抗人CD80单链抗体(ScFv)及双价抗体(diabody)的研制及生物学功能初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CD80(也称B7-1)是B7家族重要的共刺激分子。人CD80分子编码基因定位于人类染色体3q13.3-q21区内,含有1491bp。CD80是分子量约为44-54kD的Ⅰ型跨膜糖蛋白,主要表达在专职性抗原提呈细胞(antigen-presenting cell,APC)树突状细胞、单核-巨噬细胞及B淋巴细胞。CD80分子的配体为表达在T淋巴细胞表面的CD28和CTLA-4。CD80与CD28结合为T细胞的活化提供第二信号,促进T细胞的增殖与分化;而与CTLA-4结合介导抑制信号,从而下调或终止T细胞效应。若缺乏此共刺激信号,抗原特异性的第一信号非但不能有效激活特异性T细胞,反而导致T细胞无能,或者耐受。研究表明,CD80介导的信号通路不仅能调节T细胞活化过程,而且还参与许多疾病的发生发展及预后状况。单链抗体(single-chain variable fragment,ScFv)是一种小分子的抗体,含有完整的抗原结合位点,由重链可变区(the variable heavy chain,VH)和轻链可变区(the variable light chain,VL)通过一段连接肽连接而成,大小为26-28kDa。VH和VL之间的连接肽长度为10-25个氨基酸,最为普遍的为(Gly4Ser)3十五肽。Diabody是单链抗体的二聚体形式,是通过将单链抗体VH和VL之间的连接肽缩短至3-10个氨基酸时,可促进分子间VH和VL的配对而形成。
     第一部分抗人CD80单链抗体(ScFv)的研制及生物学功能初步研究
     1.目的:构建及表达抗人CD80单链抗体(ScFv),鉴定其抗原抗体结合活性,并初步研究其生物学功能。
     2.方法:采用RT-PCR法从分泌鼠抗人CD80 McAb的杂交瘤细胞株(4E5)中克隆VH和VL基因。用重叠延伸拼接PCR方法构建具有前导肽的L-VH-Linker-VL单链抗体基因,并克隆至pIRES2-EGFP表达载体,脂质体法转染中华仓鼠卵巢细胞(CHO),G418加压筛选。纯化抗人CD80-ScFv,分析其效价,并鉴定其对膜型CD80的识别。竞争抑制实验分析抗人CD80-ScFv与相应抗原的结合能力。MTT法体外分析抗人CD80-ScFv对Raji细胞体外增殖的抑制作用和对CD80介导的共刺激信号的阻断作用。
     3.结果:构建的抗人CD80-ScFv基因全长为828bp,经测序含有信号肽和连接肽编码基因。实验获得稳定分泌细胞株(命名为SA-Ⅱ)。上清中抗体得率为15.12mg/L,相对效价为2.0μg/5×105个细胞。该抗体与天然表达CD80分子的Raji和Daudi细胞阳性结合率分别为96.6%和95.0%。抗人CD80-ScFv对鼠源亲本抗体4E5与抗原结合的竞争抑制率达98.67%,并能抑制Raji细胞的体外增殖,而且能阻断CD80介导的共刺激信号转导,抑制PBMC的增殖,增殖率下降43.48%。
     4.结论:成功构建的表达抗人CD80-ScFv的细胞株,其分泌的抗体具有良好的生物学活性。该抗体的研制在CD80及相关分子的基础或/及临床研究中具有重要的应用价值。
     第二部分抗人CD80双价抗体(diabody)的研制及生物学功能初步研究
     1.目的:构建及表达抗人CD80双价抗体(diabody),并初步研究其生物学功能。
     2.方法:PCR法获得轻重链可变区基因,构建表达载体pIRES2- EGFP/diabody。将pIRES2-EGFP/diabody转染中华仓鼠卵巢细胞(CHO),G418加压,筛选稳定高表达细胞株,扩大培养并收集上清,经镍柱纯化,并经变性及非变性SDS-PAGE电泳对抗体分子的双体性进行鉴定。以鼠源性亲本抗体4E5为对照,测定抗人CD80-diabody的效价。采用免疫荧光及流式细胞术(FCM)分析抗体与细胞膜型CD80分子的结合活性及与鼠源性亲本抗体4E5的竞争抑制效应;MTT法分析该抗体对天然高表达CD80的Raji细胞体外增殖的影响,同时分析其对CD80介导的共刺激信号阻断作用的影响。
     3.结果:成功构建抗人CD80-diabody表达载体,基因全长为798bp,含有信号肽和Gly4Ser连接肽编码基因。获得了稳定分泌双价抗体的细胞株(命名为SA-Ⅲ),培养上清中纯化抗体的得率为15mg/L,PAGE结果显示其为一个二聚体,Mr约为53kD(a抗人CD80-ScFv Mr约为27kDa)。抗人CD80-diabody的效价为1.5μg/5×105个细胞,与L929-CD80、Raji及Daudi的阳性结合率分别为96.5%、98.1%及93.0%;该抗体对鼠源亲本抗体4E5与抗原结合的抑制率为97.11%,对Raji细胞体外增殖的抑制率达31.27%。同时也能阻断CD80介导的共刺激信号。与单链抗体相比,亲和活性明显提高。
     4.结论:成功获得了分泌抗人CD80-diabody的CHO细胞株,该抗体具有良好的生物学活性,亲和活性较单链抗体也明显提高,为进一步对CD80分子的研究奠定了基础。
CD80,also called B7-1,is one important costimulatory molecule of B7 family.Human CD80 molecule,mainly expressed in APC such as dendritic cells, mononuclear phagocytes and B cells,is a 44-54kDaⅠtype transmember protein, whose encoding genes are directed at human chromosome 3q13.3-q21, containing 1491bp. CD80 ligand is CD28 and CTLA-4.While combination with CD28 can support a second set of signals for T cell activation and promote the proliferation and differiation of T cells,bind with CTLA-4 strongly diminishs T cells response but maintains T cell homeostasis.If T cells activation lacks the second signals,there is a serious problem that antigen peptide-MHC complexes can not activate specific T cells effectively,but conversely make T cells anergy or tolerance.Now it was demonstrated that CD80 is not merely the critically regulatory molecule in the course of T cell activiation,but involved in many diseases.
     Single-chain variable fragment(ScFv) is a small recombinant antibody fragment, containing the complete antigen binding site, which includes the variable heavy (VH) and variable light (VL) domains of an antibody. The VH domain is linked to a VL domain by an introduced ?exible polypeptide linker,whose length is commonly 10-25 amino acids.The common peptide linker is (Gly4Ser)3.Diabody,a dimer of ScFv,is formed by shorting the polypeptide linker between VH and VL to 3-10 amino acids,which can promote pair between intermolecules.
     Objective: To construct and express the single chain variable fragment (ScFv) of monoclonal antibody against human CD80 and study its biological functions.
     Methods: The VH and VL genes were cloned by RT-PCR from a murine hybridoma cell line 4E5,which produces monoclonal antibody (McAb) aginst human CD80 antign.Splicing by overlapping extension PCR (SOE-PCR) was used to splice the VH and VL genes to construct L-VH-Linker-VL CD80-ScFv genes, which were cloned into the eukaryotic expressing vector pIRES2-EGFP. CHO cells were transfected by pIRES2-EGFP/ScFv plasmids through the liposome-mediated method and selected by G418.Anti-human CD80-ScFv was purified from culture supernatant.Then the experiments evaluated the potency and analyzed the identification of ScFv to membrane CD80;competitive inhibition experiment was applied to analyze the binding ability of anti-human CD80-ScFv with the corresponding antigen. The inhibitory effect of anti-human CD80-ScFv on in vitro proliferation of Raji cells and the effect of ScFv on costimulatory signals mediated by CD80 were detected by MTT methods.
     Results: The ScFv genes consist of 828bp and include genes encoding the signal peptide and linker. The highly secreting and stable cells were harvested. About 15.12 milligram ScFv antibodies, whose relative potency is 2.0μg/5×105cells,were purified from one liter culture supernatantat,and its positive binding rate with Raji and Daudi is 96.6% and 95.0% respectively and cannot bind with Jurkat cells.The competitive inhibition rate of anti-human CD80-ScFv against murine parent antibody 4E5 is 98.67%,and anti-human CD80-ScFv could inhibit growth of Raji cells in vitro.In addition to them ,it can also make the proliferation rate of PBMC decline by 43.48% via blocking costimulatory signals mediated by CD80.
     Conclusion: Anti-human CD80-ScFv has been successfully expressed in CHO cells(named SA-Ⅱ) and could identify membrane CD80 molecule in the cell surface and mediate the related biological functions. Its preparation possess an important value on fundamental and clinical research of CD80 and related molecules.
     To construct and express anti-human CD80 bivalent dimer(diabody) and study its biological functions.
     Methods: VH and VL genes were cloned by PCR,and then cloned into the eukaryotic expressing vector pIRES2-EGFP to construct recombinant pIRES2- EGFP/ diabody. CHO cells was transfected by above plasmids through the liposome-mediated methods and selected by G418 to harvest stably highly secreting cell lines.Anti-human CD80-diabody was purified from culture supernatant by Ni catridges.Reducing and non-reducing SDS-PAGE was used to analyze its bivalent.Next the potency of diabody was detected by FCM.Then the experiments analyzed the identification of diabody to membrane CD80 and competitive inhibition against parent antibody 4E5 via immunofluorescence and FCM ; The effect of anti-human CD80-diabody on proliferation of Raji cells which express CD80 higtly and naturely,was determined by MTT methods and we also researched blockade of diabody on CD80-mediated costimulatory signal simultaneously.
     Results: It was demonstrated that pIRES2-EGFP/diabody was constructed successfully,concluding 798bp.One cell lines named SA-Ⅲ,which can secret the diabody stably were generated.About 15 milligram diabody were purified from one liter culture supernatantat.Mr of the dimer was about 53kDa(anti-human CD80-ScFv Mr is about 27kDa).And the potency of anti-human CD80-diabody is 1.5μg/5×105 cells in comparation with murine parent antibody 4E5,and its positive binding rate with L929-CD80,Raji and Daudi cells is 96.5%,98.1% and 93% respectively,but diabody don’t bind with Jurkat cells.The diadoby not only can inhibit combination of 4E5 with CD80 antigen and its inhibition rate is 97.11%,but also inhibit in vitro proliferation of Raji cells and corresponding rate is 31.27%.Finally the antibody can also block costimulatory signal.Compared with ScFv,the affinity of diabody has improved obviously.
     Conclusion: Anti-human CD80-diabody secreting cell SA-Ⅲwas generated and the diabody have good biological function. The affinity of diabody improved clearly.All those supported a base for future study of CD80.
引文
1.Yokochi T, Holly RD, Clark EA. B lymphoblast antigen(BB-I) expressed on Epstein-Barr virus-activated B cell blasts,B lymphoblstoid cell lines,and Burkitt's lymphomas[J]. J Immunol,1982,128(2):823-828.
    2.Linsley PS, Clark EA, Ledbetter JA. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1[J]. Proc Natl Acad Sci USA,1990,87:5031-5035.
    3.Linsley PS, Clark EA, Ledbetter JA. CD80(B7) and CD86(B70) Provide Similar Costimulatory Signals for T Cell Proliferation, Cytokine Production, and Generation of CTL[J]. Proc Natl Acad Sci USA,1990,87(13):5031-5035.
    4.Gimmi CD, Freeman GJ, Gribben JG, et al.Human T-cell clonal anergy is induced by antigen presentation in the absence of B7 costimulation[J]. Proc Natl Acad Sci USA,1993,90(14):6586-6590.
    5.MonikaCB.Costimulatory molecules and modulation[J]. Immunologist,1999; 7:9-11.
    6. Freman GJ, Disteche CM, Gribben GJ, et a1. The gene for B7: a costimulatory signal for T cell activation, maps to chromosomal region 3q13.3~3q21[J]. Blood,1992, 79(2):489-494.
    7. Grujic M, Bartholdy C, Remy M, et al. The role of CD80/CD86 in generation and maintenance of functional virus-specific CD8+ T cells in mice infected with lymphocytic choriomeningitis virus[J]. J Immunol,2010,185(3):1730-1743.
    8.Fuse S, Tsai CY, Rommereim LM, et al. Differential requirements for CD80/86-CD28 costimulation in primary and memory CD4 T cell responses to vaccinia virus[J]. Cell Immunol,2011,266(2):130-134.
    9.Rau FC, Dieter J, Luo Z, Priest SO, et al. B7-1/2 (CD80/CD86) direct signaling to B cells enhances IgG secretion[J]. J Immunol,2009 ,183(12):7661-7671.
    10.Freedman AS, Freeman GJ, Horowitz CJ, et al. B7, a B cell restricted antigen whichidentifies pre-activated B cells[J]. J Immunol,1987,137(10):3260-3267.
    11.Freeman GJ, Freedman AS, Segil JM, et al. B7,a new member of the Ig superfamily with unique expression on activated and neoplastic B cells[J]. J Immunol,1989,143(8):2714-2722.
    12. Koulova L, Clark EA, Shu G, et al. The CD28 ligand B7/BBI provides a costimulatory signal for alloactivation of CD4+T cells[J]. J Exp Med,1991,173:759.
    13.Freeman GJ, Freedman AS, Rhynhart K, et al. Interferon-γselectively induces B7/BB-1 on monocytes:Apossible mechanism for amplification of T cell activation through the CD28 pathway[J]. Blood. 1990,76:206a.
    14.Larsen CP, Ritchie SC, Hendrix R, et al. Regulation of immunostimulatory function and costimulatory molecule (B7-1 and B7-2) expression on murine dendritic cells[J]. J Immunol,1994,152(11):5208-5219.
    15.Stack RM, Lenschow DJ, Gray GS, et al. IL-4 treatment of small splenic B cells induces costimulatory molecules B7-1 and B7-2[J]. J Immunol, 1994, 152(12): 5723-5733.
    16.Tsukada N, Aoki S, Maruyama S, et al. The heterogeneous expression of CD80, CD86 and other adhesion molecules on leukemia and lymphoma cells and their induction by interferon[J]. Exp Clin Cancer Res,1997,16 (2):171 - 176.
    17.Suvas S, Singh V, Sahdev S, et al. Distinct role of CD80 and CD86 in the regulation of the activation of B cell lymphoma[J]. J Biol Chem, 2002,277(10):7766-7775.
    18.K?hler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity[J]. Nature,1975 ,256(5517):495-497.
    19.Miller RA. Treatment of B-cell lymphoma with monoclonal anti-idio-type antibody[J]. New Engl J Med,1982,306 (9):517-522.
    20.Winter G and Harris WJ. Humanized antibodies[J]. Immunol Today,1993,14(6): 243-246.
    21.Merluzzi S, Figini M, Colombatti A, et al. Humanized antibodies as potential drugs for therapeutic use[J].Adv Clin Path, 2000,4(2):77-85,.
    22.Reichert JM and Valge-Archer VE. Development trends for monoclonal antibody cancer therapeutics[J]. Nat Rev Drug Discov,2007,6(5):349-356.
    23. Ross JS, Gray K, Schenkein D, et al. Antibody based-therapitic in oncology[J]. Expert Rev Anticancer Ther,2003,3(1):107-121.
    24.Huston JS, Levinson D, Mudgett-Hunter M, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli[J]. Proc Natl Acad Sci,1988,85(16):5879–5883.
    25.Bird RE, Hardman KD, Jacobsen JW, et al.Single-chain antigen-binding proteins[J]. Science,1988,242(4877):426–432.
    26.Shen Z,Yan H,Zhang Y, et al. Engineering peptide linkers for scFv immunosensors[J]. Anal Chem,2008,80(6):1910–1917.
    27.Dietrich T, Perlitz C, Licha K, et al. ED-B fibronectin (ED-B) can be targeted using a novel single chain antibody conjugate and is associated with macrophage accumulation in atherosclerotic lesions[J]. Basic Res Cardiol,2007,102(4): 298–307.
    28.Von Zur Muhlen C, Peter K, Ali ZA, et al. Visualization of Activated Platelets by Targeted Magnetic Resonance Imaging Utilizing Conformation-Specific Antibodies against Glycoprotein IIb/IIIa[J]. J Vasc Res,2009,46(1): 6–14.
    29.Hagemeyer CE, von Zur Muhlen C, von Elverfeldt D, et al. Single-chain antibodies as diagnostic tools and therapeutic agents[J]. Thromb Haemost,2009, 101(6):1012–1019.
    30.沈弢,张爱华,闭兰,等.抗人CD25分子单链抗体基因的构建、表达及初步鉴定[J].细胞与分子免疫学杂志,2007,23(3):264-266.
    31.朱艳,郑峰丰,陈永井,等.抗人CD28单链抗体基因的构建及在BmN细胞和家蚕中的表达[J].生物工程学报,2007,23(4):576-582.
    32.彭国平,周承,吴炜,等.抗鼠CTLA-4单链抗体的构建与表达及其免疫学活性的鉴定[J].华中科技大学学报(医学版),2008,37(3):290-294.
    33.丁世华,杨冬华,卢筱,华,等.特异性抗肝癌单链抗体的表达及意义[J].中国现代医学杂志,2008,18(11):1525-1528.
    34.Hariharan HK, Berquist LG, Murphy T, et al.Therapeutic application of an anti-CD80 antibody (IDEC-114) in B-cell lymphoma[J].J Immunother, 2002, 25: S31.
    35.Hariharan HK, Berquist LG, Murphy TE. Anti-CD80 antibody antibody (IDEC-114) therapy for non-Hodgkins lymphoma[J]. Ann of Oncol,2002,13(S2):84.
    36.Czuczman MS, Thall A, Witzig TE, et al. Phase I/II study of galiximab, an anti-CD80 antibody, for relapsed or refractory follicular lymphoma[J]. J Clin Oncol,2005,23(19):4390-4398.
    37.Leonard JP, Friedberg JW, Younes A, et al. A phase I/II study of galiximab (an anti-CD80 monoclonal antibody) in combination with rituximab for relapsed or refractory, follicular lymphoma[J].Ann Oncol,2007,18(7):1216-1223.
    38.徐耀瑜,胡玲玲,陈永井,等. CD80鼠-人嵌合抗体CHO细胞表达及体外生物学功能的初步研究[J].中国免疫学杂志,2009,25(2):114-117.
    39.王艳茹,马泓冰,陈永井,等. CD80人-鼠嵌合抗体对B淋巴瘤细胞株Raji与Daudi的生长抑制及杀伤作用[J].细胞与分子免疫学杂志,2009; 25(7): 615-618.
    40.Zhang X, Mei W, Zhang L, et al. Co-expression of P1A35-43/beta2m fusion protein and co-stimulatory molecule CD80 elicits effective anti-tumor immunity in the P815 mouse mastocytoma tumor model[J]. Oncol Rep,2009,22(5):1213-1220.
    41.Cross AH, Lyons JA, San M, et al. T cells are the main cell type expressing B7-1 and B7-2 in the central nervous system during acute, relapsing and chronic experimental autoimmune encephalomyelitis[J]. Eur J Immunol,1999,29(10): 3140–3147.
    42.Dudhgaonkar SP, Janardhanam SB, Kodumudi KN, et al.CD80 blockade enhance glucocorticoid-induced leucine zipper expression and suppress experimental autoimmune encephalomyelitis[J]. J Immunol,2009,183(11):7505-7513.
    43.Anguita J, Roth R, Samanta S, et al. B7-1 and B7-2 monoclonal antibodies modulate the severity of murine Lyme arthritis[J].Infect Immun,1997,65 (8):3037-3041.
    44.Webb LM, Walmsley MJ, Feldmann M. Prevention and amelioration of collagen-induced arthritis by blockade of the CD28 co-stimulatory pathway: requirement for both B7-1 and B7-2[J]. Eur J Immunol,1996,26(10):2320-2328.
    45.Odobasic D, Leech MT, Xue JR, et al. Distinct in vivo roles of CD80 and CD86 in the effector T-cell responses inducing antigen-induced arthritis[J]. Immunology, 2008,124 (4) :503-513.
    46.Puliti M, Bistoni F, Tissi L.Lack of B7-1 and B7-2 costimulatory molecules modulates the severity of group B Streptococcus-induced arthritis[J]. Microbes Infect,2010 ,12(4):302-308.
    47.高增燕,孙杰,王艳茹,等.降植烷诱导C57BL/J6狼疮性肾病鼠模型的建立和生物学鉴定[J].苏州大学学报(医学版),2010,30(3):498-501.
    48.高增燕,邱玉华,谢芳,等. B7-1抗体阻断B7/CD28信号通路对Pristane肾病的治疗作用[J].中国免疫学杂志,2010,26(10):927-931.
    49.Woodward JE, Bayer AL, Chavin KD, et al. T-cell alterations in cardiac allograft recipients after B7(CD80 and CD86) blockade[J]. Transplantation,1998; 66(1): 14-20.
    50.Taylor PA, Noelle RJ, Blazar BR. CD4(+)CD25(+)immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade[J]. J Exp Med,2001,193(11): 1311-1318.
    51.Bashuda H, Kimikawa M, Seino K, et al. Renal allograft rejection is prevented by adoptive transfer of anergic T cells in nonhuman primates[J]. J Clin Invest,2005, 115 (7):1896-1902.
    1.K?hler G and Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity[J]. Nature,1975 ,256(5517):495-497.
    2.Schroff RW, Foon KA, Beatty SM, et al. Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy[J].Cancer Res,1985,45 (2):879-885.
    3.Wei W, Yasuhiko N, Shuji O, et al. Chimeric and humanized anti-HM1.24 antibody mediate antibody-dependent cellular cytotoxicity against lung cancer cells[J].Lung Cancer,2009,63(1):23-31.
    4.邱玉华,季玉红,郭玲,等.鼠抗人B7-1分子功能性单克隆抗体的制备及生物学特性[J].中国免疫学杂志,2000,11(6):589-593.
    5.徐耀瑜,胡玲玲,陈永井,等.CD80鼠-人嵌合抗体CHO细胞表达及体外生物学功能的初步研究[J].中国免疫学杂志,2009,25(2):114-117.
    6.Wu AM and Senter PD. Arming antibodies: Prospects and challenges for immunoconjugates[J]. Nat Biotechnol,2005, 23(9): 1137–1146.
    7.Meyer DL, Jungheim LN, Mikolajczyk SD, et al. Preparation and characterization of a beta-lactamase-Fab’conjugate for the site-specific activation of oncolytic agents[J]. Bioconjug Chem,1992, 3(1): 42–48.
    8.Mikolajczyk SD, Meyer DL, Starling JJ, et al. High yield, site-specific coupling of N-terminally modified beta-lactamase to a proteolytically derived single-sulfhydryl murine Fab’[J]. Bioconjug Chem,1994,5(6):636–646.
    9.Schnee JM, Runge MS, Matsueda GR, et al. Construction and expression of a recombinant antibody-targeted plasminogen activator[J]. Proc Natl Acad Sci USA, 1987, 84(19): 6904–6908.
    10.Geng S, Feng J, Li Y, et al. Binding activity difference of anti-CD20 scFv-Fc fusion protein derived from variable domain exchange[J]. Cell Mol Immunol,2006,3(6): 439-443.
    11.Kenanova V, Olafsen T, Williams LE, et al. Radioiodinated versus radiometal-labeled anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments: optimal pharmacokinetics for therapy[J]. Cancer Res,2007,67(2):718–726.
    12.Asano R, Watanabe Y, Kawaguchi H, et al. Highly effective recombinant format of a humanized IgG-like bispecific antibody for cancer immunotherapy with retargeting of lymphocytes to tumor cells[J]. J Biol Chem,2007,282(38): 27659–27665.
    13.Yang T, Yang L, Chai W, et al.A strategy for high-level expression of a single-chain variable fragment against TNFαby subcloning antibody variable regions from the phage display vector pCANTAB 5E into pBV220[J].Protein Expr Purif,2011,76(1):109-114.
    14.Hermanrud CE, Lucas CL, Sykes M, et al.Expression and purification of soluble murine CD40L monomers and polymers in yeast Pichia pastoris[J].Protein Expr Purif,2011,76(1):115-120.
    15.Wulhfard S, Tissot S, Bouchet S,et al.Mild hypothermia improves transient gene expression yield sseveral fold in Chinese hamster ovary cells[J]. Biotechnol Prog,2008,24(2):458-465.
    16.Jafari R, Holm P, Piercecchi M, Sundstr?m BE. Construction of divalent anti-keratin 8 single-chain antibodies (sc(Fv)(2)), expression in Pichia pastoris and their reactivity with multicellular tumor spheroids[J].J Immunol Methods,2010.
    17.Hagemeyer CE, von Zur Muhlen C, von Elverfeldt D, et al. Single-chain antibodies as diagnostic tools and therapeutic agents[J].Thromb Haemost,2009, 101(6):1012–1019.
    1. Milenic DE, Yokota T, Filpula DR, et al. Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49[J].Cancer Res,1991,51(23 Pt 1):6363-6371.
    2. Yokota T, Milenic DE, Whitlow M, et al. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms[J].Cancer Res,1992, 52(12): 3402-3408.
    3. Yokota T, Milenic DE, Whitlow M, et al. Microautoradiographic analysis of the normal organ distribution of radioiodinated single-chain Fv and other immunoglobulin forms[J].Cancer Res, 1993, 53(16):3776-3783.
    4. Adams GP, McCartney JE, Tai MS, et al. Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv[J]. Cancer Res,1993, 53(17):4026-4034.
    5. Leyton JV, Olafsen T,Sherman MA.Engineered humanized diabodies for microPETimaging of prostate stem cell antigen-expressing tumor[J]. Protein Eng Des Sel,2009,22(3): 209–216.
    6. Olafsen T, Sirk SJ, Betting DJ. ImmunoPET imaging of B-cell lymphoma using 124I-anti-CD20 scFv dimers (diabodies) [J]. Protein Eng Des Sel,2010,23(4): 243–249.
    7. Holliger P,Prospero T,Winter G. "Diabodies": small bivalent and bispecific antibody fragments[J]. Proc Natl Acad Sci USA,1993,90(14):6444-6448.
    8. Adams GP, Tai MS, McCartney JE, et al. Avidity-mediated enhancement of in vivo tumor targeting by single-chain Fv dimers[J]. Clin Cancer Res ,2006,12(5): 1599-1605.
    9. Perez L, Ayala M, Pimentel G, et al. A multivalent recombinant antibody fragment specific for carcinoembryonic antigen[J]. Biotechnol Appl Biochem,2006, 43(Pt1):39-48.
    10. Venisnik KM, Olafsen T, Gambhir SS, et al.Gaussia luciferase to an engineered anti-carcinoembryonic antigen (CEA) antibody for in vivo optical imaging[J]. Mol Imaging Biol,2007, 9(5):267-277.
    11. Cai W, Olafsen T, Zhang X, et al. PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody[J].J Nucl Med,2007, 48(2):304-310.
    12. Sundaresan G, Yazaki PJ, Shively JE, et al. 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice[J]. J Nucl Med. 2003;44(12):1962-1969.
    13. Robinson MK, Doss M, Shaller C, et al. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody[J]. Cancer Res,2005,65(4): 1471-1478.
    14. Peter J,Hudson A,lexander A,et al. High avidity scFv multimers:diabodies and triabodies[J]. J Immunol Methods,1999,231(1-2):177-189.
    15. Luo D, Geng M, Noujaim AA, et al. An engineered bivalent single-chain antibody fragment that increases antigen binding activity[J].J Biochem,1997, 121(5): 831-834.
    16. Tsukada N,Aoki S,Maruyama S,et al. The heterogeneous expression of CD80, CD86 and other adhesion molecules on leukemia and lymphoma cells and their induction by interferon[J]. Exp C lin Cancer Res,1997,16(2):171-176.
    1.Huston JS, Levinson D, Mudgett-Hunter M, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli[J]. Proc Natl Acad Sci,1988;85:5879–5883.
    2.Bird RE, Hardman KD, Jacobsen JW et al.Single-chain antigen-binding proteins[J]. Science,1988;242(4877): 426–432.
    3.Korn T, Nettlebeck DM, V?lkel T et al. Recombinant bispecific antibodies for the targeting of adenoviruses to CEA-expressing tumour cells: a comparative analysis of bacterially expressed single-chain diabody and tandem scFv[J]. J Gene Med,2004;6(6): 642–651.
    4.Wittel UA, Jain M, Goel A et al. The in vivo characteristics of genetically engineered divalent and tetravalent single-chain antibody constructs[J].Nucl Med Biol, 2005;32(2): 157–164.
    5.Todorovska A, Roovers RC, Dolezal O. Design and application of diabodies, triabodies and tetrabodies for cancer targeting[J]. J Immunol Methods,2001;248(1-2): 47–66.
    6.Lu D, Zhang H, Koo H, et al. A fully human recombinant IgG-like bispeci fi c antibody to both the epidermal growth factor receptor and theinsulin-like growth factor receptor for enhanced antitumor activity[J]. J Biol Chem,2005;280(20): 19665–19672.
    7.Schneider MA, Brühl H, Wechselberger A et al. In vitro and in vivo properties of a dimeric bispecific single-chain antibody IgG-fusion protein for depletion of CCR2+ target cells in mice[J]. Eur J Immunol,2005;35(3): 987–995.
    8.van Spriel AB, van Ojik HH, van De Winkel JG. Immunotherapeutic perspective for bispecific antibodies[J]. Immunol Today,2000;21(8): 391–397.
    9.Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains[J].Nat Biotechnol,2005;23(9): 1126–1136.
    10.Wu AM, Senter PD. Arming antibodies: prospects and challenges forimmunoconjugates[J]. Nat Biotechnol,2005;23(9): 1137–1146.
    11.Huhalov A, Chester KA. Engineered single chain antibody fragments for radioimmunotherapy[J]. Q J Nucl Med Mol Imaging,2004;48(4): 279–288.
    12.Chen DJ, Tan Z, Chen F et al. Construction of humanized carcinoembryonic antigen specific single chain variable fragment and mitomycin conjugate[J]. World J Gastroenterol,2007;13(43): 5765–5770.
    13.Enever C, Tomlinson IM, Lund J et al. Engineering high affinity superantigens by phage display[J]. J Mol Biol,2005;347(1): 107–120.
    14.Ueno A, Arakawa F, Abe H et al. T-cell immunotherapy for human MK-1-expressing tumors using a fusion protein of the superantigen SEA and anti-MK-1 scFv antibody[J]. Anticancer Res,2002;22(2A): 769–776.
    15.Vaughan TJ, Williams AJ, Pritchard K et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library[J]. Nat Biotechnol,1996;14(3): 309–314.
    16.Hanes J, Pluckthun A. In vitro selection and evolution of functional proteins by using ribosome display[J]. Proc Natl Acad Sci USA,1997;94(10): 4937–4942.
    17.He M, Taussig MJ. Ribosome display of antibodies: expression, specificity and recovery in a eukaryotic system[J]. J Immunol Methods,2005;297(1-2): 73–82.
    18.Chen C, Snedecor B, Nishihara J et al. High-level accumulation of a recombinant antibody fragment in the periplasm of Escherichia coli requires a triple-mutant (degP prc spr) host strain[J]. Biotechnol Bioeng,2004;85(5):463–474.
    19.Martin C, Rojas G, Mitchell J et al. A simple vector system to improve performance and utilisation of recombinant antibodies[J]. BMC Biotechnol,2006;6: 46.
    20.Singh R, Samant U, Hyland S et al.Target-specific cytotoxic activity of recombinant immunotoxin scFv(MUC1)-ETA on breast carcinoma cells and primary breast tumors[J]. Mol Cancer Ther,2007;6(20): 562–569.
    21.Liu M, Wang X, Yin C et al. Targeting TNF-alpha with a tetravalent mini-antibody TNF-TeAb[J]. J Biochem,2007;406(2): 237–246.
    22.Gasser B, Mattanovich D. Antibody production with yeasts and fi lamentous fungi: on the road to large scale? [J]. Biotechnol Lett,2007;29(2): 201–212.
    23.Van Droogenbroeck B, Cao J, Stadlmann J et al.Aberrant localization andunderglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds[J]. Proc Natl Acad Sci USA,2007;104(4):1430–1435.
    24.Natarajan A, Xiong C-Y, Gruettner C et al.Development of multivalent radioimmunonanoparticles for cancer imaging and therapy[J]. Cancer Biother Radiopharm, 2008;23(1): 82–91.
    25.Olafsen T, Sirk SJ, Betting DJ et al. ImmunoPET imaging of B-cell lymphoma using 124I-anti-CD20 scFv dimers (diabodies) [J]. Protein Eng Des Sel,2010;23(4): 243-249.
    26.Kreitman RJ, Wilson WH, Bergeron K et al. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia [J]. N Engl J Med,2001;345(4): 241–247.
    27.Tragoolpua K, Intasai N, Kasinrerk W et al. Generation of functional scFv intrabody to abate the expression of CD147 surface molecule of 293A cells [J]. BMC Biotechnol,2008;8: 5.
    28.Wolfgang WJ, Miller TW, Webster JM et al.Suppression of Huntington's disease pathology in Drosophila by human single-chain Fv antibodies [J]. Proc Natl Acad Sci USA, 2005;102(32): 11563–11568.
    29.Jendreyko N, Popkov M, Rader C et al. Phenotypic knockout of VEGF-R2 and Tie-2 with an intradiabody reduces tumor growth and angiogenesis in vivo [J]. Proc Natl Acad Sci USA ,2005;102(23): 8293–8298.
    30.Blanco B, Holliger P, Vile RG et al. Induction of human T lymphocyte cytotoxicity and inhibition of tumor growth by tumor-specific diabody-based molecules secreted from gene-modified bystander cells [J]. J Immunol, 2003;171(2):1070–1077.
    31.Compte M, Blanco B, Serrano F et al. Inhibition of tumor growth in vivo by in situ secretion of bispeci fi c anti-CEA×anti-CD3 diabodies from lentivirally transduced human lymphocytes [J]. Cancer Gene Ther,2007;14(4): 380–388.
    32.Eshhar Z. The T-body approach: Redirecting T cells with antibody specificity [J]. Handb Exp Pharmacol,2008;(181):329-342
    33.Li S, Yang J,Urban FA, MacGregor JN et al. Genetically engineered T cells expressing a HER2-specific chimeric receptor mediate antigen-specific tumor regression [J]. Cancer Gene Ther,2008;15(6): 382–392.
    34.Kershaw M, Teng M, Smyth M et al. Supernatural T cells: genetic modification of T cells for cancer therapy [J]. Nat Rev Immunol,2005;5(12): 928–940.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700