能源技术变迁的复杂性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
技术系统是一个开放的系统,是一个包含物理元素、社会元素和信息元素的相互关联的网络。作为不断发展变化的复杂社会经济系统的一个子系统,技术系统与其他子系统之间有着千丝万缕的、非线性的相互作用,使得技术变迁具有动态性、系统性和不确定性等特征。
     本文针对技术变迁过程呈现出的动态性、系统性和不确定性,以实证研究与规范研究相结合,采用定性与定量分析方法,对能源技术系统变迁的动态性、系统性和不确定性进行了研究和分析。并基于定量研究的结果,对能源技术政策的制定,提出了若干政策建议。主要开展了以下创新性的工作:
     (1) 能源技术变迁的演化特征研究
     以演化经济学的视角,着重研究了能源技术变迁的演化特征,企业创新和使用技术的能力与激励,技术系统和社会系统的动态行为,以及公共政策在形成新的技术轨迹中的作用。以技术范式等理论分析框架为基础,分别从宏观层次和中观层次,研究了能源技术经济范式的变迁,和能源产业技术变迁的演化特征。提出了能源技术经济范式的三阶段划分,揭示了技术系统和社会系统在不同能源技术经济范式下的动态行为,以及市场环境、社会制度、技术竞争和政策环境等对能源技术变迁的复杂影响与作用。
     (2) 能源技术变迁的动态性分析
     技术变迁的动态性是指技术总在不断的发展和进步,同时,其发展和进步的过程受到各种因素的影响,总是处在不断的改变,并适应其所依赖的环境的。借鉴蛛网模型,我们研究了世界能源技术研发投入的动态特征,和响应石油危机冲击的模式;利用熵统计方法,研究了世界能源技术研发投入在技术组合和国家分布上的变化特征。研究发现,世界能源研发投入的技术维度熵从20世纪80年代的1.2左右提高到2000年后的1.65,反映了技术多样化的动态趋势;而国家维度熵值则从20世纪80年代中期的1.8下降到2000年后的1.1左右,反映了能源技术研发投入集中于少数国家的趋势;而在各国家则呈现出倾向于自身优先技术领域的动态发展趋势。通过对世界能源技术研发投入变化的实证分
Technology system is an open system, a complex network that containing physical elements, social elements and information elements. As a sub-system of the socio-economic complex system, technology system has various non-linear interactions with other sub-systems, thus dynamic, systemic and uncertain features emerge in the process of technological change.
    This dissertation, combining empirical analysis and norm research, applying qutitative analysis methods, emphasizes on the dynamic, systemic and uncertain features of energy technological change, based on which energy technology policy implications are drawn. Contributions of this dissertation are as follows:
    (1) Evolution character of energy technological change
    From the evolutionary perspective, we focus on the evolutionary character of energy technological change, the capabilities and incentives of firms to produce and use new technologies, the dynamic behavior of technological and social systems and the role of public policy in shaping new technological paths. Based on the theoretical framework of technological paradigm, we identify the transitions of energy techno-economic paradigms on the macro level, and investigate the evolution character of technological change in energy sectors, which reveals the dynamic behavior of technological and social systems under different paradigms, and the complex impacts of market environment, institution, technology competition and government regulation on energy technological change.
    (2) Dynamic feature of energy technological change
    Dynamic means technology is always developing, and during the process the direction and pace of technological change is influenced by many factors around. Technology has to adapt to the environment it rests. Borrowing the concept of cobweb model, we investigate the dynamics of world energy R&D expenditures and the reaction patterns of energy R&D investment to oil shocks. Furthermore, the entropy statistics is applied to analyze the dynamic features of portfolio in
引文
[1] Lee Chien-Chiang. The causality relationship between energy consumption and GDP in G-11 countries revisited [J]. Energy Policy, 2006(34): 1086-1093.
    
    [2] Wolde-Rufael Yemane. Electricity consumption and economic growth: a time series experience for 17 African countries [J]. Energy Policy, 2006(34): 1106-1114.
    
    [3] Lee Chien-Chiang. Energy consumption and GDP in developing countries: A cointegrated panel analysis [J]. Energy Economics, 2005(27):415-427.
    
    [4] Oh Wankeun, Lee Kihoon. Energy consumption and economic growth in Korea: testing the causality relation [J]. Journal of Policy Modeling, 2004(26):973-981.
    
    [5] Fatai K., Oxley Les, Scrimgeour F. G Modelling the causal relationship between energy consumption and GDP in New Zealand, Australia, India, Indonesia, The Philippines and Thailand [J]. Mathematics and Computers in Simulation, 2004(64):431-445.
    
    [6] Wolde-Rufael Yemane. Disaggregated industrial energy consumption and GDP: the case of Shanghai, 1952-1999 [J]. Energy Economics, 2004(26):69-75.
    
    [7] Soytas Ugur, Sari Ramazan. Energy consumption and GDP: causality relationship in G-7 countries and emerging markets [J]. Energy Economics, 2003(25):33-37.
    
    [8] IEA. Key World Energy Statistics [R]. Paris: IEA/OECD, 2005.
    
    [9] Marland G, Boden T.A., Andres R.J. Global, regional, and national fossil fuel CO_2 emissions [EB]. http://cdiac.ornl.gov/trends/emis/meth reg.htm.
    
    [10] Dension E.F. The Sources of Economic Growth in the United States and the Alternatives Before Us [R]. New York, NY, USA: Committee for Economic Development, 1962.
    
    [11] Dension E.F. Trends in American Economic Growth 1929-1982 [R]. The Brookings Institution, Washington DC, USA, 1985.
    
    [12] Griliches Z. The discovery of the residual: A historical note [J]. Journal of Economic Literature, 1996(34): 1324-1330.
    
    [13] Slow R.M. Technical change and the aggregate production function [J]. Review of Economics and Statistics, 1957(39):312-320.
    
    [14] Grubler A. Technology and Global Change [M]. Cambridge, UK: Cambridge University Press; 1998.
    [15] Mokyr J. The Lever of Riches: Technological Creativity and Economic Progress [M]. Oxford, UK: Oxford University Press; 1990.
    [16] Freeman Chris. The Third Kondratieff Wave: Age of Steel, Electrification and Imperialism. In: Research Memorandum 89-032, MERIT, Maastricht, Netherlands; 1989.
    [17] Ruttan Vernon. Technology and the environment [J]. American Journal of Agricultural Economics, 1971 (53):707-717.
    [18] Starr Chauncey, Rudman Richard. Parameters of technological growth [J]. Science, 1973(182): 358-364.
    [19] Simon Herbert. Technology and environment [J]. Management Science, 1973(14): 1110-1121.
    [20] Rosenberg Nathan. Technology and environment [A]. In: Perspectives on Technology [C]. Edited by Rosenberg N. Cambridge MA: Cambridge University Press; 1976.
    [21] Nakicenovic Nebojsa, Victor N., Morita T. Emissions scenario data base and review of scenarios [J]. Mitigation and Adaptation Strategies for Global Change, 1998(3): 95-120.
    [22] 韩智勇,魏一鸣,范英.中国能源强度与经济结构变化特征研究[J].数砰统计与管理,2004(1):1-6.
    [23] 焦建玲.石油价格问题的计量分析模型及其实证研究[博士学位论文].合肥:中国科学技术大学;2005.
    [24] Frenken Koen. Technological innovation and complexity theory [J]. Economics of Innovation and New Technology, 2006(15): 137-155.
    [25] Criqui Patrick, Martin Jean-Marie, Schrattenholzer Leo, Kram Tom, Soete Luc, Zon Adriaan van. Energy technology dynamics [J]. International Journal of Global Energy Issues, 2000(14):65-103.
    [26] Grubler Arnulf, Gritsevskyi Andrii. A model of endogenous technological change through uncertain returns on innovation [A]. In: Technological change and the environment [C]. Edited by Grbler A. Washington DC: REF Press; 2002: 280-319.
    [27] IEA. Experience curves for energy technology policy [R]. Paris: OECD/IEA, 2000.
    [28] McDonald Alan, Schrattenholzer L. Learning rates for energy technologies [J]. Energy Policy, 2001(29):255-261.
    [29] Messner S. Endogenised technological learning in an energy systems model [J]. Journal of Evolutionary Economics, 1997(7).
    [30] Mattsson N. GENIE: an energy system model with uncertain learning. Proceedings of the IEA/ETSAP 5th Workshop. Berlin, Germany 6-7 May, 1998.
    [31] Capros P., Vouyoukas E. L. Technology evolution and energy modelling: overview of research and findings [J]. International Journal of Global Energy Issues, 2000(14): 1-32.
    [32] Dosi Giovanni, Nelson R., Richard. An introduction to evolutionary theories in economics [J]. Journal of Evolutionary Economics, 1994(4): 153-172.
    [33] 盛昭翰,蒋德鹏.演化经济学[M].上海:上海三联书店;2002.
    [34] Mowery David C., Rosenberg Nathan. The influence of market demand upon innovation: A critical review of some recent empirical studies [J]. Research Policy, 1979(8): 103-153.
    [35] Dosi Giovanni. Technological Paradigms and Technological Trajectories: A suggested interpretation of the determinants and directions of technical change [J]. Research Policy, 1982(11): 147-162.
    [36] Freeman Chris, Perez Carlota. Structural crises of adjustment, business cycles and investment behavior. [A]. In: Technical change and economic theory [C]. Edited by Dosi G. London: Pinter; 1988: 38-66.
    [37] Nelson R., Richard. The co-evolution of technology, industrial structure, and supporting institutions [A]. In: Technology, Organization, and Competitiveness. Perspectives on industrial and corporate change [C]. Edited by Dosi G, Teece D, J., Chytry J. New York: Oxford University Press; 1998.
    [38] Fink J. America Adopts the Automobile Age [M]. Cambridge, MA: MIT Press; 1970.
    [39] Unruh C., Gregory. Understanding carbon lock-in [J]. Energy Policy, 2000(28): 817-830.
    [40] IEA. Saving oil and reducing CO_2 emissions in transport: Options & strategies [R]. Paris: OECD/IEA, 2001.
    [41] Marchetti Cesare. Primary energy substitution models: On the interaction between energy and society [J]. Technological Forecasting & Social Change, 1977(10): 345-356.
    [42] Foray D., Grubler A. Technology and the Environment: An Overview [J]. Technological Forecasting and Social Change, 1996(53): 3-13.
    [43] Gray P.E. The paradox of technological development [A]. In: Technology and Environment [C]. Edited by Ausubel JH, Sladovich HE. Washington DC: National Academy Press; 1989.
    [44] Linstone Harold, A. Complexity science: Implications for forecasting [J]. Technological Forecasting and Social Change, 1999(62):79-90.
    
    [45] Modis Theodore, Debecker Alain. Chaoslike states can be expected before and after logistic growth [J]. Technological Forecasting & Social Change, 1992(41): 111 -120.
    
    [46] Martin Jean-Marie. Energy technologies: Systemic aspects, technological trajectories, and institutional frameworks [J]. Technological Forecasting and Social Change, 1996(53):81-95.
    
    [47] Perez Carlota. Technological revolutions, paradigm shifts and socio-institutional change [A]. In: Globalization, Economic Development and Inequality: An alternative Perspective [C]. Edited by Eric R. Northampton, MA, USA: Edward Elgar; 2004:217-242.
    
    [48] Zhang Jiu-Tian. Paradigm transitions of technological change in the energy sector and policy implications [J]. International Journal of Foresight and Innovation Policy, (In Press).
    
    [49] Malthus T.R. An Essay on the Principle of Population [M]. 7th ed. London, UK: Dent; 1798.
    
    [50] Sweeney L., James. The response to energy demand to higher prices: What have we learned? [J]. The American Economic Review, 1984(74):31-37.
    
    [51] Grubler Arnulf, Nakicenovic Nebojsa, Victor G.D. Dynamics of energy technologies and global change [J]. Energy Policy, 1999(27):247-280.
    
    [52] EIA. Milestones in the History of Energy & Its Uses [EB], 2005-4. Energy Information Administration, Department of Energy, United States of America, http://www.eia.doe.gov/kids/historv/timelines/index.html.
    
    [53] Lin Ching-Yuan. Global Pattern of Energy Consumption before and after the 1974Oil Crisis [J]. Economic Development & Cultural Change, 1984(32):781-802.
    
    [54] IEA. Key World Energy Statistics [R]. Paris: IEA/OECD, 2004.
    
    [55] Odell R., Peter. The significance of Oil [J]. Journal of Contemporary History, 1968(3):93-110.
    
    [56] Goldstein S., Joshua, Huang Xiaoming, Akan Burcu. Energy in the world economy, 1950-1992 [J]. International Studies Quarterly, 1997(41):241-266.
    
    [57] Lesbirel S.Hayden. The political economy of substitution policy: Japan's response to lower oil prices [J]. Pacific Affairs, 1988(61):285-302.
    
    [58] EU. Science and Technology for Sustainable Energy [R]. Luxemburg: Office for official publications of the European Communities, European Union, 2002.
    [59] Mongtague Holland, Gilbert. The later history of the Standard Oil Company [J]. The Quarterly Journal of Economics, 1903(17):293-325.
    [60] Piece William, Spangar. Economics of the energy industries [M]. 2th ed. London: Praeger; 1996.
    [61] 刘振武,等.21世纪初中国油气关键技术展望[M].北京:石油工业出版社;1998.
    [62] Jiao Jian-Ling, Fan Ying, Zhang Jiu-Tian, Wet Yi-Ming. The analysis of the effect of OPEC oil price to the world oil price [J]. Journal of Systems Science and Information, 2005(1): 113-125.
    [63] OPEC. 134th Conference leaves ceiling unchanged, suspends "unrealistic" OPEC price band [J]. OPEC Bulletin, 2005/2(36):4.
    [64] Lomi Alessandro, Larsen Erik. Learning without experience: Strategic implications of deregulation and competition in the electricity industry [J]. European Management Journal, 1999(17): 151-163.
    [65] Wether Michael, Nohria Nitin, Hickman Amanda, Smith Huard. Value Networks—The Future of the U. S. Electric Utility Industry [J]. Sloan Management Review, 1997(38): 21-34.
    [66] Islas Jorge. Getting round the lock-in in electricity generating systems: The example of the gas turbine [J]. Research Policy, 1997(26): 49-66.
    [67] Charles Bayless E. Less Is More: Why Gas Turbines Will Transform Electric Utilities[J]. Public Utilities Fortnightly, 1994(Dec.):21-29.
    [68] Casten Thomas R. Electricity generation: Smaller is better [J]. The Electricity Journal, 1995,(8):65-73.
    [69] Linden R., Henry. Operational, technological and economic drivers for convergence of the electric power and gas industries [J]. The Electricity Journal, 1997(10): 14-25.
    [70] Larsen Erik, R., Bunn D., W. Deregulation in Electricity: Understanding Strategic and Regulatory Risk [J]. The Journal of Operational Research society, 1999(50):337-344.
    [71] Tedmon C.S., Roeder A. Technologies for the future global electrical power market-impact of deregulated markets [J]. The Electricity Journal, 1995(8):60-64.
    [72] Dooley J. J. Unintended consequences: energy R&D in a deregulated energy market [J]. Energy Policy, 1998(26): 547-555.
    [73] Skeer Jeffrey. How is electric power technology development affected by growing power sector competition? [A]. In: Competition and new technology in the electric power sector [C]. Paris: OECD/IEA; 1996:7-12.
    [74] Watson Jim. Selection environments, flexibility and the success of the gas turbine [J]. Research Policy, 2004(33): 1065-1080.
    
    [75] PCAST. PCAST Panel on the US Fusion Energy R&D Program [R]. Washington DC: President's Committe of Advisors on Science and Technology, 1995.
    
    [76] IEA. Technology options: Fusion Power [R]. Paris: IEA's Office of Energy Efficiency,Technology and R&D. OECD/IEA, 2003.
    
    [77] IEA. IEA Energy Technology R&D Database. In: OECD/IEA; 2003.
    
    [78] Romerio Franco. The risks of the nuclear policies [J]. Energy Policy, 1998(26):239-246.
    
    [79] Jager-Waldau Arnulf, Ossenbrink Heinz. Progress of electricity from biomass, wind and photovoltaics in the European Union [J]. Renewable and Sustainable Energy Reviews, 2004(8): 157-182.
    
    [80] IAEA. Annual Report 2003 [R]. Vienna: International Atomic Energy Agency, 2004.
    
    [81] Cowan Robin. Nuclear power reactors: A study in technological lock-in [J]. The Journal of Economic History, 1990(50):541-567.
    
    [82] Arthur W., Brian. Competing technologies, increasing returns, and lock-in by historical events [J]. The Economic Journal, 1989(99): 116-131.
    
    [83] Hadjilambrinos Constantine. Understanding technology choice in electricity industries: a comparative study of France and Denmark [J]. Energy Policy, 2000(28): 1111-1126.
    
    [84] Loiter Jeffrey, M., Norberg-Bohm Vicki. Technology policy and renewable energy: public roles in the development of new energy technologies [J]. Energy Policy, 1999(27):85-97.
    
    [85] IEA. Renewables Information [R]. Paris: OECD/IEA, 2003.
    
    [86] Reddy Sudhakar, Painuly J.P. Diffusion of renewable energy technologies: barriers and stakeholders' perspectives [J]. Renewable Energy, 2004:-.
    
    [87] Berry Trent, Jaccard Mark. The renewable portfolio standard: design considerations and an implementation survey [J]. Energy Policy, 2001(29):263-277.
    
    [88] Mithchell Catherine. The renewables NFFO: A review [J]. Energy Policy, 1995(23):1077-1091.
    
    [89] Meyer Niels I. European schemes for promoting renewables in liberalised markets [J]. Energy Policy, 2003(31):665-676.
    [90] Ackermann Thomas, Andersson Goran, Soder Lennart. Overview of government and market driven programs for the promotion of renewable power generation [J]. Renewable Energy, 2001(22): 197-204.
    
    [91] Ibenholt Karin. Explaining learning curves for wind power [J]. Energy Policy, 2002(30):1181-1189.
    
    [92] WEC. Energy Technologies for the 21st Century [R]. World Energy Council, 2001.
    
    [93] Dooley J.J., Runci P.J. Adopting a long view to energy R&D and global climate change [R]. Columbus, Ohio, USA: Battelle Memorial Institute, 1999.
    
    [94] Dooley J.J., Runci P.J., Luiten EEM. Energy R&D in the industrialized world: retrenchment and refocusing [R]. Columbus, Ohio, USA: Battelle Memorial Institute, 1998.
    
    [95] Margolis R.M., Kammen D.M. Underinvestment: the energy technology and R&D policy challenge [J]. Science, 1999(285):690-692.
    
    [96] Margolis R.M., Kammen D.M. Evidence of underinvestment in energy R&D in the United States and the impact of Federal policy [J]. Energy Policy, 1999(27):575-584.
    
    [97] Popp David. Induced Innovation and Energy Prices [J]. The American Economic Review, 2002(92): 160-180.
    
    [98] Blumstein C, Wiel S. Public-interest research and development in electric and gas utility industries [J]. Utilities Policy, 1998(7):191-199.
    
    [99] PCAST. Federal Energy Research and Development for Challenges of the Twenty-First Century [R]. Washington DC: President's Committe of Advisors on Science and Technology, 1999.
    
    [100] Miketa Asami, Schrattenholzer Leo. Experiments with a methodology to model the role of R&D expenditures in energy technology learning process; first results [J]. Energy Policy, 2004(32): 1679-1692.
    
    [101] Sagar A., D., Holdren J.P. Assessing the global energy innovation system: some key issues [J]. Energy Policy, 2002(30):465-469.
    
    [102] Zhang Jiu-Tian, Fan Ying, Wei Yi-Ming. An empirical analysis for national energy R&D expenditures [J]. International Journal of Global Energy Issues, 2006(25):141-159.
    
    [103] Hicks John R. The theory of wages [M], London: Macmillan; 1932.
    
    [104] Saviotti P.P. Information, variety and entropy in techno-economic development [J]. Research Policy, 1988(17):89-103.
    [105] Jacquemin Alexis.P., Berry Charles, H. Entropy measure of diversification and corporate growth [J]. The Journal of Industrial Economics, 1979(27):359-369.
    [106] IEA. Creating Markets for Energy Technologies [R]. Paris: OECD/IEA, 2003.
    [107] Mansfield Edwin, Switzer Lorne. Effects of federal support on company-financed R and D: The case of energy [J]. Management Science, 1984(30): 562-571.
    [108] Zhang Jiu-Yian, Wang Yu. Empirical relationships between information activities and energy use in the Chinese economy [J]. International Journal of Foresight and Innovation Policy, (In Press).
    [109] Takase kae, Murota Yasuhiro. The impact of IT investment on energy: Japan and US comparison in 2010 [J]. Energy Policy, 2004(32): 1291-1301.
    [110] Spreng Daniel. Possibilities for subsitution between energy, time and information [J]. Energy Policy, 1993(21): 13-23.
    [111] Chen Xavier. Subsitution of information for energy: conceptual background, realities and limits [J]. Energy Policy, 1994(22): 15-27.
    [112] Machado Aluisio Campos, MilDer Ronald E. Empirical relationships between the energy and information segments of the US economy [J]. Energy Policy, 1997(25): 913-921.
    [113] Collard Fabrice, Feve Patrick, Portier Franck. Electricity consumption and ICY in the French service sector [J]. Energy Economics, 2005(27): 541-550.
    [114] Porat Marc U., Rubin Michael R. The Information Economy [R]. Washington D. C.: Office of Telecommunications Special Publication 77-12, US Department of Commerce, 1977.
    [115] Akinlo A. Enisan. Foreign direct investment and growth in Nigeria: An empirical investigation [J]. Journal of Policy Modeling, 2004(26): 627-639.
    [116] Kui-yin Cheung, Lin Ping. Spillover effects of FDI on innovation in China: Evidence from the provincial data [J]. China Economic Review, 2004(15): 25-44.
    [117] 张桂香.FDI对经济增长推动作用的动态计量分析[J].工业技术经济,2005(24):99-100.
    [118] 蔡茂森,顾敏芬.FDI对我国出口贸易贡献的实证分析[J].商业研究,2005(18):124-126.
    [119] He Jie. Pollution haven hypothesis and environmental impacts of foreign direct investment: The case of industrial emission of sulfur dioxide (SO2) in Chinese provinces [J]. Ecological Economics, (In Press, Corrected Proof).
    [120] 张斌.FDI对中国经济的影响[J].国际经济评论,2004(3-4):1-2.
    [121] 李子奈.计量经济学[M].北京:高等教育出版社;2000.
    [122] Hotelling Harold. The Economics of Exhaustible Resources [J]. The Journal of Political Economy, 1931(39): 137-175.
    [123] Kalish Shlomo, Lilien Gary. Optimal Price Subsidy Policy for Accelerating the Diffusion of Innovation [J], Management Science, 1983(2): 407-420.
    [124] Edquist C. Innovation policy—a system approach [A]. In: The Globalizing Learning Economy [C]. Edited by Archibugi D, Lundval B-A. Oxford: Oxford University Press; 2001.
    [125] EWEA. Wind Energy-The Facts [R]. Brussels: European Wind Energy Association, 2004.
    [126] Rowlands Ian H. Envisaging feed-in tariffs for solar photovoltaic electricity: European lessons for Canada [J]. Renewable and Sustainable Energy Reviews, 2005(9): 51-68.
    [127] Cerveny Michael, Resch Gustav. Feed-in Tariffs and Regulations Concerning Renewable Energy Electricity Generation in European Countries [R]. Viena: Energie Verwertungsagentur (E. V. A.), 1998.
    [128] Menanteau Philippe, Finon Dominique, Marie-Laure Lamy. Prices versus quantities: choosing policies for promoting the development of renewable energy [J]. Energy Policy, 2003(31): 799-812.
    [129] Lauber Volkmar. REFIT and RPS: options for a harmonised community framework[J]. Energy Policy, 2004(32): 1405-1414.
    [130] 何祚庥,王亦楠.风力发电:我国能源和电力可持续发展战略的最现实选择.科学新闻 2004-9-16.
    [131] Meier Peter, Wiesenthal Tobias, Milborrow David. Statistical Analysis of Wind Farm Costs and Policy Regimes [R]. World Bank: Asia Alternative Energy Programme (ASTAE), 2002.
    [132] Kotler Philip. Marketing for Nonprofit Organizations [M]. 2nd ed. New Jersey: Prentice Hall; 1982.
    [133] Morthorst P. E. The development of a green certificate market [J]. Energy Policy, 2000(28): 1085-1094.
    [134] Krishnan Trichy, V., Bass Frank, M., Jain Dipak, C. Optimal Pricing Strategy for New Products [J]. Management Science, 1999(45): 1650-1663.
    [135] Crutchfield J. P., Hanson J. E. Turbulent pattern bases for cellular automata [J]. Physica D, 1993(69): 279-301.
    [136] Pettier J. Y., Sipper M., Zahnd J. Toward a viable, self-reproducing universal computer [J]. Physica D, 1996(97): 335-352.
    [137] Goldenberg Jacob, Efroni Sol. Using cellular automata modeling of the emergence of innovations [J]. Technological Forecasting & Social Change, 2001(68): 293-308.
    [138] Fagiolo Giorgio, Dosi Giovanni. Exploitation, exploration and innovation in a model of endogenous growth with locally interacting agents [J]. Structural Change and Economic Dynamics, 2003(14): 237-27Y
    [139] Wei Yi-Ming, Ying Shang-Jun, Fan Ying, Wang Bing-Hong. The cellular automation model of investment behavior in the stock market [J]. Physica A, 2003(325): 507-516.
    [140] Bass Frank, M. A New Product Growth for Model Consumer Durables [J]. Management Science, 1969(15): 215-227.
    [141] Jukic Dragan, Kralik Gordana, Scitovski Rudolf. Least-squares fitting Gompertz curve [J]. Journal of Computational and Applied Mathematics, 2004(169):359-375.
    [142] Kozusko Frank, Bajzer Zeljko. Combining Gompertzian growth and cell population dynamics [J]. Mathematical Biosciences, 2003(185): 153-167.
    [143] 刘世锦.我国经济增长模式转型面临的真问题 [EB].2006-4-19.http://finance.sina.com.cn/economist/jingjixueren/20060419/20442514077.shtml.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700