单室胃动物胃肌肉层分布的解剖学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究运用大体解剖学方法对兔、狗和猪等单室胃动物的胃肌肉层进行了逐层整片剥离,并采取肉眼观察与体视显微镜观察相结合的方法对兔、狗和猪的胃肌肉层各层的具体分布区域、连接状态以及胃不同部位的厚度变化进行了研究。获得了兔、狗和猪胃的肌层解剖特征,从而为比较解剖学和生理学积累了基础资料,并为重新探讨胃肌肉层与胃分区、胃运动以及胃中间横带的关系提供了依据。实验结果如下:
     兔胃纵行肌主要分布于胃大弯、幽门部以及胃的脏面和膈面。其中,贲门附近的纵行肌呈螺旋形分布,幽门部表面的纵行肌呈U形分布。兔胃环行肌主要分布于胃体和幽门部。其中,贲门口和幽门口均存在增厚的环行肌环,幽门部中部有一条显著增厚的环行肌带。斜行肌在贲门切迹处与食管环行肌相延续,然后,一部分斜行肌沿胃小弯两侧向下延伸,并终止于角切迹上方;其余的斜行肌呈环状分布于胃底和胃体。
     狗胃大部分都被纵行肌所覆盖,仅在胃小弯两侧分布稀疏,甚至缺失。在膈面,纵行肌在胃体上部积聚,然后辐射分布到整个胃体。在幽门部,纵行肌增厚,并形成完整的一层。狗的胃底很小,所以环行肌几乎分布于整个胃。幽门口的环行肌显著增厚,形成幽门括约肌。在幽门部中部,环行肌形成一条强厚的肌带,并与幽门括约肌在胃小弯侧相会。狗胃斜行肌在贲门切迹处与食管环行肌相延续,然后,一部分沿胃小弯两侧向下延伸,至角切迹后,转向胃大弯行走并与对侧的内斜行肌构成肌环;其余的斜行肌呈环状分布到胃底和胃体,并且在胃体中部与环行肌融合。
     猪胃纵行肌覆盖着胃的大部分。胃体下部纵行肌稀疏,且走向不明显。在幽门部,纵行肌增厚,但胃小弯侧缺失。环行肌从贲门下方一直延续到幽门。自贲门至角切迹,环行肌分为深浅两层,浅层环行肌向左上方分布于胃体前部和胃底,但不到达胃憩室,深层环行肌斜向下分布到整个胃体。在幽门口,环行肌自胃小弯侧向胃腔内突出,形成幽门圆枕。内斜行肌在贲门切迹处与食管环行肌相延续,然后,一部分沿胃小弯两侧向下延伸,至角切迹下方终止;其余的斜行肌呈环状分布到胃底和胃体。
The gastric muscular layers,in rabbit, pig and dog,were dissected by basic anatomical method layer-by-layer. Then, the distribution, variance of thickness and connective way of the gastric muscular coat were studied with the macroscopic observation and the stereoscopic observation. The studies about the feature of stomach in rabbit, dog and pig presented basic dates for the zootomy and the physiology and a new thinking to study the relationship between the gastric muscular layers with the gastric subarea, the gastric motility and the midgastric transverse band. The main results were shown as following:
     The longitudinal muscle of stomach in rabbit mainly distribute in the greater curvature of stomach, the visceral surface, the facies diaphragmatica and the pyloric part. At the cardiac orifice, the longitudinal muscle spread in the manner of spiral. On the pyloric part, the surface longitudinal muscle is with U distribution. The circular muscle in rabbit mainly situate on the gastric body and the pyloric part. There are incrassate circular muscular ring at the cardiac and the pyloric orifice. On the middle of the pyloric part, there have an incrassate circular band. The oblique muscular fibers are continuous with those of the esophagus at the cardiac incisure. Then, some fibers spread along both sides of the lesser gastric curvature. Other distribute in the gastric fundus and the gastric body.
     The most surfaces of stomach in dog are mainly coated with the longitudinal muscle. But on the lesser gastric curvature, the longitudinal muscular fibers are thinly scattered or scarcely to be found. On the upper part of the facies diaphragmatica, muscular fibers of the gastric body accumulate and spread with the radiation distribution to the whole gastric body. On the pyloric part, the longitudinal muscular fibers become thicker and form a complete layer. As the gastric fundus of the dog is small, the circular muscular fibers distribute almost the whole stomach. At the pyloric orifice, the circular muscular fibers become thicker and stronger than at other points, and then form the pyloric sphincter. On the middle of the pyloric part, the circular muscular fibers are gathered into a thick bundle, which meet with the pyloric sphincter at the lesser gastric curvature. The oblique muscular fibers are continuous with those of the esophagus at the cardiac incisure. Parts spread along both sides of the lesser gastric curvature and turn to the greater gastric curvature at the angular incisure. Others are with rings distribution surrounding the gastric fundus and the gastric body, and then blend with the circular fibers on the middle of the gastric body.
     The most range of stomach in pig is covered with the longitudinal muscular fibers. On the lower gastric body, longitudinal muscular fibers are thinly scattered or scarcely to be found. The incrassate longitudinal muscular fibers cover the most range of the pyloric part except the lesser gastric curvature. The circular muscular fibers spread from the cardia to the pylorus. Between the cardia and the angular incisure, the circular muscular fibers comprise the superficial layer (which spread to the anterior part of the gastric body and the gastric fundus except the gastric diverticulum) and the deep layer (which distribute on the whole gastric body). At the lesser gastric curvature side of the pyloric orifice, the circular muscular fibers are gathered, and then form the torus pyloricus. The oblique muscular fibers are continuous with those of the esophagus at the cardiac incisure. Then parts spread along both sides of the lesser gastric curvature and end below the angular incisure. Others are with rings distribution surrounding the gastric fundus and the gastric body.
引文
[1]陈嘉绩,陆桐,黄子荣,等.川金丝猴胃的观察[J].兽类学报. 1995, 15(3): 176-180.
    [2]李仲荣,余亚维.抗胃食管返流有关机能解剖学研究[J].中国临床解剖学杂志. 1990, 8(1): 50-52.
    [3]韩勇,赵正源,王云杰,等.兔食管下括约肌与体部形态及乙酰胆碱对其功能影响的比较[J]. World Chin J Digestol. 2005, 13(1): 10-14.
    [4] Adams CW, Brain RHF, Ellis FG, et al. Achalsia of the cardia[J]. Guys Hosp Rep. 1961, 110: 191-236.
    [5] Ellis FG, Kauntze R, Trounce JR. The innervation of the cardia and lower oesophagus in man[J]. Br J Surg. 1960, 47: 466-472.
    [6] Hayward J. The lower end of the oesophagus[J]. Thorax. 1961, 16: 36-41.
    [7]刘文彪,张玉和.成人食管胃连接部的解剖学观测[J].武警医学院学报. 2003, 112(2): 90-92.
    [8]陈健,乔瑞敏,尚杰.食管括约肌上下缘位置与身高、年龄的关系[J].中华消化内镜杂志. 2006, 23(2): 126-127.
    [9]邹磊,蒋绚,赵景涛.食管下括约肌长度测定的临床意义[J].北京医科大学学报. 1999, 31(1): 90-92.
    [10] Eliika O. Phreno-oesophageal membrane and its role in the development of hiatal hernia[J]. Acta Anat. 1973, 86: 137-150.
    [11] Davis ED. The mechanism of the cardiac end of the oesophagus[J]. J Laryngol Otol. 1957, 71: 471-485.
    [12] Friedland GW, Melcher DH, Berridge FR, et al. Debatable points in the anatomy of the lower oesophagus[J]. Thorax. 1966, 21: 487-498.
    [13] Johnstone AS. Diagnosis of early gastric herniation at oesophageal hiatus[J]. J Fac Radiol(Lond). 1951, 3: 52-65.
    [14] Palmer ED. An attempt to localize the normal esophagogastric junction[J]. Radiology. 1953, 60: 825-831.
    [15] Berry RJA, Crawford J. The stomach and pylorus[J]. J Anat Physiol. 1900, 34: 153-158.
    [16] Wolf BS, Marshak RH, Som ML, et al. The gastroesophageal vestibule on roentgen examination: differentiation from the phrenic ampulla and minimal hiatal herniation[J]. Mt Sinai J Med NY. 1958, 25: 167-200.
    [17] Cannon WB The movements of the stomach studied by means of the Rontgen rays[J]. Am. J. Physiol. 1898, 1: 359–382.
    [18] Kelly KA. Gastric emptying of liquids and solids roles of proximal and distal stomach[J]. American Journal of Physiology. 1980, 239, G71-G76.
    [19] Kelly KA. Gastric motility after gastric operations[J]. Surgery Annual. 1974, 6: 103-123.
    [20] Carson HC, Code CF, Nelson RA. Motor action of the canine gastroduodenal junction; a cineradiographic, pressure, and electric study[J]. American Journal of Digestive Diseases. 1966, 11: 155-172.
    [21] Lind JK, Duthie HI, Schlegel JF, et al. Motility of the gastric fundus[J]. Am J Physiol. 1961, 201: 197-203.
    [22] Cannon WB, Lieb CW. The receptive relaxation of the stomach[J]. Am J Physiol. 1911, 29: 267-273.
    [23] Christensen J, Caprilli R, Lund G F. Electric slow waves in circular muscle of cat colon[J]. Am. J. Physiol. 1969, 217: 771–776.
    [24] Christensen J, Hauser RL. Circumferential coupling of electric slow waves in circular muscle of cat colon[J]. Am. J. Physiol. 1971, 221: 1033–1037.
    [25] Christensen J, Caprilli R, Lund G F. Electric slow waves in circular muscle of cat colon[J]. Am. J. Physiol. 1969, 217: 771–776.
    [26] Christensen J, Hauser RL. Circumferential coupling of electric slow waves in circular muscle of cat colon[J]. Am. J. Physiol. 1971, 221: 1033–1037.
    [27] Farrugia G. Ionic conductances in gastrointestinal smooth muscles and interstitial cells of Cajal[J]. Annu Rev Physiol. 1999, 61: 45–84.
    [28] Thuneberg L. Interstitial cells of Cajal: intestinal pacemaker cells?[J]. Adv Anat Embryol Cell Biol. 1982, 71: 1–130.
    [29] Bauer AJ, Publicover NG, Sanders KM. Origin and spread of slow waves in canine gastric antral circular muscle[J]. Am. J. Physiol. 1985, 249 (Gastrointest. Liver Physiol. 12): G800–G806.
    [30] Sanders KM, Stevens RJ, Burke E, et al. Slow waves actively propagate at submucosal surface of circular layer in canine colon[J]. Am. J. Physiol. 1990, 259 (Gastrointest. Liver Physiol. 22): G258–G263.
    [31] Smith TK, Reed JB, Sanders KM. Origin and propagation of electrical slow waves in circular muscle of the canine proximal colon[J]. Am. J. Physiol. 1987, 252 (Cell Physiol. 21): C215–C224.
    [32] Ward SM, Keller R, Sanders KM. Structure and organization of the electrical activity of the canine distal colon[J]. Am. J. Physiol. 1991, 260 (Cell Physiol. 29): C724–C735.
    [33] Ward SM, Sanders KM. Pacemaker activity in septal structures of canine colonic circular muscle[J]. Am. J. Physiol. 1990, 259 (Gastrointest. Liver Physiol. 22): G264–G273.
    [34] Ichikawa S, Bozler E Monophasic and diphasic action potentials of the stomach[J]. Am. J. Physiol. 1955, 182: 92–96.
    [35] Kelly KA, Code CF, Elveback LR. Patterns of canine gastric electrical activity[J]. Am. J. Physiol. 1969, 217: 461–470.
    [36] Wilbur BG, Kelly KA. Effect of proximal gastric, complete gastric and truncal vagotomy on canine gastric electrical activity, motility and emptying[J]. Ann Surg. 1973, 178: 295-303.
    [37] Wilkinson AR, Johnston D. Effect of truncal, selective and highly selective vagotomy on gastric emptying and intestinal transit of a food-barium meal in human[J]. Ann Surg. 1973, 178: 190-193.
    [38] Cowley DJ, Vernon P, Jones T, et al. Gastric emptying of solid meals after truncal vagotomy and pyloroplasty in human subjects[J]. Gut. 1972, 13: 176-181.
    [39] Howlett PJ, Sheiner HJ, Barber DC, et al. Gastric emptying in control subjects and patients with duodenal ulcer before and after vagotomy[J]. Gut. 1976, 17: 542-550.
    [40] Faxen A, Alpsten M, Cederblad A, et al. The effect of parietal cell vagotomy and selective vagotomy with pyloroplasty on gastric emptying of a solid meal[J]. Scand J Gastroenterol. 1978, 13: 727-733.
    [41] Hamilton SG, Sheiner HJ, Quinlan MF. Continuous monitorring of the effect of pentagastrin on gastric emptying of solid food in man[J]. Gut. 1976, 17: 273-279.
    [42] Kostic N, Ratkovic M, Novakovic R, et al. Relation between pyloric dysmotility and serum levels of gastrin, somatostatin and vasoactive intestinal polypeptide in patients with non-insulin dependent diabetes mellitus[J]. Med Pregl.1995,48(5-6): 149-151.
    [43] Forster ER, Green T, Elliot M, et al. Gastric emptying in rats: role of afferent neurons and cholecystokinin[J]. Am J Physiol Gastrointest Liver Physiol. 1990, 258: G552-G556.
    [44] Fried M, Erlacher U, Schwizer W, et al. Role of cholecystokinin in the regulation ofgastric emptying and pancreatic enzyme secretion in humans. Studies with the cholecystokinin-receptor antagonist loxiglumide[J]. Gastroenterology. 1991, 101(2): 503-511.
    [45] Anvari M, Malbert C, Horowitz, et al. Loxiglumide abolishes the offects of intraduodenal oleic acid on gastric motility and emptying in the pig[J]. Neurogastroenterol Motil. 1994, 16: 181.
    [46] Denac M, Oertle C, Kümin G, et al. Relaxation of muscle strips from the reticular groove and reticulo-omasal orifice by vasoactive intestinal peptide (VIP)[J]. Zentralbl Veterinarmed A. 1990, 37(6): 425-429.
    [47] Harris AG. Somatostatin and somatostatin analogues: pharmacokinetics and pharmacodynamic effects[J]. Gut. 1994, 35(3 Suppl): S1-S4.
    [48] Foxx-Orenstein A, Camilleri M, Stephens D , et al . Effect of a somatostatin analogue on gastric motor and sensory functions in healthy humans[J]. Gut. 2003, 52(11): 1555-1561.
    [49] Ehrlein HJ, Heisinger E. Computer analysis of mechanical activity of gastroduodenal junction in unanesthetized dogs[J]. J Exp Physiol. 1982, 67: 17-29.
    [50] Keinke Q, Schermann M, Ehrlein HJ. Mechanical factors regulating emptying of viscous nutrient meals[J]. J Exp Physiol. 1984, 69: 781-795
    [51] Wulschke S, Ehrlein HJ, Tsiamitas C, The contron mechanisms of gastric emptying are not overndden by motor stimulants[J]. Am J Physiol. 1986, 251: 744-751.
    [52] Anvari M, Horowitz M, Fraser R, et al. Effects of posture on gastric emptying of nonnutrient liquids and antropyloroduodenal motility[J]. Am. J. Physiol. 1995, 268 (Gastrointest. Liver Physiol. 31): G868–G871.
    [53] Burn-Murdoch R, Fisher M, Hunt J. Does lying on the right side increase the rate of gastric emptying[J]. J. Physiol.1980, 302: 395–398.
    [54] Horowitz M, Jones K, Edelbroek M, et al. The effect of posture on gastric emptying and intragastric distribution of oil and aqueous meal components and appetite[J]. Gastroenterology. 1993, 105: 382–390.
    [55] Hunt JM, Knox M, Oginski A. The effect of gravity on gastric emptying of various test meals[J]. J. Physiol.1965, 178: 92–97.
    [56] Hunt JM, Smith JL, Jiang CL. Effect of meal volume and energy density on the gastric emptying of carbohydrates[J]. Gastroenterology. 1985, 89: 1326–1330.
    [57] Brener T, Hendrix TR, McHugh PR. Regulation of gastric emptying of glucose[J]. Gastroenterology. 1983, 85: 76–82.
    [58] Lin, HC, Doty JE, Reedy TJ, et al. Inhibition of gastric emptying by glucose depends on length of intestine exposed to nutrient[J]. Am. J. Physiol. 1989, 256 (Gastrointest. Liver Physiol. 19): G404–G411.
    [59] McHugh, PR, Moran TH. Calories and gastric emptying: a regulatory capacity with implications for feeding[J]. Am. J. Physiol. 1979, 236 (Regulatory Integrative Comp. Physiol. 5): R254–R260.
    [60] Hunt JN, Stubbs DF. The volume and energy content of meals as determinants of gastric emptying[J]. J Physiol. 1975, 245:209-225.
    [61] Sheiner HJ, Quinlan MF, Thompson IJ. Gastric motility and emptying in normal and post-vagotomy subjects[J]. Gut. 1980, 21: 753-759.
    [62] Meyer JH. Gastric emptying of ordinary food: effect of antrum on particle size[J]. Am. J. Physiol. 1980, 239 (Gastrointest. Liver Physiol. 2): G133–G135.
    [63] Lin HC, Elashoff JD, Gu YG, et al. Effect of meal volume on gastric emptying[J]. J. Gastrointest. Motil. 1992, 4: 157–163.
    [64] Collins PJ, Horowitz M, Maddox A, et al. Increased meal size is associated with more rapid gastric emptying[J]. Am. J. Physiol. 1996, 271 (Gastrointest. Liver Physiol. 34): G549–G554.
    [65] Moore J, Datz F, Christian P, et al. Effect of body posture on radionuclide measurements of gastric emptying[J]. Dig. Dis. Sci.. 1988, 33: 1592–1595.
    [66] Moore JG, Christian PE, Brown JA, et al. Influence of meal weight and caloric content on gastric emptying of meals in man[J]. Dig. Dis. Sci.. 1984, 29: 513–519.
    [67] Collins PJ, Horowitz M, Cook DJ, et al. Gastric emptying in normal subjects—a reproducible technique using a single scintillation camera and computer system[J]. Gut. 1983, 24: 117–125.
    [68] Collins PJ, Houghton LA, Read NW, et al. Role of the proximal and distal stomach in mixed solid and liquid meal emptying[J]. Gut. 1991, 32: 615–619.
    [69] Horowitz M, Maddox A, Bochner M, et al. Relationships between gastric emptying of solid and caloric liquid meals and alcohol absorption[J]. Am. J. Physiol. 1989, 257 (Gastrointest. Liver Physiol. 20): G291–G298.
    [70] Brener W, Hendrix TR, McHugh PR. Regulation of the gastric emptying of glucose[J]. Gastroenterology. 1983, 85:76-82.
    [71] Guerin S, Ramonet Y, LeCloarec J, et al. Changes in intragastric meal distribution are better predictors of gastric emptying rate in conscious pigs than are meal viscosity or dietary fibre concentration[J]. British Journal of Nutrition. 2001, 85: 343-350.
    [72] Szurszewski JH. A migrating electric complex of canine small intestine[J]. Am J Physiol. 1969, 217: 1757-1763.
    [73] Bueno L, Fioramonti J, Ruckebusch Y. Rate of flow of digesta and electrical activity of the small intestine in dogs and sheep[J]. J Physiol. 1975, 249: 69-85.
    [74] Rukebusch M, Fioramonti J. Electrical spiking activity and propulsion in small intestine in fed and fasted rats. Gastroenterology. 1975, 68: 1500-1508.
    [75] Vantrappen G, Janssens J, Hellemans J, et al. The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine[J]. J ClinInvest. 1977, 59: 1158-1166.
    [76] Rayner V, Weekes TE, Bruce JB. Insulin and myoelectric activity of the small intestine of the pig. Dig Dis Sci. 1981, 26: 33-41.
    [77] Code CF, Marlett JA. The interdigestive myo-electric complex of the stomach and small bowel of dogs[J]. J Physiol. 1975, 246: 289-309.
    [78] Sarna SK. Cyclic motor activity; migrating motor complex: 1985. Gastroenterology. 1985, 89: 894-913.
    [79] Sarna S, Stoddard C, Belbeck L, et al. Intrinsic nervous control of migrating myoelectric complexes. Am J Physiol. 1981, 241: G16-G23.
    [80] Keane FB, DiMagno EP, Dozois RR, et al. Relationships among canine interdigestive exocrine pancreatic and biliary flow, duodenal motor activity, plasma pancreatic polypeptide, and motilin[J]. Gastroenterology. 1980, 78: 310-316.
    [81] Nilsson BI, Svenberg T, Tollstr?m T, et al. Relationship between interdigestive gallbladder emptying, plasma motilin and migrating motor complex in man[J]. Acta Physiol Scand. 1990, 139: 55-61.
    [82] Nilsson I, Svenberg T, Theodorsson E, et al. Pancreaticobiliary juice releases motilin during phase I of the migrating motor complex in man[J]. Scand J Gastroenterol. 1993, 28: 80-84.
    [83] Owyang C, Achem-Karam SR, Vinik AI. Pancreatic polypeptide and intestinal migrating motor complex in humans. Effect of pancreaticobiliary secretion[J]. Gastroenterology. 1983, 84: 10-17.
    [84] Griffith GH, Owen GM, Kirkman S, Shields R. Measurement of rate of gastric emptying using chromium-51[J]. Lancet. 1966, 1: 1244-1245.
    [85] Calderon M, Sonnemaker RE, Hersh T, Burdine JA. 99m Tc-human albumin microspheres (HAM) for measuring the rate of gastric emptying[J]. Radiology. 1971, 101: 371-374.
    [86] Heading RC, Tothill P, McLoughlin P, et al. Proceedings: Gastric emptying rate measurement in man: a method for simultaneous study of solid and liquid phases[J]. Gut. 1974, 15: 841.
    [87] Heading RC, Tothill P, McLoughlin GP, Shearman DJ. Gastric emptying rate measurement in man. A double isotope scanning technique for simultaneous study of liquid and solid components of a meal[J]. Gastroenterology. 1976, 71: 45-50.
    [88] Meyer JH, MacGregor IL, Gueller R, et al. 99mTc-tagged chicken liver as a marker of solid food in the human stomach[J]. Am J Dig Dis. 1976, 21: 296-304.
    [89] Parkman HP, Hanis AD, Krevsky B, et al. Gastroduodenal motility and dismotility:An update on technical available for evaluation. AM J Gastroenterol, 1995, 90: 869-892.
    [90] Cannon WB. The movements of the intestines studied bymeans of the Rontgen rays. Am. J. Physiol. 1902, 6: 251–277.
    [91] Cannon WB. The passage of different food-stuffs from the stomach and through the small intestine[J]. Am. J. Physiol. 1904, 12: 387–418.
    [92] Rothatein RD, Alavi A. The evaluation of the patient with gastroparesis secondary to insulin-dependent diabetes mellitus[J]. J Nucl Med. 1992, 33 (9): 1707-1709.
    [93] Horowitz M, Edelbroek M, Fraser R, et al. Disordered gastric motor function in diabetes mellitus. Recent insights into prevalence, pathophysiology, clinical relevance, and treatment[J]. Scand J Gastroenterol. 1991, 26(7): 673-684.
    [94] Kawagishi T, Nishizawa Y, Okuno Y, et al. Effect of cisapride on gastric emptying of indingestible solids and plasma motilin concentration in diabetic autonomic neuropathy[J]. Am J Gastrooenterol. 1993, 88(6): 933-938.
    [95] Bateman DN, Whittingham TA. Measurement of gastric emptying by real-time ultrasound[J]. Gut. 1982, 23: 524-527.
    [96] King PM, Adam RD, Pryde A, et al. Relationships of human antroduodenal motility and transpyloric fluid movement: non-invasive observations with real-time ultrasound[J]. Gut 1984, 25: 1384-1391.
    [97] Brown BP, Schulze-Delrieu K, Schrier JE, et al. The configuration of the human gastroduodenal junction in the separate emptying of liquids and solids[J]. Gastroenterology. 1993, 105: 433-440.
    [98] Gilja OH, Hausken T, Wilhelmsen I, et al. Impaired accommodation of proximal stomach to a meal in functional dyspepsia[J]. Dig Dis Sci. 1996, 41: 689-696.
    [99] Hveem K, Jones KL, Chatterton BE, et al. Scintigraphic measurement of gastric emptying and ultrasonographic assessment of antral area: relation to appetite[J]. Gut. 1996, 38: 816-821.
    [100] Benini L, Sembenini C, Heading RC, et al. Simultaneous measurement of gastric emptying of a solid meal by ultrasound and by scintigraphy[J]. Am J Gastroenterol. 1999, 94: 2861-2865.
    [101] Ghoos YF, Maes BD, Geypens BJ, et al. Measurement of gastric emptying rate of solids by means of a carbon-labeled octanoic acid breath test[J]. Gastroenterology. 1993, 104: 1640-1647.
    [102] Meyerwyss W. Gastric emptying measured noninvasively in humans with a 13C-A cetate breath test[J]. Gastroenterology. 1991, 100 ( supp l): 459.
    [103]冯波, Ziegler D. 13C辛酸呼吸试验测定糖尿病胃固体排空功能的重复性研究[J].中华核医学杂志. 2001, 21(2): 107-108.
    [104] Schwizer W, Maecke H, Fried M. Measurement of gastric emptying by magnetic resonance imaging in humans[J]. Gastroenterology. 1992, 103: 369-376.
    [105] Schwizer W, Fraser R, Borovicka J, et al. Measurement of gastric emptying and gastric motility by magnetic resonance imaging (MRI) [J]. Dig Dis Sci. 1994, 39: 101S-103S.
    [106] Feinle C, Kunz P, Boesiger P, et al. Scintigraphic validation of a magnetic resonance imaging method to study gastric emptying of a solid meal in humans[J]. Gut. 1999, 44: 106-111.
    [107] Borovicka J, Lehmann R, Kunz P, et al. Evaluation of gastric emptying and motility in diabetic gastroparesis with magnetic resonance imaging: effects of cisapride[J]. Am J Gastroenterol. 1999, 94: 2866-2873.
    [108] Kunz P, Feinle C, Schwizer W, et al. Assessment of gastric motor function during the emptying of solid and liquid meals in humans by MRI[J]. J Magn Reson Imaging. 1999, 9: 75-80.
    [109] Schwizer W, Steingotter A, Fox M, et al.Noninvasive measurement of gastric accommodation in humans[J]. Gut. 2002, 51 Suppl 1: i59-i62.
    [110] Sanake I, Kuyama Y, Nishinakagawa S, el al. Use of salivary acetaminophen concentration to assess gastric emptying rate of liquids[J]. J Gastroenterol. 2000, 35(6): 429-433.
    [111]陈波,张建忠,万小平,等.功能性消化不良患者胃十二指肠运动功能的研究[J].胃肠病学和肝病杂志. 2000, 9(4): 267-269.
    [112]郭耸峰,周新民,郑崇勋,等.胃动力障碍患者的胃电活动[J].第四军医大学学报. 2000, 21(1): 100-103.
    [113]黄颍秋,王昕,刘丽,等.一氧化氮对糖尿病胃轻瘫患者体表胃电及食管蠕动的影响[J].胃肠病学和肝病学杂志. 2000 , 9(2): 116-118.
    [114]陈艳敏,范红,龙毓灵.功能性消化不良的体表胃电图研究[J].胃肠病学和肝病学杂志.1999, 8(1): 34-36.
    [115] Moore JG, Dubos A, Christian PE, et al. Evidence for a midgastric transverse band in human[J]. Gastroenterology. l986, 91: 540-545.
    [116] Collins PJ, Horowitz M, Chatterton BE, et al. Proximal, distal and total stomach emptying of a digestible solid meal in normal subjects [J]. Br J Radio. 1988, 161:12-18.
    [117]谷成明,柯美云,朱朝晖,等.胃中间横带在调节糖尿病病人胃内食物分布和胃排空中的作用[J].中华内科杂志. 1999, 38(7): 476-477.
    [118]郭建强,柯美云,秦明伟,等.胃中间横带对近端胃和远端胃食物分布的调节作用[J].中国医学科学院学报. 2000, 22(5): 416-420.
    [119]柯美云,谷成明,姜玉新,等.消化不良患者的胃幽门十二指肠运动协调性研究[J].中国医学科学院学报. 2000, 22(3): 240-244.
    [120]柯美云.胃十二指肠运动的生理和病理生理[J].中华消化杂志, 2002, 22(1): 41-42.
    [121]陶小英,赵振华,吴国水,等.功能性消化不良患者胃功能的临床研究[J].现代中西医结合杂志. 2006, 15(7): 850-852.
    [122]顾晓红,李力,袁爱梅.肝硬化患者胃中间横带及其在胃排空中的作用探讨[J].现代中西医结合杂志. 2002, 3(11): 31-33.
    [123]严祥,刘纯,刘永铭,等.胃排空延迟与胃中间横带关系及作用机制研究[J].兰州大学学报. 2005, 31(2): 1-4.
    [124]严祥,刘纯,刘永铭,等.功能性消化不良胃排空与胃中间横带关系研究[J].兰州大学院学报. 1999, 25(4): 21-23.
    [125]严祥,刘纯,刘永铭,等.胃中间横带在胃排空的作用及其机制探讨[J].中华核医学杂志. 2000, 20(2): 29-30.
    [126] Saran SK, Daniel EE, Kingma YJ. Simulation of the electric-control activity of the stomach by an array of relaxation oscillators[J]. Am J Dig Dis.1972, 17: 299-310.
    [127]张经济.消化道生理学[M].广州:中山大学出版社, 1990. 109-110.
    [128]周吕.胃肠生理学——基础与临床[M].北京:科学出版社, 1991. 345-346.
    [129]严祥,刘纯,刘永铭,等.应用ECT技术对功能性消化不良胃排空影响因素的研究[J].中华消化杂志. 2000, 20(6): 416-417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700