羟基化合物抗氧化性能与构效关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物抗氧化剂是物理有机化学的研究课题之一,本论文的工作主要是在化学体系和化学模拟生物体系内,研究了不同位置羟基取代的二茂铁Schiff碱、异黄酮以及三苯吡唑类化合物的抗氧化活性,并将化学动力学公式应用于化学体系以及化学模拟生物学体系的测试中。主要研究内容为:
     1设计合成了三种二茂铁Schiff碱类化合物,并用五种方法对其抗氧化能力进行了研究。结果表明,二茂铁基团的引入增强了Schiff碱类化合物的抗氧化能力;当羟基处于苯环对位时,分子的还原能力较强,而当羟基处于苯环邻位时,分子清除二苯代苦味肼基自由基(DPPH)以及羟基自由基的能力较强,而当羟基位于苯环间位时,化合物抗氧化性较弱。
     2设计合成了三种异黄酮类化合物,并用十种方法对其抗氧化能力进行了研究,结果表明,羟基处于间位时,还原2,2'-连氮-双-(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS~+)和羟基自由基的能力较强,而当羟基处于邻位时,淬灭DPPH、Galvinoxyl自由基的能力较强,羟基处于对位的化合物则还原亚硝基阴离子和单线态氧的能力较强。
     3设计合成了四种三苯吡唑类化合物,并用六种方法对其抗氧化能力进行了研究。结果表明,三苯吡唑类化合物在有羟基或无羟基的情况下,均可淬灭自由基。有羟基的三苯吡唑类化合物在抑制2,2'-偶氮二异丁基脒二盐酸盐(AAPH)引发的DNA氧化损伤实验中,均表现出了很好的抗氧化性,并且在胶束体系内抑制AAPH引发的DNA氧化损伤中,也表现出了一定的活性。
Study on synthesis and antioxidant activity of bio-antioxidants was one of thecentral issues in organic chemistry in recent years. In this work, we selectedferrocenyl Schiff base, homoisoflavonoids and triphenyl pyrazoles as the center withdifferent position of hydroxyl substituent attached, synthesized10kinds ofcompounds, and researched their antioxidant activities.
     The antioxidants evaluation methods are usually defined as two types which arechemical systems and chemical mimic biological systems. The former contains DPPHmethod、ABTS method and galvinoxyl method. Chemical-system method couldrapidly quantitative determine the antioxidant activity, but because of the difference ofthe internal environments between chemical system and chemical mimic biologicalsystem, the results from this method usually do not match those of chemical simulatedbiological system. The latter contains AAPH-、Cu2+/GSH-and OH-induced DNAoxidation. This method overcomes the inadequacies of the chemical system method,still no objective quantitative criteria to evaluate the antioxidant activity.
     In this thesis, we combined two methods. The new method evaluates theantioxidant activities comprehensively and systematically. Chemical kinetic equationis introduced to both of the two methods, which provided quantitative criteria toevaluate antioxidant activity. The following is the main work:
     1. Studies on synthesis and antioxidant activities of ferrocenyl Schiff base
     We synthesized o-(1-Ferrocenylethylideneamino)phenol (OFP), m-(1-Ferrocen-ylethylideneamino)phenol (MFP) and p-(1-Ferrocenylethylideneamino)phenol (PFP),and determined antioxidant activities by using scavenging ABTS+and DPPH freeradicals methods and protect DNA against AAPH-、Cu2+/GSH-and OH-inducedoxidation methods.
     The ability of OFP to scavenge DPPH free radical is the highest, shows weekantioxidant activity in·OH-induced DNA oxidation and plays a pro-oxidant role inCu2+/GSH-induced DNA oxidation. The antioxidant abilities of MFP are not too highfor all the methods. PFP shows a high capability to scavenge ABTS+free radical,plays a pro-oxidant role in both·OH-, Cu2+/GSH-induced DNA oxidation. But PFPshows the highest activity in AAPH-induced DNA oxidation. And for this method, theantioxidant activities of OFP, MFP and PFP are higher than those of non-ferrocenylSchiff base, indicating that the ferrocenyl group could improve the antioxidantactivities.
     2. Studies on synthesis and antioxidant activities of homoisoflavonoids
     We synthesized3-(2′-hydroxybenzylidene)-7-methoxychroman-4-one (o-HBM-C),3-(3′-hydroxybenzylidene)-7-methoxychroman-4-one (m-HBMC) and3-(4′-hydr-oxybenzylidene)-7-methoxychroman-4-one (p-HBMC), determined antioxidantactivities by using scavenging ABTS+, DPPH and galvinoxyl free radicals methods,reducing peroxynitrite method, quenching singlet oxygen method, β-carotenebleaching test, protect methyl linoleate against AAPH-induced oxidation and protectDNA against AAPH-、Cu2+/GSH-and OH-induced oxidation methods.
     The ability of m-HBMC to scavenge ABTS+is the highest, and shows thestrongest ability in·OH-induced DNA oxidation. o-HBMC shows the highestantioxidant activities in scavenging DPPH and galvinoxyl free radical, β-carotenebleaching test, protect methyl linoleate and DNA against AAPH-induced oxidationassay. But it plays a pro-oxidant role in Cu2+/GSH-,·OH-induced DNA oxidation. And the capability of p-HBMC is higher than the other two on reducing peroxynitritemethod, quenching singlet oxygen method and protecting DNA againstCu2+/GSH-induced oxidation methods aspect.
     3. Studies on synthesis and antioxidant activities of triphenyl pyrazoles
     We synthesized1,3,5-triphenyl-1H-pyrazole (TPP),4-(1,5-diphenyl-1H-pyrazol-3-yl)phenol (APP),4-(1,3-diphenyl-1H-pyrazol-5-yl)phenol (BPP),4-(3,5-diphenyl-1H-pyrazol-1-yl)phenol (CPP), and determined antioxidant activities by usingscavenging ABTS+and DPPH free radicals methods, protect DNA against Cu2+/GSH-and OH-induced oxidation methods, protect DNA against AAPH-induced DNAoxidation in homogenous and micelle system.
     TPP is only sensitive to DPPH and ABTS+free radical, APP shows a highcapability to scavenge DPPH, but weak ability in other methods. The ability of BPP isquite high in any of the methods including protect DNA against AAPH-inducedoxidation in micelle system. And play a pro-oxidant role in protecting DNA against OH-induced oxidation methods. CPP has the same ability to APP.
引文
[1] Gomberg, M. An instance of trivalent carbon: triphenylmethyl[J]. J. Am. Chem.Soc.1900,22,757-771.
    [2] Harman, D. Aging: A theory based on free radical and radical and radiationchemistry [J]. J. Geron.1956,11,298-300.
    [3] McCord, J. M. and Fridovich, I. Superoxide dismutase: an enzymic function forerythrocuprein (hemocuprein)[J]. J. Biol. Chem.1969,244,6049-6055.
    [4]刘国艳.自由基的生物学效应及自由基清除系统的功能特性[J].上海交通大学学报(农业科学版).2002,20,93-96.
    [5] Harman, D. Free radical theory of aging: Nutritional implications[J]. Age.1978,1,145-152.
    [6] Sohal, R. S.; Sohal, B. H. and Orr, W. C. Mitochondrial superoxide and hydrogenperoxide generation, protein oxidative damage, and longevity in different offlies[J]. Free Radical Biol. Med.1995,19,499-504.
    [7] Siraki, A. G.; Pourahmad, J.; Chan, T. S.; Khan, S. and O’brien, P. J. Endogenousand endobiotic induced reactive oxygen species formation by isolatedhepatocytes[J]. Free Radical Biol. Med.2002,32,2-10.
    [8] Balaban, R. S.; Nimoto, S. and Finkel, T. Mitochondria, oxidants and aging[J].Cell2005,120,483-495.
    [9] Forman, H. J. and Torres, M. Reactive oxygen species and cell signalingrespiratory burst in macrophage signaling[J]. Am. J. Respir. Crit. Care Med.2002,166, S4-S8.
    [10]Fonseca-Silva, F.; Inacio, J. D. F.; Canto-Cavalheiro, M. M. and Almeida-Amaral,E.E. Reactive oxygen species production and mitochondrial dysfunctioncontribute to quercetin induced death in Leishmania amazonensis. PLoS ONE.2011,6, e14666.
    [11]Marshall, K. M.; Andjelic, C. D.; Tasdemir, D.; Concepción, G. P.; Ireland, C. M.and Barrows, L. R. Deoxyamphimedine, a pyridoacridine alkaloid, damages DNAvia the production of reactive oxygen species[J]. Mar. Drugs2009,7,197–209.
    [12]Sies, H. Oxidative stress: oxidants and antioxidants[J]. Exp. Physiol.1997,82,291–295.
    [13]Churg, A. Interactions of exogenous or evoked agents and particles: the role ofreactive oxygen species[J]. Free Radical Biol. Med.2003,34,1230–1235.
    [14]Bonner, J. C. Lung fibrotic responses to particle exposure[J]. Toxicol. Pathol.2007,35,148–153.
    [15]Cheng, Z. Y. and Li, Y. Z. What is responsible for the initiating chemistry ofiron-mediated lipid peroxidation: an update[J]. Chem. Rev.2007,107,748-766.
    [16]Stohs, S. J. and Bagchi, D. Oxidative mechanisms in the toxicity of metal ions[J].Free Radical Biol. Med.1995,18,321-336.
    [17]Min, B. and Ahn, D. U. Mechanism of lipid peroxidation in meat and meatproducts-A Review[J]. Food Sci. Biotechnol.2005,14,152-163.
    [18]Turrens, J. F. and Boveris, A. Generation of superoxide anion by the NADHdehydrogenase of bovine heart mitochondria[J]. Biochem. J.1980,191,421-427.
    [19]Thomas, M. J. The role of free radicals and antioxidants: How do we know thatthey are working?[J] Crit. Rev. Food Sci. Nutr.1995,35,21-39.
    [20]Balagopalakrishna, C.; Manoharan, P. T.; Abugo, O. O. and Rifkind, J. M.Production of superoxide from hemoglobin-bound oxygen under hypoxicconditions[J]. Biochemistry.1996,35,6393-6398.
    [21]Baron, C. P. and Andersen, H. J. Myoglobin-induced lipid peroxidation-Areview[J]. J. Agric. Food Chem.2002,50,3887-3897.
    [22]Sanders-Stephen, A.; Eisenthal, R. and Harrison, R. NADH oxidase activity ofhuman xanthine oxidoreductase: Generation of superoxide anion[J]. Eur. J.Biochem.1997,245,541-548.
    [23]Thomas, E. L.; Learn, D. B.; Jefferson, M. M. and Weatherred, W.Superoxide-dependent oxidation of extracellular reducing agents by isolatedneutrophils[J]. J. Biol. Chem.1988,263,2178-2186.
    [24]Mohora, M.; Greabu, M.; Muscurel, C.; Du, C. and Totan, A. The sources andthe targets of oxidative stress in the etiology of diabetic complications[J]. Rom. J.Biophys.2007,17,63–84.
    [25]Kanner, J. Oxidative processes in meat and meat products: Qualityimplications[J]. Meat Sci.1994,36,169-189.
    [26]Halliwell, B. and Gutteridge, J. M. C. Role of free radicals and catalytic metalions in human disease: An overview[J]. Methods Enzymol.1990,186,1-85.
    [27]Giulivi, C.; Hochstein, P. and Davies, K. J. A. Hydrogen peroxide production byred blood cells[J]. Free Radical Biol. Med.1994,16,123-129.
    [28]Chan, W. K. M.; Faustman, C.; Yin, M. and Decker, E. A. Lipid peroxidationinduced by oxymyoglobin and metmyoglobin with involvement of H2O2andsuperoxide anion[J]. Meat Sci.1997,46,181-190.
    [29]Halliwell, B. and Gutteridge, J. M. C. Oxygen radicals and the nervous system[J].Trends Neurosci.1985,79,22-26.
    [30]Lamba, O.P.; Borchman, D. and Garner, W. H. Spectral characterization of lipidperoxidation in rabbit lens membranes induced by hydrogen peroxide in thepresence of Fe2+/Fe3+cations: A site specific catalyzed oxidation[J]. Free RadicalBiol. Med.1994,16,591-601.
    [31]Pryor, W. A. Why is the hydroxyl radical the only radical that commonly adds toDNA? Hypothesis: It has a rare combination of high electrophilicity, highthermochemical reactivity, and a mode of production that can occur near DNA[J].Free. Radical Biol. Med.1988,4,219-223.
    [32]Bannister, J. V. and Thornalley, P. J. The production of hydroxyl radicals byadriamycin in red blood cells[J]. FEBS Lett.1983,157,170-172.
    [33]Joseph, J. M. and Aravindakumar, C. T. Determination of rate constants for thereactions of hydroxyl radicals with some purines and pyrimidines usingsunlight[J]. J. Biochem. Biophys. Methods.2000,42,115-124.
    [34]Floyd, R. A.; West, M. S.; Eneff, K. I.; Hogsett, W. E. and Tingey, D. T. Hydroxylfree radical mediated formation of8-hydroxyguanine in isolated DNA[J]. Arch.Biochem. Biophys.1988,262,266-272.
    [35]Swallow, A. J. Fundamental radiation chemistry of food components[M]. RoyalSoc. Chem.1984, pp:165-177.
    [36]Folkes, L. K.; Candeias, L. P. and Wardman, P. Kinetics and Mechanisms ofhypochlorous acid reactions[J]. Arch. Biochem. Biophys.1995,323,120-126.
    [37]Henglein, A. and Kormann, C. Scavenging of OH radicals produced in thesonolysis of water[J]. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.1985,48,251-258.
    [38]Karadag, A.; Ozcelik, B. and Saner, S. Review of methods to determineantioxidant capacities[J]. Food Anal. Methods.2009,2,41–60.
    [39]Kuimova, M. K.; Yahioglu, G. and Ogilby, P. R. Singlet oxygen in cell: spatiallydependent lifetimes and quenching rate constants[J]. J. Am. Chem. Soc.2009,131,332–340.
    [40]Singh, P. P.; Mahadi, F.; Roy, A and Sharma, P. Reactive oxygen species, reactivenitrogen species and antioxidants in etiopathogenesis of diabetes mellitustype-2[J]. Ind. J. Clinic. Biochem.2009,24,324–342.
    [41]Hyun, S. K.; Jug, H. A.; Chung, H. Y. and Choi, J. S. In vitro peroxynitritescavenging activity of6–hydroxykynurenic acid and other flavonoids fromGingko biloba yellow leaves[J]. Arch. Pharm. Res.2006,29,1074–1079.
    [42]Kothari, S.; Thompson, A.; Agarwal, A. and du Plessis, S. S. Free radicals: theirbeneficial and detrimental effects on sperm function[J]. Indian J. Exp. Biol.2010,48,425–435.
    [43]Bandyopadhyay, U.; Dipak Das, D. and Banerjee, R. K. Reactive oxygen species:oxidative damage and pathogenesis[J]. Curr. Sci.1999,77,658–666.
    [44]Halliwell, B. and Chirico, S. Lipid peroxidation: its mechanism, measurementand significance[J]. Am. J. Clin.1993,57,15S–25S.
    [45]Marnett, L. J. Lipid peroxidation-DNA damage by malondialdehyde[J]. Mutat.Res.1999,424,83–95.
    [46]Halliwell, B. The role of oxygen radicals in human disease, with particularreference to the vascular system[J]. Haemostasis1993,23,118–126.
    [47]Sevanian, A. and Hochstein, P. Mechanisms and consequences of lipidperoxidation in biological Systems[J]. Ann. Rev. Nutr.1985,5,365–390.
    [48]Carbiscol, E.; Tamarit, J. and Ros, J. Oxidative stress in bacteria and proteindamage by reactive oxygen species[J]. Internat. Microbiol.2000,3,3–8.
    [49]Devasagayam, T. P.; Steenken, S.; Obendorf, M.S.; W. A. Schulz, W. A. and Sies,H. Formation of8-hydroxy(deoxy)guanosine and generation of strand breaks atguanine residues in DNA by singlet oxygen[J]. Biochem.1991,30,6283–6289.
    [50]Moller, I. M.; Jensen, P. E. and Hansson, A. oxidative modifications to cellularcomponents in plants[J]. Annu. Rev. Plant Biol.2007,58,459–81.
    [51]Hallwell, B. How to characterize a biological antioxidant[J]. Free Radical Res.1990,9,1-32.
    [52]Kirkwood, T. B. L.and Austad, S. N. Why do we age?[J]. Nature2000,408,233-238.
    [53]Finkel, T. and Holbrook, N. J. Oxidants, oxidative stress and the biology ofageing[J]. Nature2000,408,239-247.
    [54]Rice-Evans, C. and Diplock, A. T. Current status of antioxidant therapy[J]. FreeRadical Biol. Med.1993,15,77-96.
    [55]Surh, Y. J. Cancer chemoprevention with dietary phytochemicals[J]. Nat. ReV.Cancer.2003,3,768-780.
    [56]Liu, Z. Q. Chemical Methods to evaluate antioxidant ability[J]. Chem. Rev.2010,110,5675-5691.
    [57]Treutter, D. Significance of flavonoids in plant resistance: a review[J]. Environ.Chem. Lett.2006,4,147-157.
    [58]Bagchi, M.; Milnes, M.; Williams, C.; Balmoori, J.; Ye, X. M.; Stohs, S. andBagchi, D. Acute and chronic stress-induced oxidative gastrointestinal injury inrats, and the protective ability of a novel grape seed proanthocyanidin extract[J].Nutr. Res.1999,19,1189–1199.
    [59]Podsedek, A. Natural antioxidants and antioxidant capacity of Brassica vegetables:A review[J]. LWT-food Sci. Technol.2007,40,1-11.
    [60]Block, G.; Jensen, C.; Dietrich, M.; Norkus, E. P.; Hudes, M. and Packer, L.Plasma C-reactive protein concentrations in active and passive smokers:Influence of antioxidant supplementation[J]. J. Am. Coll. Nutr.2004,23,141-147.
    [61]Rice-Evans, C. A.; Sampson, J.; Bramley, P. M. and Holloway, D. E. Why do weexpect carotenoids to be antioxidants in vivo[J]. Free Radical Res.1997,26,381-398.
    [62]Stampfer, M. J. and Rimm, E. B. Epidemiologic evidence for vitamin E inprevention of cardiovascular disease[J]. Am. J. Clin. Nutr.1995,62,1365-1369.
    [63]Mccord, J. M. Iron, free radicals and oxidative injury[J]. J. Nutr.2004,134,3171S–3172S.
    [64]Bandarraa, N. M.; Camposa, R. M.; Batistaa, I.; Nunes, L. M. and Empis, J. M.Antioxidant synergy of α-tocopherol and phospholipids[J]. J. Am. Oil Chem. Soc.1999,76,905–913.
    [65]Madhavi, D. L. Food Antioxidants: technological, toxicological, and healthperspectives food science and technology[M]. CRC press,1996, pp:6–70.
    [66]Somogyi, A.; Rosta, K.; Pusztai, P.; Tulassay, Z. and Nagy, G. Antioxidantmeasurements[J]. Physiol. Meas.2007,28, R41–R55.
    [67]Prior, R. L.; Wu, X. and Schaich, K. Standardized methods for the determinationof antioxidant capacity and phenolics in foods and dietary supplements[J]. J.Agric. Food Chem.2005,53,4290–4302.
    [68]Frankel, E. N. and Finley, J. W. How to standardize the multiplicity of methods toevaluate natural antioxidants[J]. J. Agric. Food Chem.2008,56,4901–4906.
    [69]Cao, G. and Prior, R. L. Comparison of different analytical methods for assessingtotal antioxidant capacity of human serum[J]. Clin. Chem.1998,44,1309–315.
    [70]Tarr, M. and Valenzeno, D. P. Singlet oxygen: the relevance of extracellularproduction mechanisms to oxidative stress in vivo[J]. Photochem. Photobiol. Sci.2003,2,355-361.
    [71]Braun, J. E. F., Wanamarta, B. A., van den Akker, E., Lafleur, M. V. M. and Retel,J. C/G to A/T transversions represent the main type of mutation induced byγ-irradiation in double-stranded M13mp10DNA in a nitrogen-saturatedsolution[J]. Mutat. Res.1993,289,255-263.
    [72]Hawkins, C. L., Brown, B. E. and Davies, M. J. Hypochlorite-andhypobromite-mediated radical formation and its role in cell lysis[J]. Arch.Biochem. Biophys.2001,395,137-145.
    [73]Aubry, J. M. Search for singlet oxygen in the decomposition of hydrogenperoxide by mineral compounds in aqueous solutions[J]. J. Am. Chem. Soc.1985,107,5844-5849.
    [74]Bisby, R. H. and Morgan, C. G. Quenching of singlet oxygen by trolox C,ascorbate, and amino acids: effects of pH and temperature[J]. J. Phys. Chem. A1999,103,7454-7459.
    [75]Maldonado, P. D.; Rivero-Cruz, I.; Mata, R. and Pedraza-Chaverri, J. Antioxidantactivity of A-type proanthocyanidins from Geranium niveum(Geraniaceae)[J]. J.Agric. Food Chem.2005,53,1996-2001.
    [76]Steenken, S. and Jovanovic, S. V. How easily oxidizable is DNA? One-electronreduction potentials of adenosine and guanosine radicals in aqueous solution[J]. J.Am. Chem. Soc.1997,119,617-618.
    [77]Yu, H. B.; Venkatarangan, L.; Wishnok, J. S. and Tannenbaum, S. R. Quantitationof four guanine oxidation products from reaction of DNA with varying doses ofperoxynitrite[J]. Chem. Res. Toxicol.2005,18,1849-1857.
    [78]Zhu, Q. Y.; Hackman, R. M.; Ensunsa, J. L.; Holt, R. R. and Keen, C. L.Antioxidative activities of oolong tea[J]. J. Agric. Food Chem.2002,50,6929-6934.
    [79]Uppu, R. M. and Pryor, W. A. Synthesis of peroxynitrite in a two-phase systemusing isoamyl nitrite and hydrogen peroxide[J]. Anal. Biochem.1996,236,242-249.
    [80]Yu, J.; Wang, L. M.; Walzem, R. L.; Miller, E. G.; Pike, L. M. and Patil, B. S.Antioxidant activity of citrus limonoids, flavonoids, and coumarins[J]. J. Agric.Food Chem.2005,53,2009-2014.
    [81]Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M. and Rice-Evans, C.Antioxidant activity applying an improved ABTS radical cation decolorizationassay[J]. Free Radical Biol. Med.1999,26,1231-1237.
    [82]Scott, S.L.; Chen, W. J.; Bakac, A. and Espenson, J. H. Spectroscopic parameters,electrode potentials, acid ionization constants, and electron exchange rates of the2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) radicals and ions[J]. J. Phys.Chem.1993,97,6710-6714.
    [83]De Beer, D.; Joubert, E. Gelderblom, W. C. A. and Manley, M. Antioxidantactivity of South African red and white cultivar wines: Free radical scavenging[J].J. Agric. Food Chem.2003,51,902-909.
    [84]Erel, O. A novel automated direct measurement method for total antioxidantcapacity using a new generation, more stable ABTS radical cation[J]. Clin.Biochem.2004,37,277-285.
    [85]Arts, M. J. T. J.; Haenen, G. R. M. M.; Voss, H. and Bast, A. Antioxidant capacityof reaction products limits the applicability of the trolox equivalent antioxidantcapacity(TEAC) assay[J]. Food Chem. Toxicol.2004,42,45-49.
    [86]Hotta, H.; Nagano, S.; Ueda, M.; Tsujino, Y.; Koyama, J. and Osakai, T. Higherradical scavenging activities of polyphenolic antioxidants can be ascribed tochemical reactions following their oxidation[J]. Biochim. Biophys. Acta.2002,1572,123-132.
    [87]Litwinienko, G. and Ingold, K. U. Abnormal Solvent Effects on Hydrogen AtomAbstraction.2. Resolution of the Curcumin Antioxidant Controversy. The Role ofSequential Proton Loss Electron Transfer[J]. J. Org. Chem.2004,69,5888-5896.
    [88]Litwinienko, G. and Ingold, K. U. Solvent effects on the rates and mechanisms ofreaction of phenols with free radicals[J]. Acc. Chem. Res.2007,40,222-230.
    [89]Abraham. M. H.; Grellier, P. L.; Prior, D. V.; Taft, R. W.; Morris, J. J.;Taylor, P. J.;Laurence, C.; Berthelot, M. and Doherty, R. M. A general treatment of hydrogenbond complexation constants in tetrachloromethane[J]. J. Am. Chem. Soc.1988,110,8534-8536.
    [90]Klatt, P. and Esterbauer, H. Oxidative hypothesis of atherogenesis[J]. J.Cardiovasc. Risk.1996,3,346-351.
    [91]Bowry, V. W.; Ingold, K. U. and Stocker, R. Vitamin E in human low-densitylipoprotein. When and how this antioxidant becomes a pro-oxidant[J]. Biochem. J.1992,288,341-344.
    [92]Bowry, V. W.; Mohr, D.; Cleary, J. and Stocker, R. Carbohydrates, lipids, andother natural products prevention of tocopherol-mediated peroxidation inubiquinol-10-free human low density lipoprotein[J]. J. Biol. Chem.1995,270,5756-5763.
    [93]Jialal, I. Vega, G. L. and Grundy, S. M. Physiologic levels of ascorbate inhibit theoxidative modification of low density lipoprotein[J]. Atherosclerosis.1990,82,185-191.
    [94]Dahle, L. K.; Hill, E. G. and Holman, R. T. The thiobarbituric acid reaction andautoxidations of polyunsaturated fatty acid methyl esters[J]. Arch. Biochem.Biophys.1962,98,253-261.
    [95]Johnson, P. H. and Grossman, L. I. Electrophoresis of DNA in agarose gels.Optimizing separations of conformational isomers of double-and single-strandedDNAs[J]. Biochemistry.1977,16,4217-4225.
    [96]Zheng, L. F.; Dai, F.; Zhou, B.; Yang, L. and Liu Z. L. Prooxidant activity ofhydroxycinnamic acids on DNA damage in the presence of Cu(II) ions:Mechanism and structure-activity relationship[J]. Food Chem. Toxicol.2008,46,149-156.
    [97]Guo, B.; Yuan, Y.; Wu, Y. H.; Xie, Q. J. and Yao, S. Z. Assay and analysis foranti-and pro-oxidative effects of ascorbic acid on DNA with the bulk acousticwave impedance technique[J]. Anal. Biochem.2002,305,139-148.
    [98]Lewis, J. G.; Stewart, W. and Adams, D. O. Role of oxygen radicals in inductionof DNA damage by metabolites of benzene[J]. Cancer Res.1988,48,4762-4765.
    [99]Li, Y. B. and Trush, M. A. DNA damage resulting from the oxidation ofhydroquinone by copper: role for a Cu(II)/Cu(I) redox cycle and reactive oxygengeneration[J]. Carcinogenesis.1993,14,1303-1311.
    [100] Reed, C. J. and Douglas, K. T. Chemical cleavage of plasmid DNA byglutathione in the presence of Cu(II) ions. The Cu(II)-thiol system for DNAstrand scission[J]. Biochem. J.1991,275,601-608.
    [101] Janicek, M. F.; Haseltine, W. A. and Henner, W. D. Malondialdehydeprecursors in gamma-irradiated DNA, deoxynucleotides and deoxynucleosides[J].Nucleic Acids Res.1985,13,9011-9029.
    [102] Zhang, P. and Omaye, S. T. DNA strand breakage and oxygen tension: effectsof β-carotene, α-tocopherol and ascorbic acid[J]. Food Chem. Toxicol.2001,39,239-246.
    [103] Zhao, F.; Liu, Z. Q. and Wu D. Antioxidative effect of melatonin on DNAand erythrocytes against free-radical-induced oxidation[J]. Chem. Phys. Lipids.2008,151,77-84.
    [104] Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. TheStructure of iron Bis-Cyclopentadienyl[J]. J. Am Chem Soc.1952,74,2125-2126.
    [105] Fischer, E. O.; Pfab, W. Cyclopentadien-Metallkomplexe, ein neuer typmetallorganischer Verbindungen[J]. Zeitschrift fur Naturforschung B.1952,7,377-379.
    [106] Kopf-Maier P.; Kopf H.; Neuse E. W. Ferrocenium salts—the firstantineoplastic iron compounds[J]. Angew. Chem. Int. Ed. Engl.1984,23,456-457.
    [107] Kovacic, P. Unifying mechanism for anticancer agents involving electrontransfer and oxidative stress: Clinical implications[J]. Med. Hypotheses.2007,69,510-516.
    [108] Hurvois, J. P.; Moinet, C. Reactivity of ferrocenium cations with molecularoxygen in polar organic solvents: Decomposition, redox reactions andstabilization[J]. J. Organomet. Chem.2005,690,1829-1839.
    [109] Liu, Z. Q. Potential applications of ferrocene as a structural features inantioxidants[J]. Mini-Rev. Med. Chem.2011,11,345-358.
    [110] Tang, Y. Z.; Liu, Z. Q. Free-radical-scavenging effect of carbazolederivativeson DPPH and ABTS radicals[J]. J. Am. Oil Chem. Soc.2007,84,1095–1100.
    [111] Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M. and Rice-Evans,C. Antioxidant activity applying an improved ABTS radical cation decolorizationassay[J]. Free radical Biol. Med.1999,26,1231-1237.
    [112] Oikawa, S.; Murakami, K. and Kawanishi, S. Oxidative damage to cellularand isolated DNA by homocysteine: implications for carcinogenesis[J]. Oncogene.2003,22,3530-3538.
    [113] Yim, S. K.; Yun, S. J. and Yun, C. H. A continuous spectrophotometric assayfor NADPH-cytochrome P450reductase activity using1,1-diphenyl-2-picrylhydrazyl[J]. J. Biochem. Mol. Biol.2004,37,629-633.
    [114] Musialik, M. and Litwinienko, G. Scavenging of dpph. radicals by vitamin Eis accelerated by its partial ionization: the role of sequential proton loss electrontransfer[J]. Org. Lett.2005,7,4951-4954.
    [115] Leopold, J. A. and Loscalzo, J. Oxidative risk for atherothromboticcardiovascular disease[J]. Free Radical Biol. Med.2009,47,1673-1706.
    [116] Jain, A.; Alvi, N. K.; Parish, J. H. and Hadi, S. M. Oxygen is not required fordegradation of DNA by glutathione and Cu(II)[J]. Mutat. Res.1996,357,83-88.
    [117] Prütz, W. A. Interaction between glutathione and Cu(II) in the vicinity ofnucleic acids[J]. Biochem. J.1994,302,373-382.
    [118] Zhu, B. Z.; Kitrossky, N. and Chevion, M. Evidence for production ofhydroxyl radicals by pentachlorophenol metabolites and hydrogen peroxide: Ametal-independent organic Fenton reaction[J]. Biochem. Biophys. Res. Commun.2000,270,942-946.
    [119] Aeschbach, R.; Loliger, J.; Scott, B. C.; Murcia, A.; Butler, J.; Halliwell, B.and A-ruoma, O. I. Antioxidant actions of thymol, carvacrol,6-gingerol,zingerone and hydroxytyrosol[J]. Food Chem. Toxicol.1994,32,31-36.
    [120] Li, G. X. and Liu, Z. Q. Unusual antioxidant behaviors of alpha-andgamma-terpinene in protecting methyl linoleate, DNA and erythrocyte[J]. J. Agric.Food Chem.2009,57,3943-3948.
    [121] Zennaro, L.; Rossetto, M.; Vanzani, P.; Marco, V. D.; Scarpa, M.; Battistin, L.and Rigo, A. A method to evaluate capacity and efficiency of water solubleantioxidants as peroxyl radical scavengers[J]. Arch. Biochem. Biophys.2007,462,38-46.
    [122] Antolovich, M.; Prenzler, P. D.; Patsalides, E.; McDonald, S. and Robards, K.Methods for testing antioxidant activity[J]. Analyst2002,127,183-198.
    [123] Bowry, V. W. and Stocker, R. Tocopherol-mediated peroxidation: theprooxidation effect of vitamin E on the radical-initiated oxidation of humanlow-density lipoprotein[J]. J. Am. Chem. Soc.1993,115,6029-6044.
    [124] Zhao, F. and Liu, Z. Q. The protective effect of hydroxyl-substituted Schiffbases on the radical-induced oxidation of DNA[J]. J. Phys. Org. Chem.2009,22,791-798.
    [125] Mota, K. S. D.; Dias, G. E. N.; Pinto, M. E. F.; Liuz-Ferreira, A.; Souza-Brito,A. R. M.; Hiruma-Lima, C. A.; Barbosa-Filho, J. M.; Batista, L. M. Flavonoidswith gastroprotective activity[J]. Molecules.2009,14,979-1012.
    [126] Stevenson, D. E.; Hurst, R. D. Polyphenolic phytochemicals–justantioxidants or much more[J]? Cell. Mol. Life Sci.2007,64,2900-2916.
    [127] Tian, L.; Pang, Y.; Dixon, R. A. Biosynthesis and genetic engineering ofproanthocyanidins and (iso)flavonoids[J]. Phytochem. Rev.2008,7,445-465.
    [128] Bovicelli, P.; D’Angelo, V.; Collalto, D.; Verzina, A.; D’Antona, N.;Lambusta, D. Efficint synthesis of polyoxygenated flavones from naturallyoccurring flavanones[J]. J. Pharm. Pharmacol.2007,59,1697-1701.
    [129] Barve, V.; Ahmed, F.; Adsule, S.; Banerjee, S.; Kulkarni, S.; Katiyar, P.;Anson, C. E.; Powell, A. K.; Padhye, S.; Sarkar, F. H. Synthesis, molecularcharacterization, and biological activity of novel synthetic derivatives ofchromen-4-one in human cancer cells[J]. J. Med. Chem.2006,49,3800-3808.
    [130] Siddaiah, V.; Rao, C. V.; Venkateswarlu, S.; Krishnaraju, A. V.; Subbaraju, G.V. Synthesis, stereochemical assignments, and biological activities ofhomoisoflavonoids[J]. Bioorg. Med. Chem.2006,14,2545-2551.
    [131] Severino, J. F.; Goodman, B. A.; Kay, C. W. M.; Stolze, K.; Tunega, D.;Reichenauer, T. G.; Pirker, K. F. Free radicals generated during oxidation of greentea polyphenols: electron paramagnetic resonance spectroscopy combined withdensity functional theory calculations[J]. Free Radical Biol. Med.2009,46,1076-1088.
    [132] Lin, L. G.; Xie, H.; Li, H. L.; Tong, L. J.; Tang, C. P.; Ke, C. Q.; Liu, Q. F.;Lin, L. P.; Geng, M. Y.; Jiang, H.; Zhao, W. M.; Ding, J.; Ye, Y. Naturallyoccurring homoisoflavonoids function as potent protein tyrosine kinase inhibitorsby c-Src-based high-throughput screening[J]. J. Med. Chem.2008,51,4419–4429.
    [133] Delazar, A.; Sabzevari,A.; Mojarrab,M.; Nazemiyeh, H.; Esnaashari, S.;Nahar, L.; Razavi, S. M.; Sarker, S. D. Free-radical-scavenging principles fromPhlomis caucasica[J]. J. Nat. Med.2008,62,464–466.
    [134] Bobrov, M. Y.; Lizhin, A. A.; Andrianova, E. L.; Gretskaya, N. M.; Frumkina,L. E.; Khaspekov, L. G.; Bezuglov, V. V. Antioxidant and neuroprotectiveproperties of N-arachidonoyldopamine. Neurosci. Lett.2008,431,6–11.
    [135] Li, G.-X.; Liu, Z.-Q. Unusual antioxidant behavior of α-and γ-terpinene inprotecting methyl linoleate, DNA, and erythrocyte[J]. J. Agric. Food Chem.2009,57,3943-3948.
    [136] Boas, U. and Heegaard, P. M. H. Dendrimers in drug research[J]. Chem. Soc.Rev.2004,33,43-63.
    [137] Stiriba, S. E.; Frey, H. and Haag, R. Dendritic polymers in biomedicalapplications: From potential to clinical use in diagnostics and therapy[J]. Angew.Chem. Int. Ed.2002,41,1329-1334.
    [138] Astruc, D.; Boisselier, E. and Omelas, C. Dendrimers designed for functions:from physical, photophysical, and supramolecular properties to applications insensing, catalysis, molecular electronics, photonics, and nanomedicine[J]. Chem.Rev.2010,110,1857-1959.
    [139] Lee, C. Y.; Sharma, A.; Cheong, J. E. and Nelson, J. L. Synthesis andantioxidant properties of dendritic polyphenols[J]. Bioorg. Med. Chem. Lett.2009,19,6326-6330.
    [140] Lee, C. Y.; Sharma, A.; Uzarski, R. L.; Cheong, J. E.; Xu, H.; Held, R. A.;Upadhaya, S. K. and Nelson, J. L. Potent antioxidant dendrimers lackingpro-oxidant activity[J]. Free Radical Biol. Med.2011,50,918-925.
    [141] Riyadh, S. M.; Farghaly, T. A.; Abdallah, M. A.; Abdalla, M. M. and AbdEl-Aziz, M. R. New pyrazoles incorporating pyrazolypyrazole moiety: synthesis,anti-HCV and antitumor activity[J]. Eur. J. Med. Chem.2010,45,1042-1050.
    [142] Bandgar, B. P.; Gawande, S. S.; Bodade, R. G.; Gawande, N. M. andkhobragade, C. N. Synthesis and biological evaluation of a novel series ofpyrazole chalcones as anti-inflammatory, antioxidant and antimicrobial agents[J].Bioorg. Med. Chem.2009,17,8168-8173.
    [143] Schwarz, K.; Frankel, E. N. and German, J. B. Partiton behaviour ofantioxidative phenolic compounds in heterophasic system[J]. Eur. J. Lipid Sci.Tech.1996,98,115–121.
    [144] St ckmann, H.; Schwarz, K. and Huynh-Ba, T. The influence of variousemulsifiers on the partitioning and antioxidant activity of hydroxybenzoic acidand their derivatives in oil-in-water emulsions[J]. J. Am. Oil Chem. Soc.2000,77,535–542.
    [145] Liu, W. Y. and Guo, R. Effects of Triton X-100nanoaggregates ondimerization and antioxidant activity of morin[J]. Mol. Pharm.2008,5,588-597.
    [146] Jiang, N.; Li, P. X.; Wang, Y. L.; Wang, J. B.; Yan, H. K. and Thomas, R. K.Micellization of cationic gemini surfactants with various counterions and theirinteraction with DNA in aqueous solution[J]. J. Phys. Chem. B.2004,108,15385-15391.
    [147] Li, Y. J.; Wang, X. Y. and Wang, Y. L. Comparative studies on interactions ofbovine serum albumin with cationic gemini and single-chain surfactants[J]. J.Phys. Chem. B.2006,110,8499-8505.
    [148] Wang, X. L.; Zhang, X. H.; Cao, M. W.; Zheng, H. Z.; Xiao, B.; Wang, Y. L.and Li, M. Gemini surfactant-induced DNA condensation into a beadlikestructure[J]. J. Phys. Chem. B.2009,113,2328–2332.
    [149] Deng, M. L.; Cao, M. W. and Wang, Y. L. Coacervation of cationic geminisurfactant with weakly charged anionic polyacrylamide[J]. J. Phys. Chem. B.2009,113,9436–9440.
    [150] Wang, W. X.; He, Y. F.; Shang, Y. Z. and Liu, H. L. Interaction between thegemini surfactant (12-6-12) and DNA[J]. Acta Phys-Chim. Sin.2011,27:156-162.
    [151] Li, Z. L.; Ma, L. P.; Liu, Y. C. and Liu, Z. L. Microenvironmental effect inthe synergistic antioxidation of β-carotene and α-tocopherol. Chem. J. Chinese U.1997,18,1814-1819.
    [152] Liu, W. Y. and Guo, R. Interaction of flavonoid, quercetin with organizedmolecular assemblies of nonionic surfactant. Colloids Surf. A.2006,274,192-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700