无机纳米材料的液相合成、生成机制与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on the Solution-Based Chemical Synthesis, Growth Mechanism and Physical Properties of Inorganic Nanomaterials
  • 作者:邹贵付
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2006
  • 导师:钱逸泰
  • 学科代码:070301
  • 学位授予单位:中国科学技术大学
  • 论文提交日期:2006-04-01
摘要
本论文主要研究目的在于利用基于液相的化学线路来制备无机纳米材料;通过对反应过程的研究,提出一些合理的模型来解释制备纳米材料的生长机制;对合成的纳米材料进行性能测试,以期待制备的材料具有特别的物理性质。论文的主要内容总结如下:
     1.在类软模板的辅助下,利用溶剂热/水热法来控制合成不同形貌的纳米材料。Fe_3O_4纳米片和分型通过溶剂热线路在PEG-20000辅助下实现了选择性的合成。其中N_2H_4和表面活性剂PEG-20000在反应过程中起到重要的作用,它们分别从热力学和动力学控制了纳米晶的生长。试验过程中一个重要的事实被发现,二茂铁的浓度对产品的形貌起到关键性影响。限制分散聚集和限制成核聚集模型很好的解释纳米晶的生长过程。PbTe空心球和单晶纳米管也在溶剂热线路和类软模板辅助下被选择性的合成。其中乙醚—甘油微乳体系和乙醇—甘油均相体系是它们形成的关键。类软模板辅助的溶剂热/水热路线期望能便利的控制合成各种形貌的纳米材料。
     2.通过寻找合适的原料和反应,溶剂热反应用来在较低的温度下制备功能性的纳米材料。利用Mg_3N_2和SiCl_4为原料,通过直接化合的溶剂热过程在600℃下成功合成大量单晶纯alpha Si_3N_4纳米线。这里SiCl_4不仅作为反应原料而且还作为溶剂来控制反应容器的压力。调查试验发现纳米线的生长经历了VLS过程。深入检测其发光性能,纳米线展示了红外波段的红移和光致发光的蓝移,这些光学性质都是由K中心和N中心的点缺陷引起。利用了类似的溶剂热过程,2H-SiC纳米片第一次在温度为180℃下成功制备。这一系列的试验结果说明了,在合适条件下溶剂热线路可以用来在较低的温度下合成通常在很高温度下才能得到的功能纳米材料。
     3.在溶剂热基础上,一种共催化裂解方法被建立用来合成碳实心纳米材料。在Fe和Mg共催化下,C_6H_6和C_5H_6裂解生成产量高达90%碳纳米棒。更有趣的是在产品中发现了大量的Y型纳米棒。经过对反应物,催化剂,及其温度的调查,试验结果发现Fe和Mg共催化作用在碳纳米棒形成中起到了重要的作用;原料比例(C_5H_6和C_6H_6)的在产品形成过程中起到及其关键的作用;碳原子在催化剂表面的分散速度影响了碳材料的最终形貌。Gamaly和Ebbesen
In this dissertation, solution-based chemical routes were developed to synthesize inorganic nanomaterials; through investigating experimental process, some proper models are referred to discuss growth mechanism of as-prepared nanomaterials; as-prepared nanomaterials are applied in different fields to check their performance, and it is expected that nanomaterials possess some novel physical properties. The main points are summarized as follows:
    1. Solvothermal/hydrothermal methods with the help of quasi- (soft template) are developed to controllably synthesize nanomaterials with various morphologies. Fe_3O_4 nanoflakes and nanofractals have been controllably synthesized through solvothermal route under PEG-20000 assistance. The roles of surfactant PEG-20000 and N_2H_4 have been discussed in detail. One key fact has been found that the ferrocene concentrations have vital effect on the morphologies of the products. The sidebranching process and the oscillation of the concentration have been proposed to illustrate the formation mechanisms of the fractal nanocrystals. And diffusion-limited aggregation and nucleation-limited aggregation models have also described the process of fractals growth. Searching a proper model to discuss their growth mechanism, it is significant to find a general route to synthesize the nanomaterials we expect. Furthermore, the PbTe hollow nanospheres and single-crystalline nanotubes have been prepared using an ether-glycerol microemulsion system and an ethanol-glycerol homogeneous system as quasi- (soft template), respectively. This kind of solvothermal/hydrothermal route under quasi soft-template assistance is expected to controllably synthesize the nanomaterials with various morphologies.
    2. Through searching proper starting materials and reactions, solvothermal route is introduced to prepare functional nanomaterials (such as Si_3N_4, SiC) at lower temperature. Single-crystalline alpha silicon nitride nanowires have been achieved with large scale by the reaction of Mg_3N_2 and SiCl_4 at 600℃. As-obtained nanowires exhibit the quantum size effect in optical properties, showing the red
引文
1 R. P. Feynman, Science, 1991, 254, 1300.
    2 (a)张立德,牟季美,纳米材料和纳米结构,科学出版,2001 (b)王世敏,许祖勋,傅晶,纳米材料制备技术,化学工业出版社,2001.
    3 (a) C. Suiyanarayana, F. H. Froes, Metall. Trams., 1992, A23, 1071 (b) A. D. Yoffe,Advancees in Physics, 1993, 2, 173.
    4 A. Henglein, Chem. Rev., 1989, 89, 1861.
    5 (a) R. A. Webb, Phys. Rev. Lett. 1985, 54, 2696 (b) H. W. Kroto, Nature, 1985, 318, 162.
    6 (a) K. J. Klabunde, J. Stark, O. Koper, et al., J. Phys. Chem. 1996, 100, 12142 (b) A. Henglein, Chem. Rev. 1989, 89, 1861 (c) L. E. Brus, J. Phys. Chem. 1986, 90, 2555.
    7 M. L. Steigerwald, L. E. Brus, Acc. Chem. Res. 1990, 23, 183.
    8 Y. Wang, J. Chem. Phys. 1987, 87, 7315.
    9 R. E. Cavicchi, R. H. Silsbee, Phys. Rew. Lett. 1971,26, 707.
    10 P. Bail, Li Garwin, Nature 1992, 355,761.
    11 张立德,牟季美,物理 1992,21,167.
    12 A. J. Legget, S. Chakravarty, et al., Rev. Mod. Phys. 1987, 59, 1.
    13 D. D. Amschalom, M. A. McCord, et al., Phys. Rev. Lett. 1990, 65,783.
    14 T. Takagahara, Phys. Rev. B 1993, 47, 4569.
    15 K. A. Litau, P. J. Szajowski, A. J. Muller, et al., J. Phys. Chem., 1993, 97, 1224.
    16 Y. Kanemitsu, Appl. Phys. Lett, 1992, 18, 2187.
    17 Y. Masumoto, J. Lumin., 1994, 60, 256.
    18 R. N. Bhargagra, D. Gailagher, Phys. Rev. Lett. 1994, 15, 1234.
    19 (a) A. I. Ekimov, A. I. L. Efroc, A. A. Onushchenko, Solid State Commun. 1985, 56, 921 (b) R. Roussignool, D. Ricard, Phys. Rev. Lett. 1989, 62, 312.
    20 (a) X. Ai, H. Fei,Y. Yang, et al., J Lumin. 1994, 60, 364 (b) Y. Wang, Acc. Chem. Res. 1991, 24, 133.
    21 T. Takagahara, Phys. Rev. B 1993, 47, 4569.
    22 (a) H. Uchida, Chem. Mater., 1993, 5, 716 (b) H. Uchida, J. Phys. Chem. 1993, 96, 1868
    23 S. Ohtsuka, Appl. Phys. Lett. 1992, 25, 2953.
    24 (a) A. Henglein, Topics in Current Chem. 1988, 143, 115 (b) J. K. Leland, J. Phys. Chem. 1987, 91, 5076 (e) M. A. Chamarro, Solid State Commun. 1992, 10, 967 (d) H. Miyoshi, J. Electron. Chem. 1990, 295, 71.
    25 H. Zhang, X. Li, S. Li, Y Xin, M. Zhao, Nanostr. Mater. 1994, 4, 285.
    26 张池明,化学通报,1993,8,20.
    27 (a) M. Mark et al., Catal. Today 1991, 8, 467 (b) H.F. Schaefer, R. Wurschum, Phys. Lett.1987,119,370 (c) 裘式纶,瞿庆洲,肖丰收,张宗涛,化学研究与应用,1998, 10, 331 (d) S. C. Tsang, Y. K. Chen, P. J. Harris, Nature, 1994, 372, 159.
    28 (a) A. Henglein, Pure Appl. Chem. 1984, 56,1215 (b) G. T. Brow, J. R. Daffwent, J. Phys. Chem. 1984, 88, 4995 (c) M. Anpo, T. Shima, S. Kodama et al., J. Phys. Chem.1987,91,4305 (d) 钟子宜,陈立刚,颜其洁等,科学通报,1995,40,1279 (e) 王彦妮,张志棍,崔作林,催化学报,1995,16,304.
    29 (a) Y. Kanetsu, Appl. Phys. Lett. 1992, 18, 2187 (b) Y. Masumoto, J. Lumin. 1994, 60, 256 (c) R. N. Bhargagra, D. Gallagher, Phys. Rev. Lett. 1994, 15, 1234 (d) A. Henglein, Topics in Current Chem. 1988, 143, 115 (e) J. K. Leland, J. Phys. Chem. 1987, 91, 5076 (f) M. A. Chamarro, Solid State Commun. 1992, 10, 967.
    30 王宝辉,王德军,崔毅等,高等学校化学学报,1995,16,1610.
    31 沈耀春,陆祖宏,韦玉,科学通报,1994,39,2238.
    32 G. Hodes, I. D. Howell, L. M. Peter, J. Electrochem. Soc. 1992, 139, 3136.
    33 (a) A. E. Berkoowitz, J. R. Mitchell, M. J. Carey, Phys. Rev. Lett. 1992, 68, 3745 (b) J. Q. Xiao, J. S. Jiang, C. L. Chien, Phys. Rev. Lett. 1992, 68, 3749.
    34 (a) Z. H. Mai, Y. F. Lu, W. D. Song, et al., Appl. Surf. Sci., 2000, 154, 360. (b) A. Zaluska, L. Zaluski, J. O. S. Oisen, Appl. Phys. A, 2001, 72, 157. (c) M. Gratzel, Nature, 2001, 409, 575. (d) D. J. Beebe, F. S. Maoor, J. M. Bauer, Nature, 2000, 404, 588.
    35 E. Garmire, N. M. Jokerst, A. Kost, et al., J. Opt. Soc. Am. B, 1989, 6, 579.
    36 费浩生,韩力等,科学通报,1992,37,1177.
    37 吴凤清,徐宝琨等,高等学校化学学报,1994,15,803.
    38 Brringer, R. Gleiter, H. Klein, H. P. Marquit, P. Phys. Lett.1984, 102A, 365.
    39 (a) J. Kuyama, H. Inui, S. Imaoka, et al. Jpn. J. Appl. Phys. 1991, 30, L864; (b) M. S. El-Eskandarany, et al. J. Mater. Res. 1992, 7, 888; (c) M. S. El-Eskandarany, et al. Appl. Phys. Lett. 1992, 60, 1562; (d) C. C. Kock, Nanostructured Lett. 1993, 2, 109; (e) H. Yang, et al. J. Mater. Sci. Lett. 1993, 17, 314; (f) M. S. El-Eskandarany, et al. J. Mater. Res.1994, 9, 2891; (g) G. T. Fei, L. Liu, X. Z. Ding, et al. J. Alloys and Compounds 1995, 229, 280.
    40 (a) K. N. Clson, R. L. Cook, J. Am. Ceram. Soc. 1959, 38, 499; (b) M. R. Guire, et al. J. Mater. Res.1993, 8, 2327; (c) J. L. Shi, et al. J. Eur. Ceram. Soc.1993, 13,265; (d) C. W. Lu, J. L. Shi, et al. Thernochimica Acta 1994, 232, 77; (e) J. L. Shi, et al. J. Mater. Sci.1995, 30, 793; (f) D. Jezequel, et al. J. Mater. Res. 1995, 10, 77.
    41 J. A. Switzer, M. L. Shane, R. Phillips, Science 1990, 247, 444.
    42 P. Deshev, Mater. Res. Bull. 1987, 13, 1167.
    43 (a) T. W. Shaw, et al. J. Am. Ceram. Soc. 1986, 69, 979; (b) H. Gleiter, Prog. Mater. Sci. 1990, 33,223; (c) G. Pacheco-Malagon, et al. J. Mater. Res. 1995, 10, 1264; (d) X. Z. Ding, etal. J. Mater. Sci. Lett. 1995, 14, 21; (e) X. T. Dong, G. Y. Hong, et al. J. Mater. Sci. Technol. 1997, 13, 113.
    44 K. R. Venkatachari, et al. J. Mater. Res. 1995.10, 248.
    45 (a) H. Gleiter, Europhysics News 1989, 20, 130; (b) Z. L. Cui, et al. Nanostructured Mater.1995, 5,829; (c) R. Birringer, H. Gleiter, et al. Phys. Lett. 1984, 102A, 365.
    46 (a) 高晓云,陈进,王冕等,无机材料学报 1992,7,429;(b) 隋同波等,硅酸盐学报 1993,21,33;(c) 郭广生等,无机材料学报 1993,8,377;(d) 高晓云等,无机材料学报 1993,8,57;(e) 蔺思惠,李新勇,郭跃华等,无机材料学报 1996,11,157.
    47. J. H. Fendler, F. C. Meldrum, Adv. Mater. 1995, 7, 607.
    48. G. M. Whitesides, Chimica, 1990, 44, 310.
    49. V. L. Colvin, A. N. Golgstein, A. P. Alivisatos, J. Am. Chem. Soc. 1992,114, 5221.
    50. N. Kimizuka, J. Kunitake, Adv. Mater. 1996, 8, 89.
    51. A. Berman, D. J. Ahn, A. Lio, et al., Science 1995,269, 515.
    52. S. Feng, T. Bein, Nature, 1994, 368, 834.
    53 (a) J. H. Fendler, Chem. Rev. 1987, 87, 877; (b) Y. Li, J. Wan, Z. Gu, Mater. Sci. Eng. A, 2000, 286, 106.
    54 L. Lisiecki, M. P. Pileni, J. Am. Chem. Soc. 1993, 115, 887.
    55 陈国祥,沈锋,张仁伯等,化学通报,1997,3,14,
    56 E. E. Foos, R. M. Wtroud, A. D. Berry, et al., J. Am. Chem. Soc. 2000, 122, 7114.
    57 Kwan, E. Kim, J. Akana, et al., Chem. Commun. 2001, 447.
    58 (a) A. N. R. Jana, L. Gearheart, C. J. Murphy, J. Phys. Chem. B 2001, 105, 4065; (b) C. C. Chen, C. Y Chao, Z. H. Lang, Chem. Mater. 2000, 12, 1516.
    59 雄宇杰,一维纳米结构的液相化学合成与同步组装,中国科学技术大学博士学位论文,2004。
    60 井新利,郑茂盛,蓝立文高分子材料科学与工程,2000,16,323,
    61 S. Santra, R. Tapec, N. Theodoropoulou, et al., Laugmuir 2001, 17, 2906.
    62 P. T. Tanev, T. J. Pinnavain, Science 1996, 271, 1267
    63. C. T. Kresge, M. E. Leonowicz, W. J. Roth, et al., Nature 1992, 359, 710
    64. P.VBraun, P. Osenar, S. I. Stupp, Nature 1996, 380, 325.
    65. H.P. Lin, C. Y Mou, Science 1996, 273,765.
    66 M. Chen, Y Xie, H. Chen, Z. Qiao, Y Zhu, Y. T. Qian, Colloid Interf. Sci. 2000, 229, 217.
    67 (a) M. Y. Gao, Y. Yang, G. C. Zhang, et al., chem. J. Chinese. Univ. 1995, 16, 1311; (b) Y. Yang, M .Y. Gao, F. L. Bian, et al., Acta Polymeric Sinica, 1995, 4. 477; (?) M. Y. Gao,Y. Yang, B. Yang, et al., J. chem.. Xoc. Faraday Trans. 1995, 91,4121; (d) J. Huang, Y. Yang, B. Yang, et al., Poly. Bull. 1996, 36, 337.
    68 A. P. Alivisatos, K. P. Johnsson, X. Peng et al., Nature 1996, 382, 609.
    69 C. A. Mirkin, R. L. Letsinger, R. C. Mucic, et al.. Nature 1996, 382, 607.
    70 A. Van Blaaderen, R. Ruel, R. Wiltzius, Nature 1997, 385,321.
    71 J. P. Spatz, A. Roesher, M. Moiler, Adv. Mater. 1996, 8,337.
    72 T. Torimoto, H. Uchida, T. Sakata, et al, J. Am. Chem. Soc. 1993, 115, 1874.
    73 (a) 施尔畏,夏长泰,王步国,仲维卓,无机材料学报,1996,11,193;(b) 苏勉曾,谢高阳,申泽文等译,固体化学及其应用,复旦大学出版社,1989.
    74 A. Rabenau, Angew. Chem. Int. Ed. Engl., 1985, 24, 1026.
    75 (a) Q. W. Chen, Y. Y. Qian, Appl. Phys. Lett. 1995, 66, 1608; (b) E. W. Shi, J. Mater. Res. 1994, 9, 2915; (c) R. L. Wells, W. L. Gladfelter, J. Cluster Sci. 1997, 8, 217; (d) K. Yanagisawa, M. Nishioka, J. Nuci. Sci. Tech. 1986, 23, 550; (e) K. Yanagisawa, M. Nishioka, J. Nucl. Sci. Tech., 1989, 26, 395.
    76 (a) G. W. Morey, J. Am. Ceram. Soc. 1953, 36, 279; (b) G. W. Morey, E. Ingerson, Econ. Geol. 1937, 32, 607.
    77 (a) G. W. Morey, P. Niggli, J. Am. Chem. Soc. 1913, 35, 1086; (b) P. Niggli, G. W. Morey, Z. Anorg. Chem. 1913, 83,369.
    78 G. Spezia, Accad. Sci. Torino Atti. 1900, 35,750.
    79 E. T. Allen, J. L. Crenshaw, Johnson, Am. J. Sci. 1912, 4, 167.
    80 G. W. Morey, J. Am. Chem. Soc. 1914, 36, 215.
    81 Y.T. Qian, Adv. Mater. 1999, 11, 1101.
    82 M. Inoue, et al., J. Am. Chem. Soc. 1989, 72, 352.
    83 J. R. Heath, F.K. Legoues, Chem. Phys. Lett. 1993, 208,263.
    84 W. F. Yan, J. H. Yu, Z. Shi, R. R. Xu, Chem. Commun. 1997, 1431.
    85 R. E. Morris, S. J. Weigel, Chem. Soc. Rev. 1997, 26, 309.
    86 S. H. Yu, B. Liu, M. S. Mo, J. H. Huang, X. M. Liu, Y. T. Qian, Adv. Funct. Mater. 2003, 13,
    87 X. Wang, Y. Li, Angew. Chem. Int. Ed., 2002, 41, 4790.
    88 X. Wang, X. Sun, D. Yu, B. Zou, Y. Li, Adv. Mater. 2003, 15, 1442.
    89 (a) S. M. Gao, Y. Zhao, P. P. Gou, Y. Xie, Nanotechnology 2003, 14, 538;
    
    (b) F. Xu, Y. Xie, X. Zhang, et al., New J. Chem. 2003, 27, 1331;
    
    (c) C. Z. Wu, Y. Xie, D. Wang, et al., J. Phys. Chem. B 2003, 107, 13583;
    
    (d) Q. X. Guo, C. Q. Yi, L. Zhu, Y. Xie, Polymer 2005, 46, 3185.
    
    90 (a) M. Mao, J. Zeng, X. Liu, W. Yu, S. Zhang, Y. Qian, Adv. Mater. 2002, 14, 1658;
    
    (b) Z. P. Liu, S. Peng, Q. Xie, Z. K. Hu, Y. Yang, S.Y. Zhang, Y. T. Qian, Adv. Mater. 2003,15,936;
    
    (c) K. B. Tang, Y. T. Qian, J. H. Zeng, et al., Adv. Mater. 2003, 15,448.
    
    91 J. X. Huang, Y. Xie, B. Li, Y. Liu, Y. T. Qian, S. Y. Zhang, Adv. Mater. 2000, 12, 808.
    
    92 刘兆平,低维纳米材料化学液相控制合成及其生长机理研究,中国科学技术大学博士学位论文,2004。
    
    93 Y. Xie, Y. T. Qian, W. Z. Wang, et.al., Science 1996,272,639.
    
    94 Y. D. Li, Y. T. Qian, H. W. Liao, et al., Science 1998, 281, 246.
    
    95 K. B. Tang, J. Q. Hu, Q. Y. Lu, Y. Xie, J. S. Zhu, Y. T. Qian, Adv. Mater. 1999, 11, 653.
    
    96 (a) J. Q. Hu, Q. Y. Lu, K. B. Tang, Y. T. Qian, Chem. Mater. 1999, 11,2369;
    
    (b) Q. Y. Lu, J. Q. Hu, K. B. Tang, Y. T. Qian, Appl. Phys. Lett. 1999, 75, 507;
    
    (c) J. Q. Hu, Q. Y. Lu, K. B. Tang, Y. T. Qian, J. Phys. Chem. B 2000, 104, 5251.
    
    97 X. G. Yang, C. Li, W. Wang, Y. T. Qian, Chem. Commu. 2004, 342.
    
    98 (a) G. F. Zou, B. Hu, K. Xiong, Y. T. Qian, et al., 2005, 86, 181901;
    
    (b) G. C. Xi, S. J. Yu, R. Zhang, et al., J. Phys. Chem. B 2005, 109, 13200;
    
    (c) Y. C. Ying, Y. L. Gu, Z. F. Li, et al., J. Solid State Chem. 2004, 177, 4163;
    
    (d) G. Z. Shen, D. Chen, K. B. Tang, Y. T. Qian, Chem. Phys. Lett. 2003, 37;
    
    (e) Y. L. Gu, L. Y. Chen, Y. T. Qian, J. Am. Ceram. Soc. 2004, 87, 1810.
    
    99 G. Hornyak, M. Kr(o|¨)ll, R. Pugin, T.Sawitowski, G. Schmid, J. O. Bovin, G. Karsson, H. Hofmeister, S. Hopfe, Chem. Eur. J. 1997, 3, 1951。
    
    100 D. Wyrwa, N. Beyer, G. Schmid, Nano Lett. 2002, 2, 419。
    
    101 (a) A. P. Alivisatos, K. P. Johnsson, X. G. Peng, T. E. Wilson, C. J. Loweth, M.P. Bruchez Jr., P. G. Schultz, Nature 1996, 382, 609;
    
    (b) C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, Nature 1996, 382, 607。
    
    102 (a) Y. Yin, Y. Lu, B. Gates, Y. Xia, J. Am. Chem. Soc. 2001, 123, 8718;
    
    (b)Y. Yin, Y. Lu, Y. Xia, J. Mater. Chem. 2001, 11, 987;
    
    (c) Y. Lu, Y. Yin, Z. Y. Li, Y. Xia, Nano Lett. 2002, 2, 785。
    1 (a) M. E. T. Molares, V. Buschmann, D. Dobrev, Adv. Mater. 2001, 13, 62; (b) V. M. Cepak, C. R. Martin, Chem. Mater. 1999, 11, 1363.
    2 (a) Y. Pang, G. W. Meng, W. J. Shan, et al. Appl. Phys. A, 2003, 77, 717; (b) Z. Zhang, D. Gekhtman, M. S. Dresselhaus, J. Y. Ying, Chem. Mater. 1999, 11, 1659; (c) B. R. Martin, D. J. Dermody, B. D. Reiss, M. Fang, L. A. Lyon, M. J. Natan, T. E. Mallouk, Adv. Mater. 1999, 11, 1021.
    3 (a) H. Dai, E. W. Wong, Y. Z. Lu, Nature 1995, 375,769;(b) W. Han, S. Fan, Q. Li, Y. Hu, Science 1997, 277, 1287.
    4 M.J. Edmondson, W. Zhou, S. A. Sieber, I. P. Jones, I. Gameson, P. A. Anderson, P. P. Edwards, Adv. Mater. 2001, 13, 1608.
    5 (a) M. H. Huang, A. Choudrey, P. Yang, Chem. Commun. 2000, 1063; (b) Y. J. Han, J. M. Kim, G. D. Stucky, Chem. Mater. 2000, 12, 2068.
    6 (a) J. L. Coffer, S. R. Bigham, R. F. Pinizzotto, Nanotechnoloy, 1992, 3, 69; (b) W. Shenton, D. Pure, U. B. Sleytr, Nature, 1997, 389, 585; (c) E. Braun, Y. Eichen, U. Sivan, Nature, 1998, 391,775.
    7 S. Bhattacharrya, S. K. Saha, D. Chakravorty, Appl. Phys. Lett. 2000, 76, 3896.
    8 (a) 王荔军,郭中满,李铁津,化学进展,1999,19(2),119;(b) 吴庆牛,郑能武,丁亚平,高等学校化学学报,2000,21(10),1471。
    9 沈明,郭荣,严鹏权,应用化学,1996,13(4),74。
    10 (a) Boutonnet, M. Kizling, J. Collo. Surf. 1982, 5,209;(b) Kurihara K, Kizling K, J. Am. Chem. Soc. 1983, 105, 2574; (c) X. Jiang, Y. Xie, J. Lu, L. Zhu, W. He, Y. T. Qian, J. Mater. Chem. 2001, 11, 1775.
    11 C.N.R. Rao, A. Govindaraj, F. L. Deepak, Appl. Phys. Lett. 2001, 78, 1853.
    12 Y. Zhou, S. H. Yu, C. Y. Wang, Adv. Mater. 1999, 11,850.
    13 熊宇杰,一维纳米结构的液相化学合成与同步组装,中国科学技术大学博士学位论文,2004。
    14 刘标,低维纳米材料和等级结构材料的软化学形貌控制合成及机理研究,中国科学技术大学硕士学位论文,2004。
    15 S. H. Yang, S. H. Wang, K. K. Fung, Pure Appl. Chem. 2000, 72, 119.
    16 刘兆平,低维纳米材料的化学液相控制合成及其生长机理研究,中国科学技术大学博士学位论文,2004。
    17 (a) J. T. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res. 1999, 32, 435. (b) A. P. Alivisatos, Science 1996, 271,933. (c) J. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. El-Sayed, Science 1996, 272, 1924. (d) X. Duan, Y. Huang, Y. Cui, J. Wang, C. M Lieber,. Nature 2001,409, 66.
    18 (a) Z. Zhang, X. Sun, M. S. Dresseihaus, J. Y. Ying, Phys. Rev. B 2000, 61,4850. (b) Z. L. Wang, Adv. Mater. 2000, 12, 1295. (c) Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science 2001, 293, 1298.
    19 (a) A. P. Alivisatos, J. Phys. Chem. 1996, 100, 13226.
    20 (a) S. Iijima, Nature 1991, 354, 56. (b) B. Mayers, B. Gates, Y. Yin, Y. Xia, Adv. Mater. 2001, 13, 1380. (d) G. M. Dykes, D. K. Smith, G. J. Seeley, Angew. Chem. Int. Ed. 2002, 12, 1148. (d) J. P. Xiao, Y. Xie, R. Tang, M. Chen, X. B. Tian, Adv. Mater. 2001, 13, 1887. (e) M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Webber, R. Russo, P. Yang, Science 2001, 292, 1897. (f) X. Wang, Y. Li, J. Am. Chem. Soc. 2002, 124, 2880. (g) Z. Y. Yuan, W. Z. Zhou, B. L. Su, Chem. Commun. 2002, 1202. (h) Y. Zhang, K. Suenaga, C. Colliex, S. Iijima, Science 1998, 281,973. (i) Z. R. Dai, Z. W. Pan, Z. L. Wang, J. Am. Chem. Soc. 2002, 124, 8673.
    21 (a) W. M. V. Wan, N. Greenham, R. H. J. Friend, Appl. Phys. 2000, 87, 2542. (b) Y. Cui, C. M. Lieber, Science 2001,291,851. (c) D. H. Cobden, Nature 2001, 409, 32.
    22 (a) J. S. Langer, Rev. Mod. Phys. 1980, 52, 1. (b) E. Ben-Jacob, P. Garik, Nature 1990, 343, 523.
    23 (a) M. Wang, S. Zhong, X. B. Yin, J. M. Zhu, R. W. Peng, Y. Wang, K. Q. Zhang, N. B. Ming, Phys. Rev. Lett. 2001, 68, 3827.
    
    (b) M. Wang, X. Y. Liu, C. S. Strom, P. Bennema, W. Enckevort, N. B. Ming, Phys. Rev. Lett. 1998, 80, 3089.
    
    24 Q. Peng, Y. J. Dong, Z. X. Deng, Y. D. Li, Inorg. Chem. 2002, 41, 5249.
    
    25 D. B. Kuang, A. W. Xu, Y. P. Fang, H. Q. Liu, C. Frommen, D. Fenske, Adv. Mater. 2003,15,1747.
    
    26 (a) G F. Goya, T. S. Berquo, F. C. Fonseca, J. Appl. Phys. 2003, 94, 3520.
    
    (b) M. Todorovic, S. Schultz, J. Wong, A. Scherer, Appl. Phys. Lett. 1999, 74, 2516.
    
    (c) X. J. Zhang, S. A. Jenekhe, J. Perlstein, Chem. Mater. 1996, 8, 1571.
    
    27 K. Lepers, Vestn. K, Nauk Kaz. Akad, SSR. 1990, 4, 26.
    
    28 G, Bate, in: Wohlfarth, E. D. (Ed.), Ferromagnetic Material, vol. 2, Recording Materials, Chap. 7, North-Holland, Amesterdam, 1980, 381.
    
    29 Matijevic, P. E., in: Hench, L. L. Ulrich, D. B. (Ed,), Colloid Science of Composites System, Science of Ceramic Chemical Processing, Wily, New York, 1986, 463.
    
    30 (a) L. S. Darken, R. W. Gurry, J. Am. Chem. Soc. 1946, 68, 798.
    
    (b) V. Osterhout, Magnetic Oxides, Wily, New York, 1975, 700.
    
    (c) S. Wang, H. Xin, Y. Qian, Mater. Letter. 1997, 33, 113.
    
    (d) C. Y. Wang, G M. Zhu, Z. Y. Chen, G Lin, Mater. Res. Bull. 2002, 37, 2525.
    
    (e) R. Fan, X. H. Chen, Z. Gui, L. Liu, Z. Y. Chen, Mater. Res. Bull. 2001,36,497.
    
    31 J. Wang, Q. W. Chen, Chuan. Zeng, B. Y. Hou, Adv. Mater. 2004, 16, 137.
    
    32 S. Y. Lian, Z. H. Kang, E. B. Wang, M. Jiang, C. W. Hu, L. Xu, Solid State Commun. 2003,127,605.
    
    33 L. Q. Xu, W. Q. Zhang, Y. W. Ding, Y. Y. Peng, S. Y. Zhang, W. C. Yu, Y. T. Qian, J. Phys. Chem. B 2004, 108, 10859.
    
    34 (a) Y. G Sun, Y. D. Yin, B. Mayers, T. Herricks, Y. N. Xia, Chem. Mater. 2002, 14, 4736.
    
    (b) Y. L. Wang, T. Herricks, Y. N. Xia, Nano Lett. 2003, 3, 1163.
    
    (c) Y. G. Sun, B. Gates, B. Mayers, Y. N. Xia, Nano Lett. 2002, 2, 165.
    
    35 (a) J. Wang, J. J. Sun, Q. Sun, Q. W. Chen, Mater. Res. Bull. 2003, 38, 1113.
    
    (b) Y. Xie, L. Y. Zhu, X. C. Jiang, J. Lu, X. W. Zheng, W. He, Y. Z. Li, Chem. Mater. 2001, 13, 3927.
    
    36 (a) T. C. Halsey, B. Duplantier, K. Honda, Phys. Rev. Lett. 1997, 78, 1719.
    
    (b) N. B. Ming, M. Wang, R. W. Peng, Phys. Rev. E 1993, 48, 621.
    37 M. Wang, N. B. Ming, Phys. Rev. A 1992, 45, 2493.
    
    38 (a) D. A. Kessler, J. Koplik, H. Levine, Phys. Rev. A 1984, 30, 2820.
    
    (b) E. Ben-Jacob, Phys. Rev. Lett. 1985, 55, 1315.
    
    39 E. Raz, S. G. Lipson, E. Polturak, Phys. Rev. A 1989, 40, 1088.
    
    40 Li Y L and Li G D 1978 Physics of Ferrite (Beijing: Science) p 381
    
    41 (a) Z. P. Liu, S. Peng, Q. Xie, Z. K. Hu, Y. Yang, S. Y. Zhang, Y. T. Qian, Adv. Mater. 2003 15 936;
    
    (b) S. H. Chen, D. L. Carroll, J. Phys. Chem. B 2004 108 5500.
    
    42 V. F. Puntes, D. Zanchet, C. K. Erdonmez, A. P. Alivisatos, J. Am. Chem. Soc. 2002, 124, 12874.
    
    43 B. S. J. Michael, G. Ali, H. Tobias, E. S. Aaron, L. Frank, A. K. Brian, J. Am. Chem. Soc. 2003, 125, 16050.
    
    44 (a) J. U. Kim, S. H. Cha, K. Shin, J. Y. Jho, J. C. Lee, Adv. Mater. 2004, 16, 459;
    
    (b) S. Chen, D. L. Carrollm, Nano Lett. 2002, 2, 1003.
    
    45 (a) N. G Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G Louie, A. Zettl, Science 1995, 269, 966.
    
    (b) S. Lijma, Nature 1991, 354, 56.
    
    (c) W. Huynh, X. Peng, A. P. Alivsatos, Adv. Mater. 1999, 11, 923.
    
    (d) W. C. W. Chan, S. M. Nie, Science 1998, 281, 2016.
    
    (e) A. P. Alivisatos, Science 1996, 271, 933.
    
    46 (a) Y. R. Ma, L. M. Qi, J. M. Ma, H. M. Cheng, W. Shen, Langmuir 2003, 19, 9079.
    
    (b) Y. D. Li, X. L. Li, R. R. He, J. Zhu, Z. X. Deng, J. Am. Chem. Soc. 2002, 124, 1411.
    
    47 L. J. Zhang, M. X. Wan, Adv. Funct. Mater. 2003, 13, 815.
    
    48 (a) K. P. Velikov, A. V. Blaaderen, Langmuir 2001, 17, 4779.
    
    (b) J. X. Huang, Y. Xie, B. Li, Y. Liu, Y. T. Qian, S. Y. Zhang, Adv. Mater. 2000, 12, 808.
    
    (c) Q. Lu, F. Gao, D. Zhao, Chem, Phys. Lett. 2002, 360, 355.
    
    (d) M. Kuang, H. W. Duan, J. Wang, D. Y. Chen, M. Jiang, Chem. Comm. 2003, 496.
    
    49 X. Y. Kong, Z. L. Wang, J. S. Wu, Adv. Mater. 2003, 15, 1445.
    
    50 A. M. Samoylov, M. K. Sharov, S. A. Buchnev, A. M. Khoviv, E. A. Dolgopolova, J. Crystal Growth 2002, 240, 340.
    
    51 C. Wang, G. Zhang, S. Fan, Y. Li, J. Phys. Chem. Solids 2001, 62, 1957.
    
    52 C. R. Wang, K. B. Tang, Q. Yang, J. Q. Hu, Y. T. Qian, J. Mater. Chem. 2002, 12, 2426.
    
    53 (a) B. Mayers, Y. N. Xia, Adv. Mater. 2002, 14, 279.
    
    (b) Z. P. Liu, S. Li, Y. You, Z. K. Hu, S. Peng, J. B. Liang, Y. T. Qian, New J. Chem. 2003, 27, 1748.
    
    54 Z. P. Liu, S. Li, Y. Yang, S. Peng, Z. K. Hu, Y. T. Qian, Adv. Mater. 2003, 15, 1946.
    
    55 (a) B. Gates, Y. Y. Wu, Y. D. Yin, P. D. Yang, Y. N. Xia, J. Am. Chem. Soc. 2001, 123, 11500.
    
    (b) X. C. Jiang, B. Mayers, T. Herricks, Y. N. Xia, Adv. Mater. 2003, 15, 1740.
    (c)B. J. Yang, M. S. Mo, H. M. Hu, C. Li, X. G. Yang, Q. W. Li, Y. T. Qian, Eur. J. Inorg. Chem. 2004, 9, 1785.
    
    56 (a) A. P. Mirgorodsky, T. Merle-Me'jean, J. -C. Champarnaud, et al., J. Phys. Chem. Solids 2000, 61, 501.
    
    (b) A. S. Pine, G Dresselhaus, Phys. Rev. B 1972, 5, 4087.
    
    57 A. I. Belogorokhov, L. I. Belogorokhova, D. R. Khokhlov, S. V. Lemeshko, Semiconductors 2002, 36, 663.
    
    58 D. M. Korn, A. S. Pine, G. Dresselhaus, T. B. Reed, Phys. Rev. B 1973, 8, 768.
    
    59 C. R. Wang, K. B. Tang, Q. Yang, Y. T. Qian, Chem. Phys. Lett. 2002, 357, 371.
    1 Y. T. Qian, Adv. Mater., 1999, 11, 1101.
    2 M. Inoue, etal., J. Am. Chem. Soc., 1989, 72, 352.
    3 J. R. Heath, F.K. Legoues, Chem. Phys. Lett., 1993, 208, 263.
    4 W. F. Yah, J. H. Yu, Z. Shi, R. R. Xu, Chem. Commun. 1997, 15, 1431.
    5 R. E. Morris, S. J. Weigel, Chem. Soc. Rev., 1997, 26, 309.
    6 Y. Xie, Y. T. Qian, W. Z. Wang, S. Y. Zhang, Y. H. Zhang, Science, 1996, 272, 1926.
    7 F. Xu, Y. Xie, X. Zhang, S. Zhang, L. Shi, New J. Chem. 2003, 27, 565
    8 Y. D. Li, Y. T. Qian, J. Am. Chem. Soc. 1997, 119, 7869.
    9 (a) Y. D. Li, Y. T. Qian, Inorg. Chem. 1998, 37, 2844; (b) Y. D. Li, Y. T. Qian, Chem. Mater. 1998, 10, 2301.
    10 (a) S. H. Yu, Y. S. Wu, J. Yang, Z. H. Han, Y. Xie, Y. T. Qian, Chem. Mater. 1998, 10, 2309; (b) S. H. Yu, J. Yang, Y. S. Wu, Z. H. Han, J. Lu, Y. Xie, Y. T. Qian, J. Mater. Chem. 1999, 9, 1283.
    11 (a) S. L. Xiong, J. M. Shen, Q. Xie, Adv. Funct. Mater. 2005, 15, 1792; (b) X. Z. Liu, J. H. Cui, L. P. Zhang, Nanotechology 2005, 16, 1771. (c) D. Xu, Z. R Liu, J. B. Liang, J. Phys. Chem. B 2005, 109, 14344; (d) Z. P. Liu, S. Peng, Q. Xie, Adv. Mater. 2003, 15, 936. (e) D. B. Wang, D. B. Yu, M. W. Shao, Chem. Lett. 2002, 10, 1056.
    12 (a) K. B. Tang, J. Q. Hu, Q. Y. Lu, Adv. Mater. 1999, 11,653; (b) J. Q. Hu, Q. Y. Lu, K. B. Tang, Chem. Mater. 1999, 11, 2369; (c) Q. Y. Lu, J. Q. Hu, K. B. Tang, Appl. Phys. Lett. 1999, 75,207; (d) G. C. Xi, Y. Y. Peng, S. M. Wan, J. Phys. Chem. B 2004, 108, 20102; (e) G. F. Zou, B. Hu, K. Xiong, Appl. Phys. Lett. 2005, 86, 181901.
    13 (a) F. Riley, Silicon nitridea review, in: I. Birkby (Ed.), Ceramic Technology International, Sterling Publications Ltd., London, UK. 1993, 55, 8; (b) J. Lis, S. Majorowski, J. Hlavacek, J. A. Ceram. Bull. 1991, 70, 244.
    
    14 (a) F. Munakata, K. Matsuo, K. Furuya, Y. J. Akimune, I. Ishikawa, Appl. Phys. Lett. 1999, 74, 3498;
    
    (b) A. R. Zanatta, L. A. O. Nunes, Appl. Phys. Lett. 1998, 72, 3127.
    
    15 (a) F. Giorgis, Appl. Phys. Lett. 2000, 77, 522;
    
    (b) M. Molinari, H. Rinnert, M. Vergnet, Appl. Phys. Lett. 2000, 77, 3499.
    
    16 Carborundum Co. US Patent 2, 1953, 626, 828.
    
    17 W. Cannon, R. J. H. Flint, J. S. Haggerty, R. A. Marra, J. Am. Ceram. Soc. 1982, 65, 324.
    
    18 W. Q. Han, S. S. Li, Q. Q. Li, Y. D. Hu, Science 1997, 277, 1287.
    
    19 (a) J. Q. Hu, Y. Bando, Z. W. Liu, F. F. Xu, T. Sekiguchi, J. H. Zhan, Chem. Eur. J. 2004, 10, 554;
    
    (b) L. W. Yin, Y. Bando, Y. C. Zhu, Y. B. Li, Appl. Phys. Lett. 2003, 83, 3584;
    
    (c) Y. L. Gu, L. Y. Chen, Y. T. Qian, J. Am. Cera. Soc. 2004, 87, 1810;
    
    (d) K. B. Tang, J. Q. Hu, Q. Y. Lu, Y. Xie, J. S. Zhu, Y. T. Qian, Adv. Mater. 1999, 11, 653.
    
    20 Y. Zhang, N. Wang, R. He, Q. Zhang, J. Zhu, Y. Yan, J. Mater. Res. 2000, 15, 1048.
    
    21 (a) Y. H. Gao, Y. Bando, K. Kurashima, T. Sato, Microsc. Microanal. 2002, 8, 5;
    
    (b) W. Han, S. Fan, Q. Li, B. Gu, X. Zhang, D. Yu, Appl. Phys. Lett. 1997, 71, 2271.
    
    22 (a) L. D. Zhang, G. W. Meng, F. Phillipp, Mater. Sci. Eng. A 2000, 286, 34;
    
    (b) Y. Zhang, N. Wang, S. Gao, R. He, S. Miao, J. Liu, J. Zhu, X. Zhang, Chem. Mater. 2002, 14, 3564;
    
    (c) Y. H. Gao, Y. Bando, K. Kurashima, and T. Sato, J. Appl. Phys. 2002, 91, 1515.
    
    23 Perkin Elmer Corporation, PHI 5300 Instrument Manual, USA, 1979.
    
    24 H. Y. Kim, J. Park, H. Yang, Chem. Phys. Lett. 2003, 372, 269.
    
    25 Y. N. Volgin, Y. I. Ukhanov, Opt. Spectrosc. 1975, 38, 412.
    
    26 A. N. Richard, O. K. Ronald, Infrared Spectra of Inorganic Compounds, Academic Press, INC. (London) LTD. Serial No. 124, P114.
    
    27 I. H. Cambell, P.M. Fauchet, Solid State Commun. 1986, 58, 739.
    
    28 D. S. Chuu, C. M. Dai, W. F. Hsieh, C. T. Tsai, J. Appl. Phys. 1991, 69, 8402.
    
    29 F. Munakata, K. Furuya, Y. Akimune, J. Ye, I. Ishikawa, Appl. Phys. Lett. 1999, 74, 3498.
    
    30 G. Pacchioni, D. Erbetta, Phys. Rev. B 1999, 60, 12617.
    
    31 J. Q. Hu, Y. Bando, T. Sekiguchi, F. F. Xu, J. H. Zhan, Appl. Phys. Lett. 2004, 84, 804.
    
    32 G. W. Sears, Acta Metall. 1953, 1, 457.
    
    33 R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89.
    
    34 G. F. Zou, J. Lu, D. B. Wang, L. Q. Xu, Y. T. Qian, Inorg. Chem. 2004, 43, 5432.
    
    35 (a) A. P. Alivisatos, Science 1996, 271, 933;
    
    (b) S. J. Tans. M. H. Devoret, H. Dai, A. Thess, R. E.Smalley, L. J.Geerligs, C. Dekker, Nature 1997, 386,474;
    
    (c) J. R.Heath, P. J. Kuekes, G. Snyder, R. S.Williams, Science 1998, 280, 717;
    
    (d) J. Hu, M. Ouyang. P.Yang, C. M. Lieber, Nature 1999, 399, 48;
    
    (e) Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 2001, 291, 1947.
    
    36 (a) A. M. Morales, C. M. Lieber, Science 1998, 279, 208;
    
    (b) T. W. Ebbesen, P. M. Ajayan, Nature 1992, 358, 220;
    
    (c) M. H. Huang, S. Mao, H. N. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, R. Russo, P. D. Yang, Science 2001, 292, 1897;
    
    (d) J. M. Schnur, Science 1993, 262, 1669;
    
    (e) K. B. Tang, Y. T. Qian, J. H. Zeng, X. G. Yang, Adv. Mater. 2003, 15, 448;
    
    (f) Y. D. Li, J. W. Wang, Z. X. Deng, Y. Y. Wu, X. M. Sun, D. P. Yu, P. D. Yang, J. Am. Chem. Soc. 2001, 123, 9904;
    
    (g) B. Mayers, Y. N. Xia, Adv. Mater. 2002, 14, 279;
    
    (h) J. C. Bao, C. Y. Tie, Z. Xu, Q. F. Zhou, D. Shen, Q. Ma, Adv. Mater. 2001, 13, 1631.
    
    37 (a) L. Vayssieres, N. Beermann, S. E. Lindquist, A. Hagfeldt, Chem. Mater. 2001, 13, 233;
    
    (b) Z. Zhang, G. Ramanath, P. M. Ajavan, D. Goldberg, Y. Bando, Adv. Mater. 2001, 13, 197;
    
    (c) A. Hatzor, P. S. Weiss, Science 2001, 291, 1019;
    
    (d) M. Li, H. Schnablegger, S. Mann, Nature 1999, 402, 393;
    
    (e) J. K. N. Mbindyo, B. D. Reiss, B. R. Martin, C. D. Keating, M. J. Natan, T. E. Mallouk, Adv. Mater. 2001, 13, 249.
    
    38 (a) Z. L. Wang, R. P. Gao, J. L. Gole, J. D. Stout, Adv. Mater. 2000, 12, 1938;
    
    (b) X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos, Nature 2000, 404, 59.
    
    39 (a) Z. Y. Pan, X. J. Liu, S. Y. Zhang, G. J. Shen, L. G. Zhang, Z. H. Lu, J. Z. Liu, J. Phys. Chem. B 1997, 101, 9703;
    
    (b) T.Yonezawa, S. Onoue, N. Kimizuka, Adv. Mater. 2001, 13, 140;
    
    (c) T. Vossmeyer, E. Delonno, J. R. Heath, Angew. Chem. 1997, 109, 1123.
    
    40 (a) L. T. Canham, Appl. Phys. Lett. 1990, 57, 1046;
    
    (b) L. Vayssieres, N. Beermann, S. E. Lindquist, A. Hagfeldt, Chem. Mater. 2001, 13, 233;
    
    (c) Z. Zhang, G. Ramanath, P. M. Ajavan, D. Goldberg, Y. Bando, Adv. Mater. 2001, 13, 197;
    
    (d) J. K. N. Mbindyo, B. D. Reiss, B. R. Martin, C. D. Keating, M. J. Natan, T. E.Mallouk, Adv. Mater. 2001, 13, 249.
    
    41 (a) F. Li, R. M. Metzger, W. D. Doyle, IEEE Trans. Magn. 1997, 33 (5, Pt. 2), 3715;
    (b) G. Tourillon, L. Pontonnier, J. P. Levy, V. Langlais, Electrochem. Solid-State Lett. 2000, 3, 20;
    
    (c) S. Yang, H. Zhu, D. Yu, Z. Jin, S. Tang, Y. Du, J. Magn. Magn. Mater. 2000, 222, 97;
    
    (d) A. Kida, H. Kajiyama, S. Heike, T. Hashizume, K. Koike, Appl. Phys. Lett. 1999, 75, 540;
    
    (e) N. Grobert, W. K. Hsu, Y. Q. Zhu, J. P.Hare, H. W. Kroto, D. R. M. Walton, M. Terrones, H. Terrones, Ph. Redlich, M. Ruhle, R Escudero, F. Morales, Appl. Phys. Lett. 1999, 75, 3363;
    
    (f) H. J.Elmers, J. J.Hauschild Gradmann, Magn. Magn. Mater. 1998, 177-181(Pt. 2), 827-828;
    
    (g) I. V. Roshchin, J. Yu, A. D. Kent, G. W. Stupian, M. S. Leung, IEEE Trans. Magn. 2001, 37 (4, Pt. 1), 2101.
    
    42 A. P. Alivisatos, Science 2000, 289, 736;
    
    (b) R. L. Penn, J. F. Banfield, Geochim. Cosmochim. Acta 1999, 63, 1549.
    
    43 (a) R. L. Penn, G. Oskam, T. J. Strathmann, P. C. Searson, A. T. Stone, D. R. Veblen, J. Phys. Chem. B, 2001, 105, 2177;
    
    (b) J. F. Banfield, S. A. Welch, H. Z. Zhang, T. T. Ebert, R. L. Penn, Science, 2000, 289, 751;
    
    (c) C. M. Liu, L. R. Guo, M. Wang, Y. Deng, H. B. Xu, S. H. Yang, Chem. Comm. 2004, 2726.
    
    44 (a) A. Fissel, B. Schroter, W. Richter, Appl. Phys. Lett. 1995, 66, 3182;
    
    (b) M. Bhatnagar, B. J. Baliga, IEEE Trans. Electron. Dev. 1993, 40, 645;
    
    (c) K. W. Wong, X. T. Zhou, F. C. K. Au, H. L. Lai, C. S. Lee, S. T. Lee, Appl. Phys. Lett. 1999, 75, 2918.
    
    45 G. Pennington, N. Goldsman, Phys. Rev. B 2001,64, 51041.
    
    46 W. V. Muench, E. Pettenpaul, J. Appl. Phys. 1977, 48, 4823.
    
    47 K. Sakai, A. Fukuyama, S. Shigetomi, T. Ikari, Solid State Electron. 2004, 48, 1873.
    
    48 (a) V. D. Krstic, J. Am. Ceram. Soc. 1992, 75, 170;
    
    (b) Y. B. Li, S. S. Xie, W. Y. Zhou, L. J. Ci, Y. Bando Chem. Phys. Lett. 2002, 356, 325.
    
    49 H. E. Nilsson, M. Hjelm, J. Appl. Phys. 1999, 86, 6230.
    
    50 (a) Y. Y. Dong, P. Molian, Appl. Phys. Lett. 2004, 84, 10;
    
    (b) Q. Y. Lu, J. Q. Hu, K. B. Tang, Y. T. Qian, G. E. Zhou, X. M. Liu, J. S. Zhu, Appl. Phys. Lett. 1999, 75, 507;
    
    (b) Y. B. Li, P. S. Dorozhkin, Y. Bando, D. Golberg, Adv. Mater. 2005, 17, 545;
    
    (c) H. J. Dai, E. W. Wong, Y. Z. Lu, S. S. Fan, C. M. Lieber, Nature 1995, 375, 769;
    
    (d) X. T. Zhou, N. Wang, H. L. Lai, Appl. Phys. Lett. 1999, 74, 3942;
    
    (e) G. W. Ho, A. S. W. Wong, A. T. S. Wee, M. E. Welland, Nano Lett. 2004, 4, 2023.
    
    51 M. Stan, M. Patton, J. D. Warner, J. W. Yang, P. Pirouz, Appl. Phys. Lett. 1994, 64, 667.
    
    52 J. F. Yang, G. J. Zhang, N. Kondo, J. H. She, Z. H. Jin, T. Ohji, S. Kanzaki, J. Am. Cera. Soc. 2003, 86, 910.
    
    53 Y. Yao, S. T. Lee, F. H. Li, Chem. Phys. Lett. 2003, 381, 628.
    
    54 S. Hayashi, S. Tanimoto, K. Yamamoto, J. Appl. Phys. 1990, 68, 5300.
    
    55 B. Yang, Y. Zhou, W. Cai, P. He, Y. Ruan, Y. Huang, X.L. Xianming, G. Zhou, Appl. Phys. Lett. 1994, 64, 1445.
    
    56 G. C. Xi, Y. Y. Peng, S. M. Wan, T. W. Li, W. C. Yu, Y. T. Qian, J. Phys. Chem. B 2004, 108, 20102.
    
    57 S. Nakashima, H. Harima, Phys. Status Solidi A 1997, 162, 39.
    
    58 (a) Z. P. Fu, B. F. Yan, R. H. Liu, Y. Z. Ruan, J. Mater. Res., 2002, 17, 570;
    
    (b) X. L. Wu, G. G. Siu, M. J. Stokes, D. L. Fan, Y. Gu, X. M. Bao, Appl. Phys. Lett. 2000,77,1292;
    
    (c) A. O. Konstantinov, A. Henry, C. I. Harris, E. Janzen, Appl. Phys. Lett. 1995, 66, 2250.
    
    59 H. W. Shim, K. C. Kim, Y. H. Seo, K. S. Nahm, E.-K. Suh, H. J. Lee, Y. G. Hwang, Appl. Phys. Lett. 1997, 70, 1757.
    
    60 E. G. Gillan, R. B. Kaner, Chem. Mater. 1996, 8, 333.
    
    61 J. A. Powell, H. A. Hill, J. Appl. Phys. 1972, 43, 1400.
    
    62 M. B. Sigman, J. Ali Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee, B. A. Korgel, J. Am. Chem. Soc. 2003, 125, 16050.
    
    63 G. F. Zou, K. Xiong, C. L. Jiang, H. Li, Y. Wang, S. Y. Zhang, Y. T. Qian, Nanotechnology 2005, 16, 1584.
    1 (a) Ijima S Nature 1991 354 56; (b) Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisato A P Nature 2000 404 59; (c) Guidiksen M S, Wang J, Lieber C M J Phys Chem B 2001 105 4062; (d) Wu Y, Yang P J Am Chem Soc 2001 123 3165; (e) Ajayan P M, Stephan O, Redlich P, Colliex C Nature 1995 375 564; (f) Aggarwal S, Monga A P, Perusse S R, Ramesh R, Ballaaarotto V, Williams E D, Chalamala B R, Wei Y, Reuss R H Science 2000 287 2235; (g) Tenne R, Margulis L, Genut M, Hodes G Nature 1993 360 444; (h) Wang X, Li Y D Chem-Eur J 2003 9 5627.
    2 (a) Frank S, Poncharal P, Wang Z L, de Heer W A Science 1998 280 1744; (b) Kim P, Lieber C M Science 1999 286 2148; (c) Liu C, Fan Y Y, Liu M, Cong H T, Cheng H M, Dresselhaus M S Science 1999 286 1127; (d) Shim M, Javey A, Kam N W S, Dai H J J Am Chem Soc 2001 123 11512; (e) Kong J, Zhou C, Morpurgo A, Soh H T, Quate C F, Marcus C, Dai H Appl Phys A 1999 69 305; (f) Vander Wal R L Carbon 2002 40 2101; (g) Kratschmer W, Lamd L D, Fostiropoulos K, Huffman D R Nature 1990 347 354; (h) Kyotani T, Tsai L F, Tomita A Chem Mater 1996 8 2109; (i) Hu G, Ma D, Cheng M J, Liu L, Bao X H Chem Commun 2002 1948.
    
    3 (a) Liu J W, Shao M W, Chen X Y, Yu W C, Liu X M, Qian Y T J Am Chem Soc 2003 125 8088;
    
    (b) Acc Chem Rev (special issue) 2002 35 997.
    
    4 Tang Y H, Wang N, Zhang YF, Lee C S, Bello I, Lee S T Appl Phys Lett 1999 75 2921.
    
    5 Liu J W, Shao M W, Tang Q, Zhang S Y, Qian Y T J Phys Chem B 2003 107 6329.
    
    6 Lee K Y, Katayama M, Honda S, Kuzuoka T, Miyake T, Terao Y, Lee J G, Mori H, Hirao T, Oura K Jpn J Appl Phys 2003 242 L804.
    
    7 Yoon S H, Park C W, Yang H J, Korai Y, Mochida I, Baker R T K, Rodriguez N M Carbon 2003 42 21.
    
    8 Satishkumar B C, Thomas P J, Govindaraj A, Rao C N R Appl Phys Lett 2000 77 2530.
    
    9 Liu Y Q, Hu W P, Wang X B, Long C F, Zhang J B, Zhu D B, Tang D S, Xie S S Chem Phys Lett 2000 331 31.
    
    10 Nga L T, Hernadi K, Forro L Adv Mater 2001 13 148.
    
    11 Kleitz F, Choi S H, Ryoo R Chem Comm 2003 2136.
    
    12 Chen K H, Wu C T, Hwang J S, Wen C Y, Chen C L, Wang C T, Ma K J J Phys Chem Solids 2001 62 1561.
    
    13 Dresselhaus M S, Dresselhaus G, Pimenta M A, Eklund P C In: Pelletier MJ editor Analytical applications of Raman spectroscopy Oxford: Blackwell Science, 1999 Chapter 9.
    
    14 Shao M W, Li Q, Wu J, Xie B, Zhang X Y, Qian Y T Carbon 2002 40 2961.
    
    15 (a) Gao T, Meng G, Zhang J, Sun S, Zhang L Appl Phys A.2002 74 403;
    
    (b) Papadopoulos C, Rakitin A, Li J, Vedeneev A S, Xu J M Phys Rev Lett 2000 85 3476.
    
    16 (a) Palm T, Thyl'en L Appl Phys Lett 1992 60 237;
    
    (b) Palm T Phys Rev B 1995 52 13773;
    
    (c) PalmT Phys Rev B 1995 52 11284.
    
    17 Che G, Lakshmi B B, Martin C R, Fisher E R Chem Mater 1998 10 260.
    
    18 (a) Lee C J, Park J, Kim J M, Huh Y, Lee JY,NoKS Chem Phys Lett 2000 327 277;
    (b) Takenaka S, Shigeta Y, Tanabe E, Otsuka K J Catal 2003 220 468.
    
    19 Gamaly E G, Ebbesen T W, Phys Rev B 1995 52 2083.
    
    20 Burke A, J Power Sources 2000 91 37.
    
    21 (a) Winter M, Besenhard J O, Spahr M E, Novak P, Adv Mater 1998 10 725.
    
    (b) Ogumi Z, Inaba M, Bull Chem Soc Jpn 1998 71 521.
    22 Doi T, Fukuda A, Iriyama Y, Abe T, Ogumi Z, Nakagawa K, Ando T, Electrochem Comm 2005 7 10.
    
    23 (a) Gibaud A, Xue J S, Dahn J R, Carbon 1996 34 499.
    
    (b) Dahn JR, Zheng T, Liu Y, Xue J S, Science 1995 270 590. ? Dahn J R, Sleigh A K, Shi H, Way B M, Weydanz W J, Reimers J N. New materials, development perspectives In Pistoia G, editor Lithium Batteries London Elsevier Science 1995 p 1.
    
    24 (a) Bueno P R, Leite E R, J Phys Chem B 2003 107 8868.
    
    (b) Frackowiak E, Beguin F, Carbon 2002 40 1775. ? Wu G T, Wang C S, Zhang X B, Yang H S, Qi Z F, He P M, Li W Z, J Electrochem Soc 1999 146 1696.
    
    25 (a) Yoon S H, Park C W, Yang H J, Korai Y Z, Mochida I, Baker RTK, Rodriguez N M, Carbon 2004 42 21.
    
    (b) Hacker V, Wallnofer E, Baumgartner W, Schaffer T, Besenhard J O, Schro ttner H, Schmied M, Electrochem Comm 2005 7 377.
    
    26 (a) Sharon M, Pradhan D, 2005 5 1718.
    
    (b) Tu J P, Zhu L P, Hou K, Guo S Y, Carbon 2003 41 1257. ? Kamimura K, Matsumoto Y, Oo M T, Nakao M, Onuma Y, Mol Crtst Liq Cryst. 2000 340 713.
    
    27 Wei H W, Leou K C, Wei M T, Lin Y Y, Tsai C H, J Appl Phys 2005 98 Art. No. 044313.
    
    28 Klein K L, Melechko A V, Rack P D, Fowlkes J D, Meyer H M, Simpson M L, Carbon 2005 43 1857.
    
    29 Kimura T, Koizumi H, Kinoshita H, Ichikawa T, Nuclear Instrum Meth Phys Res Sec B 2005 236 474.
    
    30 Xiong Y J, Xie Y, Li X X, Li Z Q, Carbon 2004 4 1447.
    
    31 (a) Kang Z H, Wang E B, Gao L, Lian S Y, Jiang M, Hu C W, Xu, L, J. Am. Chem. Soc. 2003 125, 13652.
    
    (b) Roy D, Chhowalla M, Wang H, Sano N, Alexandrou 1, Clyne T W, Amaratunga G A J, Chem. Phys. Lett. 2003 373 52.
    
    32 (a) Ting J M, Liu R M, Carbon 2003 41 601.
    
    (b) Zou G F, Lu J, Wang D B, Xu L Q, Qian Y T, Inorg Chem 2004 43 5432. ? Chan C, Crawford G, Gao Y M, Hurt R, Jian K Q, Sheldon B, Sousa M, Yang N, 2005 43 2431.
    
    33 (a) Wang Q, Liu L J, Chen L Q, Huang X J, J Electrochem Soc 2004 151 A1333.
    
    (b) Maurin G, Bousquet C, Henn F, Bernier P, Almairac R, Simon B, Chem Phys Lett 1999 312 14.
    34 (a) Lee C J, Park J, Kim J M, Huh Y, Lee J Y, No K S, Chem Phys. Lett. 2000 327
    
    277. (b) Takenaka S, Shigeta Y, Tanabe E, Otsuka K, J Catal 2003 220 468.
    
    35 Luo T, Liu J W, Chen L Y, Zeng S Y, Qian Y T, Carbon 2005 43 755.
    
    36 Sinnott S B, Andrews R, Qian D, Rao A M, Mao Z, Dickey E C, Derbyshire F, Chem. Phys. Lett. 1999 315 25.
    
    37 (a) Vargo T G, Gardella J A, Calvert J M, Chen M S, Science, 1993,262, 1711;
    
    (b) Bellon J M, Contreras L A, Bujian J, A Carrera-San Martin, Biomaterials, 1996, 17, 2367
    
    38 (a) Wittmann J C, Smith P, Nature, 1991, 352, 414;
    
    (b) Simon G M, Kaminsky W, Polym Degrad Stab 1998, 62, 1.
    
    39 Ellis D A, Mabury S A, Matin J W, Muir D C G, Nature, 2001, 412, 321.
    
    40 (a) Liang T T, Yamada Y, Yoshizawa N, Shimidzu S, Oya A, Chem Mater 2001, 13, 2933;
    
    (b) Huczko A, Lange H, Chojecki G, Cudzilo S, Zhu Y Q, Kroto H W, Walton D R M, J Phys Chem B 2003, 107, 2519; ? Hlavaty J, Kavan L, Carbon, 1999, 37, 1029;
    
    (d) Yasuda A, Kawase N, Matsui T, Shimidzu T, Yamaguchi C, Matsui H, React Funct Polym 19994, 1, 13.
    
    41 Yang X G, Li C, Wang W, Yang B J, Zhang S Y, Qian Y T, Chem Comm 2004, 342.
    
    42 Ismail H, Freakley P K, Sheng E, Eur Polym J, 1995, 31, 1049.
    43 Auer E, Freund A, Pietsch J, Tacke T, Appl Catal 1998, 173, 259.
    
    43 Flandrois S, Simon B, Carbon, 1999, 37, 165.
    
    44 (a) Malsushita M, Liu S, Weld J 2000, 79, 295S;
    
    (b) Seki T, Hattori H, Catal Surv Asia 2003, 7, 145.
    
    45 Liu J W, Shao M W, Chen X Y, Yu W C, Liu X M, Qian Y T, J Am Chem Soc 2003,125,8088.
    
    46 Qiu J S, Li Y F, Wang Y P, Liang C H, Wang T H, Wang D H, Carbon, 2003, 41, 767.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700