997,67(2):221-233.
    [8]Cliquet F, Aubert M and Sagne L. Development of a fluorescent antibody virus neutralisation test (FAVN test) for the quantitation of rabies-neutralising antibody[J]. Journal of immunological methods, 1998,212(1):79-87.
    [9]Flamand A, Raux H, Gaudin Y, et al. Mechanisms of rabies virus neutralization[J]. Virology,1993, 194(1):302-313.
    [10]贾茜,徐葛林,赵伟,等.重组人抗狂犬病病毒单抗SO57、SOJB对不同狂犬病病毒毒株中和作用的研究[J].病毒学报,2006,22(4):256-261.
    [11]Champion J, Kean R, Rupprecht C, et al. The development of monoclonal human rabies virus-neutralizing antibodies as a substitute for pooled human immune globulin in the prophylactic treatment of rabies virus exposure[J]. Journal of immunological methods,2000,235(1-2):81-90.
    [12]Dietzschold B. Antibody-mediated clearance of viruses from the mammalian central nervous system[J]. Trends in Microbiology,1993,1(2):63-66.
    [13]赵小玲,荫俊,张素娟,等.人源抗狂犬病毒二硫键稳定性Fv抗体的生物学特性研究[J].生物工程学报,2005,21(2):265-269.
    [14]Bera T, Onda M, Brinkmann U, et al. A bivalent disulfide-stabilized Fv with improved antigen binding to erbB2[J]. Journal of molecular biology,1998,281(3):475-483.
    [15]蔡昆,王慧,包士中,等.人源抗狂犬病毒单链二硫键稳定抗体的重组设计与表达[J].微生物学报,2007,47(4):673-676.
    [16]Kalinke U, Krebber A, Krebber C, et al. Monovalent single-chain Fv fragments and bivalent miniantibodies bound to vesicular stomatitis virus protect against lethal infection[J]. European journal of immunology,2005,26(12):2801-2806.
    [1]JACKSON A C, WARRELL M J, RUPPRECHT C E, et al. Management of rabies in humans[J]. Clin Infect Dis,2003,36(1):60-63.
    [2]俞永新.狂犬病和狂犬病疫苗[M].第2版.北京:中国医药科技出版社,2009:215-230.
    [3]WUNNER W H, PALLATRONIC, CURTIS P J. Selection of genetic inhibitors of rabies virus[J]. Arch virol, 2004,149(8):1653-1662.
    [4]FIRE A, XU S, MONTGOMERY M K, et al. Potent and specific genetic interference by double-stranded RNAin Caenorhabditis elegans[J]. Nature,1998,391(6669):806-811.
    [5]TUSCHL T, BORKHARDT A. Small interfering RN As:a revolutionary tool for the analysis of gene function and gene therapy[J]. Mollnterv,2002,2(3):158-167.
    [6]QIN X F, AN D S, CHEN I S, et al. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5.Proc Natl Acad Sci USA,2003,100(1):183-188.
    [7]RADHAKRISHNAN S K, LAYDEN T J, GARTEL A L, et al. RNA interference as a new strategy against viral hepatitis[J]. Virology,2004,323(2):173-181.
    [8]ELBASHIR S M, HARBORTH J, LENDECKEL W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature,2001,411(6836):494-498.
    [9]张守峰,李清竹,李忠,等.细胞水平狂犬病病毒感染的RNA干扰[J].病毒学报,2006,22(6):462-465.
    [10]KIM D, ROSSI J. RNAi mechanisms and applications [J]. Biotechniques,2008,44(5):613-616.
    [11]VAN RIJ R P, ANDINO R. The silent treatment:RNAi as a defense against virus infection in mammals [J]. Trends Biotechnol,2006,24(4):186-193.
    [12]徐葛林,Li Ku,吴杰,等.中国19个狂犬病病毒街毒分离株N基因的序列分析[J].病毒学报,2002,18(1):48-51.
    [13]TAN F L, YIN J Q. RNAi, a new therapeutic strategy against viral infection[J]. Cell Res,2004,14(6): 460-466.
    [14]KOUZNETZOFF A, BUCKLE M, TORDO N. Identification of a region of the rabies virus N protein involved in direct binding to the viral RNA[J]. J Gen Virol,1998,79(Pt 5):1005-1013.
    [15]BRANDAO P E, CASTILHO J G, FAHL W, et al. Short-interfering RNAs as antivirals against rabies[J]. Braz J Infect Dis,2007,11(2):224-225.
    [1]俞永新.狂犬病和狂犬病疫苗.第二版.北京:中国医药科技出版社,2001:5.
    [2]Jackson AC, Wunner WH. Rabies.2nd ed. London:Academic Press,2007,324.
    [3]Centers for Disease Control and Prevention. Human rabies prevention-United States,1999. Recommendations of the Advisory Committee on Immunization Practices(ACIP). Morbidity and Mortality Weekly Report,1999, 48(No,RR-1),1-21.
    [4]Murphy FA, Bauer SP, Harrison AK, et al. Comparative pathogenesis of rabies and rabies-like viruses. Viral infection and transit from inoculation site to the central nervous system. Laboratory investigation; a journal of technical methods and pathology,1973,28(3):361-376.
    [5]Dietzschold B, Kao M, Zheng YM, et al. Delineation of putative mechanisms involved in antibody-mediated clearance of rabies virus from the central nervous system. Proceedings of the National Academy of Sciences of the United States of America,1992,89(15):7252-7256.
    [6]Bosher JM, Labouesse M. RNA interference:genetic wand and genetic watchdog. Nature Cell Biology,2000, 2(2):E31-E36.
    [7]Tuschl T, Borkhardt A. Small interfering RNAs:a revolutionary tool for the analysis of gene function and gene therapy. Molecular Interventions,2002,2(3):158-167.
    [8]Qin XF, An DS, Chen IS, et al. Inhibiting HIV-1 Infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proceedings of the National Academy of Sciences of the United States of America,2003,100(1):183-188.
    [9]Radhakrishnan SK, Layden TJ, Gartel AL, et al. RNA interference as a new strategy against viral hepatitis. Virology,2004,323(2):173-181.
    [10]Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature,2001,411(6836):494-498.
    [11]Wels W, Biburger M, Muller T, et al. Recombinant immunotoxins and retargeted killer cells:employing engineered antibody fragments for tumor-specific targeting of cytotoxic effectors. Cancer Immunology Immunotherapy,2004,53(3):217-226.
    [12]Fominaya J, Wels W. Target cell-specific DNA transfer mediated by a chimeric multidomain protein. The Journal of Biological chemistry,1996,271(18):10560-10568.
    [13]张守峰,李清竹,李忠,等.细胞水平狂犬病毒感染的RNA干扰.病毒学报(Chinese Journal of Virology),2006,22(6):462-465.
    [14]Kim D, Rossi J. RNAi mechanisms and applications. Biotechniques,2008,44(5):613-616.
    [15]Brandao PE, Castilho JG, Fahl W, et al. Short-interfering RNAs as antivirals against rabies. The Brazilian Journal of Infectious Diseases,2007,11(2):224-225.
    [16]Barati S, Chegini F, Hurtado P, et al. Hybrid tetanus toxin C fragment-diphtheria toxin translocation domain allows specific gene transfer into PC 12 cells. Experimental Neurology,2002,177(1):75-87.
    [17]Uherek C, Fominaya J, Wels W. A modular DNA carrier protein based on the structure of diphtheria toxin mediates target cell-specific gene delivery. The Journal of Biological chemistry,1998,273(15):8835-8841.
    [18]Wen WH, Liu JY, Qin WJ, et al. Targeted inhibition of HBV gene expression by single-chain antibody mediated small interfering RNA delivery. Hepatology,2007,46(1):84-94.
    [19]Dietzschold B, Gore M, Casali P, et al. Biological characterization of human monoclonal antibodies to rabies virus. Journal of Virology,1990,64(6):3087-3090.
    [20]Goudsmit J, Marissen WE, Weldon WC, et al. Comparison of an anti-rabies human monoclonal antibody combination with human polyclonal anti-rabies immune globulin. The Journal of Infectious Diseases,2006, 193(6):796-801.
    [1]Cardoso A, Sim Es S, De Almeida L, et al. Tf-lipoplexes for neuronal siRNA delivery:A promising system to mediate gene silencing in the CNS[J]. Journal of Controlled Release,2008,132(2):113-123.
    [2]Omi K, Tokunaga K and Hohjoh H. Long-lasting RNAi activity in mammalian neurons[J]. FEBS letters,2004,558(1-3):89-95.
    [3]Bitko V, Musiyenko A, Shulyayeva O, et al. Inhibition of respiratory viruses by nasally administered siRNA[J]. Nature medicine,2004,11(1):50-55.
    [4]Song E, Lee S, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis[J]. Nature medicine,2003,9(3):347-351.
    [5]Chen S, Khouri Y, Bagley J, et al. Combined intra-and extracellular immunization against human immunodeficiency virus type 1 infection with a human anti-gp120 antibody[J]. Proceedings of the National Academy of Sciences of the United States of America,1994,91(13):5932-5936.
    [6]Chen S, Zani C, Khouri Y, et al. Design of a genetic immunotoxin to eliminate toxin immunogenicity[J]. Gene therapy,1995,2(2):116-123.
    [7]Zhou J, Li H, Li S, et al. Novel dual inhibitory function aptamer CsiRNA delivery system for HIV-1 therapy[J]. Molecular Therapy,2008,16(8):1481-1489.
    [8]Zhou J, Swiderski P, Li H, et al. Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells[J]. Nucleic Acids Research,2009,37(1):3094-3109.
    [9]Layzer J, Mccaffrey A, Tanner A, et al. In vivo activity of nuclease-resistant siRNAs[J]. Rna,2004, 10(5):766-771.
    [10]Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs[J]. Nature,2004,432(7014):173-178.
    [11]Song E, Zhu P, Lee S, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors[J]. Nature biotechnology,2005,23(6):709-717.
    [12]Wen W, Liu J, Qin W, et al. Targeted inhibition of HBV gene expression by single-chain antibody mediated small interfering RNA delivery[J]. Hepatology,2007,46(1):84-94.
    [13]Li X, Stuckert P, Bosch I, et al. Single-chain antibody-mediated gene delivery into ErbB2-positive human breast cancer cells[J]. Cancer gene therapy,2001,8(8):555-565.
    [14]Murphy F and Bauer S. Early street rabies virus infection in striated muscle and later progression to the central nervous system[J]. Intervirology,1974,3(4):256-268.
    [15]Contreras J, Vilatoba M, Eckstein C, et al. Caspase-8 and caspase-3 small interfering RNA decreases ischemia/reperfusion injury to the liver in mice* 1[J]. Surgery,2004,136(2):390-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700