镁基储氢合金吸放氢热力学和动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁基合金是最有可能实用化的储氢材料之一,但同时它也存在动力学性能差、放氢温度高等缺点。针对这些缺点,国内外进行了大量的实验和理论研究,如元素取代、材料纳米化/复合化、添加催化剂、热处理等,不同程度地改善了材料的吸放氢热力学、动力学、电化学性能和循环寿命。但到目前为止,有关储氢金属与氢原子之间的相互作用以及具体的吸放氢的热力学和动力学过程(基于微观视角)仍非常不清楚。因此急需要解决储氢合金吸放氢反应的机制问题,以及在此机制上建立理论模型。
     本论文从镁基储氢材料微观结构出发,主要研究了H2分子在镁基金属、氢化物和氧化物表面解离吸附的完整过程和H原子在上述体系表面的最优吸附位置、电荷转移、体内扩散情况等过程,并采用机械合金实验和Chou动力学模型来验证计算结果的可靠性;随后从统计力学角度出发推导出压力-组分-温度热力学模型;最后,在Chou模型基础上,进一步考虑了混合控速机理,推导出了混合控速动力学模型。主要得到如下创新性结论:
     (1)本文采用密度泛函理论和Nudged Elastic Band算法,对洁净及掺杂Fe3O4和La催化剂的Mg/MgH2表面的吸放氢过程进行了考察。结果显示:
     吸氢时,对于洁净Mg/MgH2表面,氢的化学吸附环节是控速步骤;添加催化剂Fe3O4和La后,Fe的掺杂对H2的解离影响最大,其次是La掺杂和空位,但Fe、La和空位的引入均对H的扩散起反作用,最终导致控速环节变为扩散。
     放氢时,对于洁净Mg/MgH2表面,表面的解氢反应为控速步骤;掺杂催化剂后,Fe、La分别对近邻和次紧邻Mg周围的H的脱附的催化作用较为明显,而Mg空位对解氢起反作用,同时Fe、La掺杂和Mg空位模型对H的扩散均表现出较好的催化作用,最终此过程控速环节没有出现变化。
     根据上述微观计算构型条件,采用机械合金法制备了MgH2、MgH2+1.9mol%Fe3O4和MgH2+1.9mol%La三个体系的镁基储氢合金,并采用PCT设备台考察了体系的热力学和动力学性能,再利用修正的Chou模型对动力学数据进行了拟合,将获得的活化能与微观计算数据做了定性的对接。
     (2)当表面存在钝化层MgO时,H2和H在MgO表面的解离势垒和扩散势垒明显变大,并通过Arrhenius公式结合他人实验数据对本文中H的扩散系数进行了验证。
     (3)利用统计热力学中的Bragg-Williams点阵模型,得到储氢合金体系的PCT热力学表达式:并采用新模型对洁净及掺杂催化剂的MgH2体系、Mg2Ni体系和La2Mg17体系进行了定量分析和计算,得到了不同体系的焓变、熵变与浓度的变化关系。
     (4)以Chou模型为基础,推导出表征吸氢反应不同混合控速环节的动力学新模型,并求解出其解析解。它们将反应时间t表达为一个关于反应分数ξ,温度T以及颗粒大小R0的函数。表达式为:
     随后将模型应用不同体系中,结果表明本模型使用灵活方便,可以对单步和混合控速的反应机理进行定性和定量描述。
     总之,本论文对镁基储氢合金吸放氢过程的反应机理进行了考察,从微观结构出发,论证了微观结构与热力学模型和动力学模型的相互交融、密不可分的关系,建立了较为完整的储氢合金吸放氢反应的理论体系。
Magnesium alloy is one of potential hydrogen storage materials in the hydrogen energy field. However, due to its kinetic limitations and unmanageable desorption temperatures, pure magnesium is unsuitable as a hydrogen storage material. To overcome these disadvantages, tremendous studies in both experiments and theories, such as element substitute and heat treatment, have been done to improve its thermodynamics, kinetics, electrochemistry and circle life to some extent. However, the interaction between metal and hydrogen and the mechanism of thermodynamics and kinetics from the microcosmic point view were still not clear. Therefore, a better understanding of its reaction mechanism is very urgent and also provides the base for further building a theoretical model.
     In this thesis, firstly, the dissociation/diffusion processes of H2/H on the Mg, MgH2 and MgO surfaces and the charge transfer were investigated. Secondly, the experiment data of ball milling and Chou model were used to validate our calculation results. Then, the pressure-composition-temperature model was deduced with the statistical mechanics. Finally, the mechanism of mixing rate controlling was analyzed by Chou model and the related models were derived.
     (1) The hydriding/dehydriding processes of pure and Fe3O4/La doped Mg/MgH2 surfaces were investigated with the Density Functional Theory and Nudged Elastic Band methods. Our results show:
     For the hydrogenation process, the dissociation of H2 was the rate-limiting step for pure MgH2 system. When the MgH2 mixed with catalyst Fe3O4 and La was considered, it was found that the doping of Fe atom has higher catalytic activities than the doping of La atom and vacancy for the H2 dissociation. However, the catalyst has the negative effect on the H diffusion and could eventually make the diffusion become the rate-limiting step.
     For the dehydrogenation process, the decomposition of H2 was the rate-limiting step for pure MgH2 system. When the MgH2 mixed with catalysts Fe3O4 and La was considered, it was found that Fe atom has higher catalytic effect on the desorption of H atom nearby the Mg atom. Meanwhile, the doping of La has a positive effect on the H atom of next-nearby Mg while the vacancy on the Mg site has a negative effect on the H desorption. Doping of Fe and La together with vacancy could improve the kinetics of H diffusion in the bulk and did not change the rate-limiting step until the end.
     According to the model calculation, MgH2, MgH2+1.9mol%Fe3O4 and MgH2+1.9mol%La were prepared by mechanical alloy method. The modified Chou model was then used to analyze the experimental results. The fitted results show that the experimental results could be well described by Chou model.
     (2) The dissociation/diffusion processes of H2/H on the MgO(001) surface were investigated. Our results show shat the activation energies of dissociation and diffusion for H2/H on the MgO(001) surface were much larger than that of H2/H on the Mg(0001) surface. Thus, MgO layer could prevent the hydrogen molecules from penetrating into the material.The diffusion coefficient was then obtained according to the Arrhenius equation and generally agreed with the experiments result.
     (3) Using the Bragg-Williams model in the statistical mechanics, we got the pressure-composition-temperature model of hydrogen storage alloys:
     In this new model, compressibility factorαwas used to correct the high pressure and improve the fitting of data. Then, the thermodynamic model was used to describe MgH2, catalyst-MgH2, Mg2Ni and La2Mg17 systems and the enthalpy and entropy as a function of composition were obtained.
     (4) On the basis of Chou model, a new model for predicting the reaction time has been expressed as an analytic formula using the reaction fraction of hydrogen in hydrogen storage materials, temperature and the granule radii: This model has been used in different systems, which showed that it was easy and flexible to be applied. Meanwhile, the model can describe reaction mechanism of the single and mixed rate-controlling steps.
     In conclusion, the reaction mechanism of hydriding/dehydriding of Mg-based hydrogen storage alloys was investigated. The close relationships among microstructure, thermodynamics and kinetics were analyzed and a theoretical system has been built for studying the reaction mechanism.
引文
[1]伊斯雷尔?贝科维奇.世界能源——展望2020年[M].上海:上海译文出版社. 1983: 3-10.
    [2] Thomas S, Zalbowitz M. Fuel Cells-Green Power, 2000. www.education.lanl.gov/resources/ fuelcells.
    [3] Andreasen A. Hydrogen Storage Materials with Focus on Main Group I-II Elements. Doctor. Roskilde: Technical University of Denmark, 2005. 3.
    [4]胡子龙.贮氢材料[M].北京:化学工业出版社, 2002.
    [5]贡长生,张克立.新型功能材料[M].北京:化学工业出版社, 2001.
    [6]郑青榕,顾安忠.储氢技术的新进展[J].新能源. 2000, 22 (12): 120-127.
    [7]科技部.“十?五”“863计划”项目指南. 2006.
    [8] Lennard-Jones J E. Processes of adsorption and diffusion on solid surfaces [J]. Transition Faraday Society. 1932, 28: 333-359.
    [9] Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications [J]. Nature. 2001, 414 (6861): 353-358.
    [10] Zuttel A. Materials for hydrogen storage [J]. Materials Today. 2003, 6 (9): 24-33.
    [11]大角泰章.金属氢化物的性质与应用[M].北京:化学工业出版社, 1990.
    [12] Libowitz G G, Hayes H F, Gibb R R P J. The system zirconium-nickel and hydroge [J]. Journal of Physies Chemistry. 1958: 62-76.
    [13] Zaluska A, Zaluski L, Strom-Olsen J O. Nanocrystalline magnesium for hydrogen storage [J]. Journal of Alloys and Compounds. 1999, 288 (1-2): 217-225.
    [14] Dehouche Z, Djaozandry R, Goyette J, Bose T K. Evaluation techniques of cycling effect on thermodynamic and crystal structure properties of Mg2Ni alloy [J]. Journal of Alloys and Compounds. 1999, 288 (1-2): 269-276.
    [15] Hu Y Q, Zhang H F, Wang A M, Ding B Z, Hu Z Q. Preparation and hydriding/dehydriding properties of mechanically milled Mg-30 wt% TiMn1.5 composite [J]. Journal of Alloys and Compounds. 2003, 354 (1-2): 296-302.
    [16] Stampfer J F, Holley C E, Suttle J F. The Magnesium-Hydrogen System [J]. Journal of the American Ceramic Society 1960, 82 (14): 3504 - 3508.
    [17] Reiser A, Bogdanovic B, Schlichte K. The application of Mg-based metal-hydrides as heat energy storage systems [J]. International Journal of Hydrogen Energy. 2000, 25 (5): 425-430.
    [18] Vigeholm B, Kjoller J, Larsen B, Pedersen A S. Formation and decomposition of magnesium hydride [J]. Journal of the Less Common Metals. 1983, 89 (1): 135-144.
    [19] Li L, Akiyama T, Yagi J-i. Effect of hydrogen pressure on the combustion synthesis of Mg2NiH4 [J]. Intermetallics. 1999, 7 (2): 201-205.
    [20] Akiyama T, Tazaki T A, Takahashi R, Yagi J. Kinetics of hydrogen absorption and desorption of magnesium nickel alloy [J]. Intermetallics. 1996, 4 (8): 659-662.
    [21] Huot J, Liang G, Boily S, Van Neste A, Schulz R. Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride [J]. Journal of Alloys and Compounds. 1999,293-295: 495-500.
    [22] von Zeppelin F, Reule H, Hirscher M. Hydrogen desorption kinetics of nanostructured MgH2 composite materials [J]. Journal of Alloys and Compounds. 2002, 330-332: 723-726.
    [23]熊志华,孙振辉,雷敏生.基于密度泛函理论的第一性原理赝势法[J].江西科学. 2005, 23 (1): 1-4.
    [24] Nakamura H, Nguyen-Manh D, Pettifor D G. Electronic structure and energetics of LaNi5, [alpha]-La2Ni10H and [beta]-La2Ni10H14 [J]. Journal of Alloys and Compounds. 1998, 281 (2): 81-91.
    [25]周惦武,彭平,刘金水. MgH2-Ti体系解氢能力的第一原理计算[J].中国有色金属学报. 2005, 15 (9): 1403-1410.
    [26]丁福臣,易玉峰.制氢储氢技术.北京:化学工业出版社, 2006.
    [27] Song Y, Guo Z X, Yang R. Influence of selected alloying elements on the stability of magnesium dihydride for hydrogen storage applications: A first-principles investigation [J]. Physical Review B. 2004, 69 (9): 094205.
    [28] http://hydpark.ca.sandia.gov.
    [29] Yamaguchi M, Akiba E. Electronic and Magnetic Properties of Metals and Ceramics Part II, Materials Science and Technology. Weinheim: VCH, 1994.
    [30] Song Y, Guo Z X, Yang R. Influence of titanium on the hydrogen storage characteristics of magnesium hydride: a first principles investigation [J]. Materials Science and Engineering A. 2004, 365 (1-2): 73-79.
    [31] Liang G, Huot J, Boily S, Van Neste A, Schulz R. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems [J]. Journal of Alloys and Compounds. 1999, 292 (1-2): 247-252.
    [32] Zhou D-w, Peng P, Liu J-s, Chen L, Hu Y-j. First-principles study on structural stability of 3d transition metal alloying magnesium hydride [J]. Transition Nonferrous Metal Socity of China. 2006, 16: 23-32.
    [33]陈东,陈廉,王元明,刘实,陈德敏,马常祥,王隆. Ca,Pd,Sn,La对MgH2电子结构的影响. [J].稀有金属材料与工程. 2004, 33 (5): 485-489.
    [34] Yin Y F, Mays T, McEnaney B. Molecular Simulations of Hydrogen Storage in Carbon Nanotube Arrays [J]. Langmuir. 2000, 16 (26): 10521-10527.
    [35]顾冲,高光华,于养信,毛宗强.单壁碳纳米管吸附氢气的计算机模拟[J].高等学校化学学报. 2001, 22: 958-961.
    [36] Cao A, Zhu H, Zhang X, Li X, Ruan D, Xu C, Wei B, Liang J, Wu D. Hydrogen storage of dense-aligned carbon nanotubes [J]. Chemical Physics Letters. 2001, 342 (5-6): 510-514.
    [37] Guay P, Stansfield B L, Rochefort A. On the control of carbon nanostructures for hydrogen storage applications [J]. Carbon. 2004, 42 (11): 2187-2193.
    [38] Darkrim F, Levesque D. Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes [J]. The Journal of Chemical Physics. 1998, 109 (12): 4981-4984.
    [39]赵力,程锦荣,黄德财,袁兴红,张立波,唐瑞华.多壁碳纳米管储氢的物理吸附特性[J].化学物理学报. 2004, 17 (05): 572-577.
    [40]程锦荣,闫红,陈宇,张立波,赵力,黄德财,唐瑞华.碳纳米管储氢性能的计算机模拟[J].计算物理. 2003, 20 (03): 255-259.
    [41]程锦荣,袁兴红.相互作用势对模拟计算单壁碳纳米管物理吸附储氢的影响[J].原子与分子物理学报. 2005, 122 (12): 289-298.
    [42] Kurokawa H, Nakayama T, Kobayashi Y, Suzuki K, Takahashi M, Takami S, Kubo M, Itoh N, Selvam P, Miyamoto A. Monte Carlo simulation of hydrogen absorption in palladium and palladium-silver alloys [J]. Catalysis Today. 2003, 82 (1-4): 233-240.
    [43] Li J H, Dai X D, Liang S H, Tai K P, Kong Y, Liu B X. Interatomic potentials of the binary transition metal systems and some applications in materials physics [J]. Physics Reports. 2008, 455 (1-3): 1-134.
    [44]张邦维,胡望宇,舒小林.嵌入原子方法理论及其在材料科学中的应用[M].长沙:湖南大学出版社, 2003.
    [45] Gale J D, Rohl A L. The General Utility Lattice Program [J]. Mol. Simul. 2003, 29: 291.
    [46] Sutton A P, Chen J. Long-range Finnis-Sinclair potentials [J]. Philosophical Magazine Letters. 1990, 61 (3): 139 - 146.
    [47] Rafii-Tabar H, Sulton A P. Long-range Finnis-Sinclair potentials for f.c.c. metallic alloys [J]. Philosophical Magazine Letters. 1991, 63 (4): 217 - 224.
    [48] Tomar V, Zhou M. Classical molecular-dynamics potential for the mechanical strength of nanocrystalline composite fcc Al + alpha-Fe2O3 [J]. Physical Review B. 2006, 73 (17): 174116-174116.
    [49] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. Journal of the American Chemical Society. 1918, 40 (9): 1361-1403.
    [50] Suwanayuen S, Danner R P. A gas adsorption isotherm equation based on vacancy solution theory [J]. AIChE Journal. 1980, 26 (1): 68-76.
    [51] A. L. Myers J M P. Thermodynamics of mixed-gas adsorption [J]. AIChE Journal. 1965, 11 (1): 121-127.
    [52] Moon H, Tien C. Further work on multicomponent adsorption equilibria calculations based on the ideal adsorbed solution theory [J]. Industrial & Engineering Chemistry Research. 1987, 26 (10): 2042-2047.
    [53] Khan A R, Al-Waheab I R, Al-Haddad A. A Generalized Equation for Adsorption Isotherms for Multi-Component Organic Pollutants in Dilute Aqueous Solution [J]. Environmental Technology. 1996, 17 (1): 13 - 23.
    [54] Khan A R, Ataullah R, Al-Haddad A. Equilibrium Adsorption Studies of Some Aromatic Pollutants from Dilute Aqueous Solutions on Activated Carbon at Different Temperatures [J]. Journal of Colloid and Interface Science. 1997, 194 (1): 154-165.
    [55]张秀兰,黄整,陈波,麻焕锋,高国强. LaNi5储氢过程的热力学分析[J].物理学报. 2007, 56 (7): 4039.
    [56] Lacher J R. A Theoretical Formula for the Solubility of Hydrogen in Palladium [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990). 1937, 161 (907): 525-545.
    [57] Fang S, Zhou Z, Zhang J, Yao M, Feng F, Northwood D O. Two mathematical models for the hydrogen storage properties of AB2 type alloys [J]. Journal of Alloys and Compounds. 1999, 293-295: 10-13.
    [58] Fang S, Zhou Z, Zhang J, Yao M, Feng F, Northwood D O. The application of mathematical models to the calculation of selected hydrogen storage properties (formation enthalpy and hysteresis) of AB2-type alloys [J]. International Journal of Hydrogen Energy.2000, 25 (2): 143-149.
    [59] Lototsky M V, Yartys V A, Marinin V S, Lototsky N M. Modelling of phase equilibria in metal-hydrogen systems [J]. Journal of Alloys and Compounds. 2003, 356-357: 27-31.
    [60] Huot J, Liang G, Schulz R. Mechanically alloyed metal hydride systems [J]. Applied Physics A: Materials Science & Processing. 2001, 72 (2): 187-195.
    [61] Oelerich W, Klassen T, Bormann R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials [J]. Journal of Alloys and Compounds. 2001, 315 (1-2): 237-242.
    [62] Liang G, Huot J, Boily S, Schulz R. Hydrogen desorption kinetics of a mechanically milled MgH2+5at.%V nanocomposite [J]. Journal of Alloys and Compounds. 2000, 305 (1-2): 239-245.
    [63] Schimmel H G, Kearley G J, Huot J, Mulder F M. Hydrogen diffusion in magnesium metal ( phase) studied by ab initio computer simulations [J]. Journal of Alloys and Compounds. 2005, 404-406: 235-237.
    [64] Norskov J K, Houmoller A, Johansson P K, Lundqvist B I. Adsorption and Dissociation of H2 on Mg Surfaces [J]. Physical Review Letters. 1981, 46 (4): 257-260.
    [65] Bird D M, Clarke L J, Payne M C, Stich I. Dissociation of H2 on Mg(0001) [J]. Chemical Physics Letters. 1993, 212 (5): 518-524.
    [66] Sprunger P T, Plummer E W. An experimental study of the interaction of hydrogen with the Mg(0001) surface [J]. Chemical Physics Letters. 1991, 187 (6): 559-564.
    [67] Sprunger P T, Plummer E W. The interaction of hydrogen with simple metal surfaces [J]. Surface Science. 1994, 307-309 (Part 1): 118-123.
    [68] Renner J G, Hans Juergen. Determination of diffusion coefficients in the hydriding of alloys [J]. Zeitschrift fuer Metallkunde 1978, 69 (10): 639-642.
    [69] Topler J, Buchner H, Saufferer H, Knorr K, Prandl W. Measurements of the diffusion of hydrogen atoms in magnesium and Mg2Ni by neutron scattering [J]. Journal of the Less Common Metals. 1982, 88 (2): 397-404.
    [70] Vegge T. Locating the rate-limiting step for the interaction of hydrogen with Mg(0001) using density-functional theory calculations and rate theory [J]. Physical Review B. 2004, 70 (3): 035412-035419.
    [71] Jacobson N, Tegner B, Schroder E, Hyldgaard P, Lundqvist B I. Hydrogen dynamics in magnesium and graphite [J]. Computational Materials Science. 2002, 24 (1-2): 273-277.
    [72] Du A J, Smith S C, Yao X D, Lu G Q. Ab initio studies of hydrogen desorption from low index magnesium hydride surface [J]. Surface Science. 2006, 600 (9): 1854-1859.
    [73]李谦.镁基氢化反应的物理化学.博士学位论文.北京:北京科技大学, 2004. p.157.
    [74] Ginstling A M, Brounshtein B I. Concerning the Diffusion Kinetics of Reaction in Spherical Particles [J]. J. Appl. Chem. USSR. 1950, 23: 1327-1338.
    [75] Carter R E. Addendum: Kinetic Model for Solid-State Reactions [J]. The Journal of Chemical Physics. 1961, 35 (3): 1137-1138.
    [76] Martin M, Gommel C, Borkhart C, Fromm E. Absorption and desorption kinetics of hydrogen storage alloys [J]. Journal of Alloys and Compounds. 1996, 238 (1-2): 193-201.
    [77] Schweppe F, Martin M, Fromm E. Model on hydride formation describing surface control, diffusion control and transition regions [J]. Journal of Alloys and Compounds. 1997, 261 (1-2):254-258.
    [78] J. H. Sharp G W B B N N A. Numerical Data for Some Commonly Used Solid State Reaction Equations. vol. 49, 1966. p.379-382.
    [79] Johnson W, Mehl R. Reaction Kinetics in Processes of Nucleation and Growth [J]. Trans. AIME. 1939, 135: 416-458.
    [80] Liu J, Zhang X, Li Q, Chou K-C, Xu K-D. Investigation on kinetics mechanism of hydrogen absorption in the La2Mg17-based composites [J]. International Journal of Hydrogen Energy. 2009, 34 (4): 1951-1957.
    [81] Chou K-C, Li Q, Lin Q, Jiang L-J, Xu K-D. Kinetics of absorption and desorption of hydrogen in alloy powder [J]. International Journal of Hydrogen Energy. 2005, 30 (3): 301-309.
    [82] Chou K-C, Xu K. A new model for hydriding and dehydriding reactions in intermetallics [J]. Intermetallics. 2007, 15 (5-6): 767-777.
    [83] Hou X, Chou K. Model of oxidation of SiC microparticles at high temperature [J]. Corrosion Science. 2008, 50 (8): 2367-2371.
    [84] Xinmei H, Kuo-Chih C. Investigation of isothermal oxidation of AlN ceramics using different kinetic model [J]. Corrosion Science. 2009, 51 (3): 556-561.
    [85] Mintz M H, Zeiri Y. Hydriding kinetics of powders [J]. Journal of Alloys and Compounds. 1995, 216 (2): 159-175.
    [86] Avrami M. Kinetics of Phase Change. I General Theory [J]. The Journal of Chemical Physics. 1939, 7 (12): 1103-1112.
    [87] Avrami M. Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei [J]. The Journal of Chemical Physics. 1940, 8 (2): 212-224.
    [88] Ohtani Y, Hashimoto S, Uchida H. Effect of surface contaminations on the hydriding behaviour of LaNi5 [J]. Journal of the Less Common Metals. 1991, 172-174 (Part 2): 841-850.
    [89] Uchida H, Ohtani Y, Ozawa M, Kawahata T, Suzuki T. Surface processes of H2 in the initial activationof LaNi5 [J]. Journal of the Less Common Metals. 1991, 172-174 (Part 3): 983-996.
    [90] Park C N, Lee J Y. A study on the kinetics of hydriding of the LaNi5 system [J]. Journal of the Less Common Metals. 1982, 83 (1): 39-48.
    [91] Barkhordarian G, Klassen T, Bormann R. Effect of Nb2O5 content on hydrogen reaction kinetics of Mg [J]. Journal of Alloys and Compounds. 2004, 364 (1-2): 242-246.
    [92] Vajeeston P, Ravindran P, Kjekshus A, Fjellvag H. Pressure-Induced Structural Transitions in MgH2 [J]. Physical Review Letters. 2002, 89 (17): 175506-175509.
    [93] Vajeeston P, Ravindran P, Hauback B C, Fjellvag H, Kjekshus A, Furuseth S, Hanfland M. Structural stability and pressure-induced phase transitions in MgH2 [J]. Physical Review B. 2006, 73 (22): 224102-224108.
    [94] Schiller F, Heber M, Servedio V D P, Laubschat C. Electronic structure of Mg : From monolayers to bulk [J]. Physical Review B. 2004, 70 (12): 125106.
    [95] Pari G, Kumar V, Mookerjee A, Bhattacharyya A K. Electronic structure of the bulk and layers of the alkaline earths (Be-Ba) [J]. Journal of Physics: Condensed Matter. 1999, 11 (22): 4291-4302.
    [96] Staikov P, Rahman T S. Multilayer relaxations and stresses on Mg surfaces [J]. PhysicalReview B. 1999, 60 (23): 15613.
    [97] Li X-G, Zhang P, Chan C K. First-principles calculation of Mg(0001) thin films: Quantum size effect and adsorption of atomic hydrogen [J]. Physica B: Condensed Matter. 2007, 390 (1-2): 225-230.
    [98] Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science. 1996, 6 (1): 15-50.
    [99] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B. 1996, 54 (16): 11169-11186.
    [100] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B. 1992, 46 (11): 6671-6687.
    [101] Blochl P E. Projector augmented-wave method [J]. Physical Review B. 1994, 50 (24): 17953-17979.
    [102] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B. 1999, 59 (3): 1758-1775.
    [103] Pulay P. Convergence acceleration of iterative sequences. the case of scf iteration [J]. Chemical Physics Letters. 1980, 73 (2): 393-398.
    [104] Wood D M, Zunger A. A new method for diagonalising large matrices [J]. Journal of Physics A: Mathematical and General. 1985, 18 (9): 1343-1359.
    [105] Johnson D D. Modified Broyden's method for accelerating convergence in self-consistent calculations [J]. Physical Review B. 1988, 38 (18): 12807.
    [106] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Physical Review B. 1976, 13 (12): 5188-5192.
    [107] Blochl P E, Jepsen O, Andersen O K. Improved tetrahedron method for Brillouin-zone integrations [J]. Physical Review B. 1994, 49 (23): 16223.
    [108] Press W H, Teukolsky S A, Vetterling W T. Numerical Recipes in Fortran 90: The art of Parallel Scientific Computing [J]. Cambridge University Press. 1996.
    [109] Jaquet R. Interpolation and fitting of potential energy surfaces: Concepts, recipes and applications. report.
    [110] Hortamani M. Theory of Adsorption, Diffusion and Spinpolarization of Mn on Si(001) and Si(111) Substrates. vol. Doctor Berlin: Freie Universitat Berlin, 2006. p.105-110.
    [111] Kiejna A, Ossowski T, Wachowicz E. Alkali metals adsorption on the Mg(0 0 0 1) surface [J]. Surface Science. 2004, 548 (1-3): 22-28.
    [112] Michaelson H B. The work function of the elements and its periodicity [J]. Journal of Applied Physics. 1977, 48 (11): 4729-4733.
    [113] Ossowski T, Kiejna A. Low-coverage K adsorption on Mg(0 0 0 1) surface [J]. Surface Science. 2004, 566-568 (Part 2): 983-988.
    [114] Rotenberg E, Schaefer J, Kevan S D. Coupling Between Adsorbate Vibrations and an Electronic Surface State [J]. Physical Review Letters. 2000, 84 (13): 2925.
    [115] Wachowicz E, Kiejna A. Bulk and surface properties of hexagonal-close-packed Be and Mg [J]. J. Phys.: Condens. Matter. 2001, 13: 10767-10776.
    [116] Davis H L, Hannon J B, Ray K B, Plummer E W. Anomalous interplanar expansion atthe (0001) surface of Be [J]. Physical Review Letters. 1992, 68 (17): 2632.
    [117] Sprunger P T, Pohl K, Davis H L, Plummer E W. Multilayer relaxation of the Mg(0001) surface [J]. Surface Science. 1993, 297 (1): L48-L54.
    [118]陈鑫,陈文斌,尚学府,陶向明,戴建辉,谭明秋.氢原子在Ru(0001)表面的化学吸附[J].物理学报. 2007, 23 (6): 861- 866.
    [119]李波,鲍世宁,庄友谊.乙烯在Ni( 110)表面吸附的几何结构[J].物理学报. 2003, 52 (01): 202-207.
    [120] Vaheeston P. Theoretical Modeling of Hydrides. Oslo: University of Oslo, 2004. p.83-90.
    [121] Becke A D, Edgecombe K E. A simple measure of electron localization in atomic and molecular systems [J]. The Journal of Chemical Physics. 1990, 92 (9): 5397-5403.
    [122] Burdett J K, McCormick T A. Electron Localization in Molecules and Solids: The Meaning of ELF [J]. Journal Physics Chemical A. 1998, 102 (31): 6366-6372.
    [123] De Santis L, Resta R. Electron localization at metal surfaces [J]. Surface Science. 2000, 450 (1-2): 126-132.
    [124] Tsirelson V, Stash A. Determination of the electron localization function from electron density [J]. Chemical Physics Letters. 2002, 351 (1-2): 142-148.
    [125] Vajeeston P, Ravindran P, Fjellvag H, Kjekshus A. Search for metal hydrides with short hydrogen & hydrogen separation: Ab initio calculations [J]. Physical Review B. 2004, 70 (1): 014107.
    [126] Noritake T, Aoki M, Towata S, Seno Y, Hirose Y, Nishibori E, Takata M, Sakata M. Chemical bonding of hydrogen in MgH2 [J]. Applied Physics Letters. 2002, 81 (11): 2008-2010.
    [127] Yu R, Lam P K. Electronic and structural properties of MgH2 [J]. Physical Review B. 1988, 37 (15): 8730.
    [128] Johansson M, Ostenfeld C W, Chorkendorff I. Adsorption of hydrogen on clean and modified magnesium films [J]. Physical Review B. 2006, 74 (19): 193408-193404.
    [129] Uberuaga B P, Leskovar M, Smith A P, Jonsson H, Olmstead M. Diffusion of Ge below the Si(100) Surface: Theory and Experiment [J]. Physical Review Letters. 2000, 84 (11): 2441.
    [130] Dai B, Sholl D S, Johnson J K. First-Principles Investigation of Adsorption and Dissociation of Hydrogen on Mg2Si Surfaces [J]. Journal Physics Chemical C. 2007, 111 (18): 6910-6916.
    [131] Du A J, Smith S C, Yao X D, Lu G Q. The Role of Ti as a Catalyst for the Dissociation of Hydrogen on a Mg(0001) Surface [J]. Journal Physics Chemical B. 2005, 109 (38): 18037-18041.
    [132] Kratzer P, Pehlke E, Scheffler M, Raschke M B, Hofer U. Highly Site-Specific H2 Adsorption on Vicinal Si(001) Surfaces [J]. Physical Review Letters. 1998, 81 (25): 5596-5599.
    [133] Dahl S, Logadottir A, Egeberg R C, Larsen J H, Chorkendorff I, Tornqvist E, Norskov J K. Role of Steps in N2 Activation on Ru(0001) [J]. Physical Review Letters. 1999, 83 (9): 1814.
    [134] Fromm E, Uchida H. Surface phenomena in hydrogen absorption kinetics of metalsand intermetallic compounds [J]. Journal of the Less Common Metals. 1987, 131 (1-2): 1-12.
    [135] Borgschulte A, Bielmann M, Zuttel A, Barkhordarian G, Dornheim M, Bormann R. Hydrogen dissociation on oxide covered MgH2 by catalytically active vacancies [J]. Applied Surface Science. 2008, 254 (8): 2377-2384.
    [136] Ostenfeld C W, Johansson M, Chorkendorff I. Hydrogenation properties of catalyzed and non-catalyzed magnesium films [J]. Surface Science. 2007, 601 (8): 1862-1869.
    [137] Andreasen A, Vegge T, Pedersen A S. Compensation Effect in the Hydrogenation/Dehydrogenation Kinetics of Metal Hydrides. 2005. 109: 3340-3344.
    [138] Friedrichs O, Sanchez-Lopez J C, Lopez-Cartes C, Dornheim M, Klassen T, Bormann R, Fernandez A. Chemical and microstructural study of the oxygen passivation behaviour of nanocrystalline Mg and MgH2 [J]. Applied Surface Science. 2006, 252 (6): 2334-2345.
    [139] Hermansson K, Baudin M, Ensing B, Alfredsson M, Wojcik M. A combined molecular dynamics--ab initio study of H2 adsorption on ideal, relaxed, and temperature-reconstructed MgO(111) surfaces [J]. The Journal of Chemical Physics. 1998, 109 (17): 7515-7521.
    [140] Kobayashi H, Yamaguchi M, Ito T. Ab initio MO study on adsorption of a hydrogen molecule onto magnesium oxide (100) surface [J]. Journal Physics Chemical 1990, 94 (18): 7206-7213.
    [141] Ito T, Kawanami A, Toi K, Shirakawa T, Tokuda T. Hydrogen adsorption on ultraviolet-irradiated magnesium oxide [J]. Journal Physics Chemical 1988, 92 (13): 3910-3914.
    [142] Gonzalez R, Chen Y, Tsang K L. Diffusion of deuterium and hydrogen in doped and undoped MgO crystals [J]. Physical Review B. 1982, 26 (8): 4637.
    [143] Gribov E N, Bertarione S, Scarano D, Lamberti C, Spoto G, Zecchina A. Vibrational and Thermodynamic Properties of H2 Adsorbed on MgO in the 300-20 K Interval. 2004. 108: 16174-16186.
    [144] Sorescu D C. First principles calculations of the adsorption and diffusion of hydrogen on Fe(1 0 0) surface and in the bulk [J]. Catalysis Today. 2005, 105 (1): 44-65.
    [145] Bartczak W M, Stawowska J. Hydrogen atoms at the palladium surface, at the MgO surface and at the Pd–MgO metal-support boundary: Towards computer modelling of the spillover effect [J]. Materials Science-Poland,. 2006, 24 (2/2): 421-432.
    [146] Vegge T. Locating the rate-limiting step for the interaction of hydrogen with Mg(0001) using density-functional theory calculations and rate theory [J]. Physical Review B. 2004, 70 (3): 035412-035419.
    [147] Gonzalez R, Chen Y, Tsang K L. Diffusion of deuterium and hydrogen in doped and undoped MgO crystals [J]. Phys. Rev. B. 1982, 26 (8): 4637.
    [148] Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: A review [J]. International Journal of Hydrogen Energy. 2007, 32 (9): 1121-1140.
    [149] Liang G, Huot J, Boily S, Van Neste A, Schulz R. Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite [J]. Journal of Alloys and Compounds. 1999, 291 (1-2): 295-299.
    [150] Huot J, Pelletier J F, Lurio L B, Sutton M, Schulz R. Investigation ofdehydrogenation mechanism of MgH2-Nb nanocomposites [J]. Journal of Alloys and Compounds. 2003, 348 (1-2): 319-324.
    [151] Oelerich W, Klassen T, Bormann R. Comparison of the catalytic effects of V, V2O5, VN, and VC on the hydrogen sorption of nanocrystalline Mg [J]. Journal of Alloys and Compounds. 2001, 322 (1-2): L5-L9.
    [152] Barkhordarian G, Klassen T, Bormann R. Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst [J]. Scripta Materialia. 2003, 49 (3): 213-217.
    [153] Jin S-A, Shim J-H, Cho Y W, Yi K-W. Dehydrogenation and hydrogenation characteristics of MgH2 with transition metal fluorides [J]. Journal of Power Sources. 2007, 172 (2): 859-862.
    [154] Guoxian L, Erde W, Shoushi F. Hydrogen absorption and desorption characteristics of mechanically milled Mg-35wt.%FeTi1.2 powders [J]. Journal of Alloys and Compounds. 1995, 223 (1): 111-114.
    [155] Liang G, Boily S, Huot J, Neste A V, Schulz R. Hydrogen absorption properties of a mechanically milled Mg-50 wt.% LaNi5 composite [J]. Journal of Alloys and Compounds. 1998, 268 (1-2): 302-307.
    [156] Shang C X, Bououdina M, Song Y, Guo Z X. Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage [J]. International Journal of Hydrogen Energy. 2004, 29 (1): 73-80.
    [157] Li S, Jena P, Ahuja R. Dehydrogenation mechanism in catalyst-activated MgH2 [J]. Physical Review B. 2006, 74 (13): 132106-132104.
    [158] Du A J, Smith S C, Yao X D, Sun C H, Li L, Lu G Q. The role of V2O5 on the dehydrogenation and hydrogenation in magnesium hydride: An ab initio study [J]. Applied Physics Letters. 2008, 92 (16): 163106-163103.
    [159] Balakrishnan A, Smith V, Stoicheff B P. Dissociation energy of the hydrogen molecule [J]. Physical Review Letters. 1992, 68 (14): 2149-2152.
    [160] Reule H, Hirscher M, Weihardt A, Kronmuller H. Hydrogen desorption properties of mechanically alloyed MgH2 composite materials [J]. Journal of Alloys and Compounds. 2000, 305 (1-2): 246-252.
    [161] Gross K J, Spatz P, Zuttel A, Schlapbach L. Mg composites for hydrogen storage The dependence of hydriding properties on composition [J]. Journal of Alloys and Compounds. 1997, 261 (1-2): 276-280.
    [162] Schimmel H G, Johnson M R, Kearley G J, Ramirez-Cuesta A J, Huot J, Mulder F M. Structural information on ball milled magnesium hydride from vibrational spectroscopy and ab-initio calculations [J]. Journal of Alloys and Compounds. 2005, 393 (1-2): 1-4.
    [163] Yavari A R, LeMoulec A, de Castro F R, Deledda S, Friedrichs O, Botta W J, Vaughan G, Klassen T, Fernandez A, Kvick A. Improvement in H-sorption kinetics of MgH2 powders by using Fe nanoparticles generated by reactive FeF3 addition [J]. Scripta Materialia. 2005, 52 (8): 719-724.
    [164] Emilio Orgaz J H-T. Chemical bonding in ternary magnesium hydrides [J]. International Journal of Quantum Chemistry. 2003, 94 (3): 150-164.
    [165] Tsuda M, Dino W A, Kasai H, Nakanishi H, Aikawa H. Mg-H dissociation of magnesium hydride MgH2 catalyzed by 3d transition metals [J]. Thin Solid Films. 2006, 509(1-2): 157-159.
    [166] Tsuda M, Dino W A, Nakanishi H, Kasai H. Ab Initio Study of H2 Desorption from Magnesium Hydride MgH2 Cluster [J]. 2004, 73 (10): 2628-2630.
    [167] Vajeeston P, Ravindran P, Kjekshus A, Fjellvag H. Pressure-Induced Structural Transitions in MgH2 [J]. Physical Review Letters. 2002, 89 (17): 175506.
    [168] Bogdanovic B, Bohmhammel K, Christ B, Reiser A, Schlichte K, Vehlen R, Wolf U. Thermodynamic investigation of the magnesium-hydrogen system [J]. Journal of Alloys and Compounds. 1999, 282 (1-2): 84-92.
    [169] Sutton L E. Table of interatomic distances and configuration in molecules and ions[M]. London: Chemical Society, 1965.
    [170] Kerr J A. CRC Handbook of Chemistry and Physics 1999-2000[M]. Boca Raton, Florida: CRC Press, 2000.
    [171] Jiang D E, Carter E A. Adsorption and diffusion energetics of hydrogen atoms on Fe(1 1 0) from first principles [J]. Surface Science. 2003, 547 (1-2): 85-98.
    [172] Huda M N, Ray A K. An ab initio study of H2 interaction with the Pu (1 0 0) surface [J]. Physica B: Condensed Matter. 2005, 366 (1-4): 95-109.
    [173] Delley B. From molecules to solids with the DMol3 approach [J]. The Journal of Chemical Physics. 2000, 113 (18): 7756-7764.
    [174] Liang J J. Theoretical insight on tailoring energetics of Mg hydrogen absorption/desorption through nano-engineering [J]. Applied Physics A: Materials Science & Processing. 2005, 80 (1): 173-178.
    [175] Vegge T. Locating the rate-limiting step for the interaction of hydrogen with Mg(0001) using density-functional theory calculations and rate theory [J]. Physical Review B. 2004, 70 (3): 035412.
    [176] Fernandez J F, Sanchez C R. Rate determining step in the absorption and desorption of hydrogen by magnesium [J]. Journal of Alloys and Compounds. 2002, 340 (1-2): 189-198.
    [177] Hanada N, Ichikawa T, Fujii H. Catalytic Effect of Nanoparticle 3d-Transition Metals on Hydrogen Storage Properties in Magnesium Hydride MgH2 Prepared by Mechanical Milling [J]. J. Phys. Chem. B. 2005, 109 (15): 7188-7194.
    [178] Pozzo M, Alfe D, Amieiro A, French S, Pratt A. Hydrogen dissociation and diffusion on Ni- and Ti-doped Mg(0001) surfaces [J]. The Journal of Chemical Physics. 2008, 128 (9): 094703-094711.
    [179] Wu G, Zhang J, Wu Y, Li Q, Chou K, Bao X. Density functional theory study of hydrogenation mechanism in Fe-doped Mg(0001) surface [J]. Applied Surface Science. 2009, 255 (12): 6338-6344.
    [180]周惦武,健张,刘金水. Ni掺杂MgH2体系解氢性能的机理[J].中国有色金属学报. 2009, 19 (2): 0315-0322.
    [181]于振兴;,刘祖岩,王尔德.镁基复合材料(Mg-Ni-MO)的储氢性能[J].材料研究学报. 2002, 3: 327-330.
    [182] Kubas G J. Breaking the H2 Marriage and Reuniting the Couple [J]. Science. 2006, 314: 1096-1097.
    [183] Janot R, Rougier A, Aymard L, Lenain C, Herrera-Urbina R, Nazri G A, Tarascon J M. Enhancement of hydrogen storage in MgNi by Pd-coating [J]. Journal of Alloys andCompounds. 2003, 356-357: 438-441.
    [184] Friedrichs O, Sanchez-Lopez J C, Lopez-Cartes C, Klassen T, Bormann R, Fernandez A. Nb2O5 "Pathway Effect" on Hydrogen Sorption in Mg [J]. The Journal of Physical Chemistry B. 2006, 110 (15): 7845-7850.
    [185] Borgschulte A, Bosenberg U, Barkhordarian G, Dornheim M, Bormann R. Enhanced hydrogen sorption kinetics of magnesium by destabilized MgH2-[delta] [J]. Catalysis Today. 2007, 120 (3-4): 262-269.
    [186]刘静.磁场辅助合成镁基储氢合金及其吸放氢动力学机理[M].博士学位论文.上海:上海大学, 2009.
    [187] Johansson M, Ostenfeld C W, Chorkendorff I. Adsorption of hydrogen on clean and modified magnesium films [J]. Physical Review B. 2006, 74 (19): 193408-193412.
    [188] Beeri O, Cohen D, Gavra Z, Mintz M H. Sites occupation and thermodynamic properties of the TiCr2-xMnx-H2 (0<=x<=1) system: statistical thermodynamics analysis [J]. Journal of Alloys and Compounds. 2003, 352 (1-2): 111-122.
    [189] Lexcellent C, Gondor G. Analysis of hydride formation for hydrogen storage: Pressure-composition isotherm curves modeling [J]. Intermetallics. 2007, 15 (7): 934-944.
    [190] Senoh H, Takeichi N, Yasuda K, Kiyobayashi T. A theoretical interpretation of the pressure-composition isotherms of RNi5 (R=La, Pr, Nd and Sm) systems based on statistical mechanics [J]. Journal of Alloys and Compounds. 2009, 470 (1-2): 360-364.
    [191] Hill T L. An Introduction to Statistical Thermodynamics[M]. New York: Dover Publications, 1986.
    [192] Beeri O, Cohen D, Gavra Z, Johnson J R, Mintz M H. High-pressure studies of the TiCr1.8-H2 system Statistical thermodynamics above the critical temperature [J]. Journal of Alloys and Compounds. 1998, 267 (1-2): 113-120.
    [193] Fowler R H, Guggenheim E A. Statistical Thermodynamics of Super-Lattices [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990). 1940, 174 (957): 189-206.
    [194] Tanaka T, Keita M, Azofeifa D E. Theory of hydrogen absorption in metal hydrides [J]. Physical Review B. 1981, 24 (4): 1771-1776.
    [195] Bragg W L, Williams E J. The Effect of Thermal Agitation on Atomic Arrangement in Alloys [J]. Proc. R. Soc. Lond. A. 1934, 145: 699-730.
    [196] Fukai Y. The Metal-Hydrogen System[M]. Heidelberg: Springer-Verlag, Berlin, 1993.
    [197] Saita I, Toshima T, Tanda S, Akiyama T. Hydrogen storage property of MgH2 synthesized by hydriding chemical vapor deposition [J]. Journal of Alloys and Compounds. 2007, 446-447: 80-83.
    [198] Zeng K, Klassen T, Oelerich W, Bormann R. Critical assessment and thermodynamic modeling of the Mg-H system [J]. International Journal of Hydrogen Energy. 1999, 24 (10): 989-1004.
    [199] Li Q, Chou K-C, Xu K-D, Lu X-G, Zhang J-Y, Lin Q, Jiang L-J. Kinetic analysis of Mg-8mol%LaNi0.5 composite [J]. Materials Science and Engineering: A. 2007, 457 (1-2): 1-5.
    [200] Hancock J D, Sharp J H. Method of Comparing Solid-State Kinetic Data and Its Application to the Decomposition of Kaolinite, Brucite, and BaCO3 [J]. Journal of theAmerican Ceramic Society. 1972, 55 (2): 74-77.
    [201] Budrugeac P, Segal E. On the use of Diefallah's composite integral method for the non-isothermal kinetic analysis of heterogeneous solid-gas reactions [J]. Journal of Thermal Analysis and Calorimetry. 2005, 82 (3): 677-680.
    [202] Jander W. Reactions in the Solid State at High Temperature: I [J]. Z. Anorg. Allgem. Chem. 1927, 163 (1): 1-30.
    [203] Hulbert S F. Models for solid-state reactions in powdered compacts: a review [J]. Journal of the British Ceramic Society. 1969, 6 (1): 11-20.
    [204] Ortega A. A simulation of the mass-transfer effects on the kinetics of solid-gas reactions [J]. International Journal of Chemical Kinetics. 2008, 40 (4): 217-222.
    [205]胡晓军,松浦宏行,月桥文孝,周国治.界面非平衡氧传递过程动力学的解析[J].金属学报. 2007, 43 (8): 829-833.
    [206]韩其勇.冶金过程动力学[M].北京:冶金工业出版社, 1983.
    [207]华一新.冶金过程动力学导论[M].北京:冶金工业出版社, 2004.
    [208] Pal K. Synthesis characterization and hydrogen absorption studies of the composite materials La2Mg17–x wt% LaNi5 [J]. Journal of Materials Science. 1997, 32 (18): 5177-5184.
    [209] Qi Y-N, Chu H-L, Xu F, Sun L-X, Zhang Y, Zhang J, Qiu S-J, Yuan H. Effect of polyaniline on hydrogen absorption-desorption properties and discharge capacity of AB3 alloy [J]. International Journal of Hydrogen Energy. 2007, 32 (15): 3395-3401.
    [210]李谦,蒋利军,鲁雄刚,刘晓鹏,周国治,徐匡迪. Mg-Ni-Ti19Cr50V22Mn9的结构及氢化动力学研究[J].稀有金属材料与工程. 2006, 35 (12): 1859-1863.
    [211] Gao L, Chen C, Chen L, Wang X, Zhang J, Xiao X, Wang Q. Hydriding/dehydriding behaviors of La1.8Ca0.2Mg14Ni3 alloy modified by mechanical ball-milling under argon [J]. Journal of Alloys and Compounds. 2005, 399 (1-2): 178-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700