灰树花子实体富硒及其硒多糖的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硒(Se)是人体必需的微量元素,是重要含硒酶(谷胱甘肽过氧化物酶和硫氧还蛋白还原酶等)的必需组分,具有提高机体免疫能力、抗肿瘤、缓解体内重金属蓄积、抗衰老和防止心血管疾病等活性。人体缺硒会导致免疫能力下降、癌症、克山病和大骨节病等的发生,危害人体健康,但日常膳食不能满足人体对硒的最低需要,因此硒的营养补充尤为重要。研究表明,食用菌具有很好的富硒能力,但由于栽培基质缺硒,导致食用菌中的含硒量低,因此采用人工富硒方式增加栽培基质硒含量或菌面喷施无机硒,是获得富硒食用菌子实体行之有效的方法。灰树花(Grifola frondosa, Maitake)隶属担子菌纲,多孔菌目,多孔菌科,树花属,是一种药食两用真菌,多糖是其主要活性物质,具有增强免疫、抗肿瘤、抗氧化等活性,灰树花子实体富硒后,其硒多糖兼具硒和多糖的活性,具有重要的研究价值和应用前景,而目前关于灰树花子实体富硒及其硒多糖的研究鲜见报道。本文通过富硒栽培,获得富硒灰树花子实体,研究其中硒的主要赋存形式;采用DEAE-52和Sephacryl S-400对富硒灰树花子实体粗硒多糖进行分离和纯化,获得富硒灰树花子实体硒多糖组分(Se-GP11),并采用HPLC、GC、GC-MS、 NMR、AFM、TEM及CD等现代分析手段对其进行全面结构分析;采用Heps荷瘤小鼠模型,研究Se-GP11的体内抗肿瘤活性、对5-氟尿嘧啶(5-Fu)的减毒作用及其免疫机制,为富硒灰树花子实体及其硒多糖在食品和医药领域中的应用提供依据,该研究对人类健康和社会发展具有重要意义。本文主要研究内容如下:
     (1)灰树花子实体富硒及其硒的赋存形式研究。建立了富硒灰树花子实体中硒含量的氢化物-原子荧光光谱测定方法,最佳检测条件为:灯电流80mA、负高压280V、载流盐酸浓度10%、硼氢化钠浓度1.0%;采用菌面和拌料施硒两种种植方式对灰树花进行富硒研究,结果表明菌面喷施亚硒西酸钠5.785mg/段和袋料拌施57.143mg/段时,其富硒的效果较好,产量分别为28和24g/段,有机硒含量为11.98和20.36μg/g,分别占总硒的87.19%和61.51%,说明菌面喷施硒的富硒效果优于袋料拌硒,其有机硒含量是未富硒灰树花子实体的98.81倍,因此富硒灰树花子实体粉可以作为硒营养强化剂;研究了富硒灰树花子实体中硒的赋存形式,结果表明硒多糖和硒蛋白是富硒灰树花子实体中硒的主要赋存形式,分别占有机硒的13.68%和57.52%。
     (2)富硒灰树花子实体粉及其粗硒多糖的抗肿瘤活性和经口急性毒性研究。采用Heps和Lewis荷瘤小鼠模型,比较了富硒灰树花子实体粉及其粗硒多糖与未富硒灰树花子实体粉的体内抗肿瘤活性,结果表明,三者对Heps荷瘤小鼠的效果优于Lewis荷瘤小鼠,其中粗硒多糖的抑瘤活性最好,抑瘤率达20.63%(环磷酰胺(CTX)阳性对照组为36.26%),其次为富硒灰树花子实体粉,未富硒灰树花子实体粉最低,仅为1.92%;小鼠经口急性毒性研究表明,富硒灰树花子实体粉及其粗硒多糖属于实际无毒级,其经口LD50均大于15.1g/kg b.w..
     (3)富硒灰树花子实体硒多糖的提取、分离纯化及结构鉴定。采用响应面分析法(RSM)研究富硒灰树花子实体粗硒多糖的提取工艺,最佳提取工艺条件为:提取温度100℃、提取时间2.6h、料液比1:34.7,该工艺条件下富硒灰树花子实体粗硒多糖得率为15.37%,粗多糖含量为48.68%;采用DEAE-52, Sephacryl S-400对富硒前后灰树花子实体粗多糖进行分离纯化,两者皆获得了3个多糖组分,除硒含量外,其多糖含量、分子量和单糖组成均无显著差异,其中富硒及未富硒灰树花多糖水洗纯化硒多糖组分Se-GP11和多糖组分GP11的量较多;红外分析表明Se-GP11和GP11表现为相同的特征吸收峰,富硒后使得吡喃糖环上的3个特征峰发生了红移,因此硒可能是以Se-H键的形式存在于Se-GP11的支链上;通过甲基化、GC-MS、1H NMR、13C NMR、1H-1H COSY谱、HSQC谱和HMBC谱等分析手段对Se-GP11的一级化学结构进行解析,确定其一级结构的重复单元为:采用CD、激光粒度测定、AFM和TEM等方法对Se-GP11的构象及分子形貌进行研究。CD谱研究表明,温度、离子强度、pH和络合物等环境条件改变均影响其立体构象及非对称性;激光粒度测定结果表明,Se-GP11粒度分布较均匀,粒径为690nm,分散度为0.208;AFM观察发现,温度改变了Se-GP11形貌,常温下Se-GP11多糖分子链纵横交错,形成立体多层网状,加热处理冷却后,Se-GP11清晰的链结构发生了变化,有形成不规则聚集体的趋势;TEM观察发现Se-GP11在水溶液中聚结成网络状。
     (4) Se-GP11的抗肿瘤活性及其对5-Fu的减毒作用研究。采用Heps荷瘤小鼠模型,考察Se-GP11的体内抗肿瘤活性及其对5-Fu的减毒作用。结果表明,Se-GP11活性显著高于GP11,在剂量为54mg/kg时,Se-GP11的抑制率达64.38%,接近5-Fu阳性对照组的抑瘤率(68.58%);Se-GP11可显著提高荷瘤小鼠胸腺指数、血清中IL-2和TNF-α水平,外周血白细胞的数量,肝脏的SOD活力,可使血清中AST水平恢复正常,降低肝脏中MDA水平;对5-Fu的减毒研究表明,Se-GP11效果显著好于GP11, Se-GP11可明显对抗5-Fu所引起的小鼠免疫器官指数、外周血白细胞数量的减少和机体TNF-α、IL-2水平的降低,此外,Se-GP11对5-Fu所引起的肝损伤具有一定的改善作用。可见,Se-GP11具有较好的抗肿瘤和对5-Fu的减毒作用,效果优于GP11且对机体无毒。
     (5) Se-GP11抗肿瘤免疫机制研究。以腹腔巨噬细胞RAW264.7为研究对象,研究了Se-GP11对腹腔巨噬细胞的免疫调节机制。结果表明,Se-GP11可显著提高RAW264.7中性红吞噬能力,效果优于GP11; MTT实验结果表明,1000μg/mL的Se-GP11对RAW264.7细胞无明显的毒性作用;经Se-GP11诱导的RAW264.7细胞及其上清液均可显著抑制HepG-2细胞的增殖且Se-GP11的活性高于GP11; Se-GP11可显著提高RAW264.7细胞释放NO, TNF-a和IL-1β的能力且显著高于GP11;Western blot和RT-PCR法研究表明,Se-GP11可显著上调iNOS蛋白、iNOS和TNF-α mRNA的表达,且其表达量显著高于GP11,说明Se-GP11的免疫调节功能显著高于GP11;抗体阻断结果表明明,TLR-4和TLR-2抗体可显著阻断Se-GP11诱导RAW264.7细胞分泌NO和TNF-α。表明Se-GP11通过受体TLR-4和TLR-2激活巨噬细胞,促进细胞因子蛋白和基因的表达,从而提高机体的免疫功能,是其免疫激活机理之一。
Selenium (Se) is an essential element and important part of Se-contained enzymes (glutathione peroxidase, thioredoxin redutase and so on). It has many bio-activities, such as improving of immunity, anti-oxidant, anti-virus and antagonistic accumulation of heavy metals and so on. Deficiency of Se endangers human health and leads to various clinical consequence, including Keshan disease, Kashin Beck disease, cardiovascular disease and diabetes. It was reported that edible fungus has good Se accumulation ability, whereas, the Se content is very low due to lack of Se in the culture medium. Therefore, the artifical way to increase Se in plant medium or spraying Se at the growth stage of fungus is an effective method to gain Se-enriched fungus. Grifola frondosa (Basidiomycetes, Aphyllophorales, Polyporaceae) is a kind of edible and medicinal mushroom. Polysaccharide is the main bioactive compound with diverse biological activities, such as enhancing immunity, anti-tumor and anti-oxidant and so on. The Se polysaccharide from Se-enriched G. frondosa (Se-GF) has both the activities of Se and polysaccharide. It has important research value and application prospect. To our best knowledge, there is little study on Se accumulation of G. frondosa and it Se-polysaccharide (Se-GP). In this study, the optimal method for G. frondosa accumulation of Se was obtained and the Se distribution in Se-GF was studied. Three homogenous Se-GPs polysaccharides (Se-GP11, Se-GP22and Se-GP33) from Se-GF were obtained via DEAE-52and Sephacryl S-400purification and the structure of Se-GP11was comprehensively analyzed by GC-MS, NMR, CD, AFM and other advanced analytical methods. The anti-tumor activity, toxicity attenuation effect to5-Fluorouracil (5-Fu) and immunomodulatory mechanism of Se-GP11were investaged systematically. This study will provide the basis for the application of Se-GF and Se-GP in the fields of food and medicine. It has important significance for human health and social development. The main researches content are given bellow:
     (1) To study on the G. frondosa accumulation of Se and the distribution Se. The hydride generation atomic fluorescence method for Se test was established and the optimal condition is lamp current (80mA), minus high voltage (280V), hydrochloride concentration (10%) and sodium borohydride concentration (1%). Spraying Se (5.785mg/kg) at the growth stage of G. frondosa is the effective way to obtain Se-GF. The organic Se content of Se-GF11.98μg/g, which is98.81times of G. frondosa, account for87.19%of the total Se. Therefore, Se-enriched G. frondosa can used as an Se nutrition fortifier. Se-polysaccharide and Se-protein are two main form of Se in Se-GF, accounted for13.68%and57.52%, respectively.
     (2) To study the anti-tumor activity and acute oral toxicity of Se-GF and its Se-GP. Heps and Lewis tumor bearing mice were applied to study the anti-tumor activity of Se-GF, Se-GP and G. frondosa (GF). The results indicated that all of them given better effect on Heps than Lewis. The Se-GP show best activity and the inhibition rate reach to20.63%(Cyclophosphamide(CTX) is36.26%), followed by Se-GF, GF(only1.92%) is the lowest. Both Se-GF and Se-GP belong to actually non-toxic grade and the oral LD50is greater than15.1g/kg b.w.
     (3) Isolation, purification and characterization of Se-GP were studied. Se-GP was obtained from Se-GF using response surface method (RSM) method and compared to G. frondosa polysaccharide (GP) for their preliminary characterization. Under optimal condition, the yield of Se-GP is15.37%. Three homogenous Se-GPs (Se-GP11, Se-GP22and Se-GP33) and GPs (GP11, GP22and GP33) were obtained via DEAE-52and Sephacryl S-400purification. Their molecular weight, polysaccharide content and IR spectrum were not obviously different except for the Se content. To clarify the structure of Se-GP11by methylation, GC-MS, NMR. The predicted primary structure of Se-GP11was given bellow: The advanced structure of Se-GP11was studied by CD, AFM, TEM and so on. CD spetrum of Se-GP11changed significantly with the change of external condition (temperature, pH value and ion intensity etc). The laser particle study of Se-GP11distribute uniformly with particle diameter690nm and polydisoersity0.208. The results of AFM indicate that the polysaccharide molecules chain of Se-GP11is arranged in a crisscross pattern at room temperature. However, after heat treatment, the clear chain structure of Se-GP11changed and has irregular aggregates trend. The result of SEM revealed that the Se-GP11in water solution coalesce into network.
     (4) The HepG-2mouse tumor model is established to study the anti-tumor activity, attenuation to5-Fu on tumor bearing mice of Se-GP11. The activity of Se-GP11is signigicantly higher than GP11. The inhibition rate of Se-GP11was64.38%at the dose of54mg/kg, which is near to5-Fu (68.58%). Se-GP11increased the thymus index, raised the production of TNF-a and IL-2in serum, ameliorated the5-Fu induced toxicity effect on body weight loss, regained changes in hepatic biochemical and hematological parameters, and protected the effect against5-Fu induced oxidation damage.
     (5) To study the immunomodulatory mechanism of Se-GP11. Compared to the control group, the phagocytic activity was significantly enhanced in Se-GP11-treated murine macrophage RAW264.7cells, and higher than that of GP11. When RAW264.7cells were treated with Se-GP11, cytotoxic activity against HepG-2was significantly induced, and higher than that of GP11. Moreover, Se-GP11increase the level of TNF-α and IL-1β and the production of NO in dose-dependent manner, and higher than that of GP11. In addition, western blot and RT-PCR analysis suggest Se-GP11promoted the expression of iNOS protein, iNOS and TNF-a mRNA. The expression is significantly higher than that of GP11, indicating the immune function of Se-GP11is better than GP11. TLR-2/4is a possible receptor for Se-GP11-or GP11-mediated macrophage activation for function blocking antibodies to TLR-2/4, markely suppressed Se-GP11-or GP11-mediated TNF-a and NO production. The data suggest that stimulating macrophage via TLR-2/4, promoting the expression of cytokine protein and gene, and then improving the immune function is one of the immune activation mechanisms of Se-GP11.
引文
1. Kieliszek M, Blazejak S:Selenium. Significance, and outlook for supplementation. Nutrition 2013,29(5):713-718.
    2. Berry MJ. Insights into the hierarchy of selenium incorporation. Nature 2005, 37:1162-1163.
    3. Santhosh Kumar B, Priyadarsini KI. Selenium nutrition:How important is it? Biomedicine & Preventive Nutrition (0).
    4. Li N, Gao Z, Luo D, Tang X, Chen D, Hu Y. Selenium level in the environment and the population of Zhoukoudian area, Beijing, China. Science of The Total Environment 2007,381 (1-3):105-111.
    5. Qin H. B., Zhu J. M., Liang L., Wang M. S., H. S. The bioavailability of selenium and risk assessment for human selenium poisoning in high-Se areas, China. Environment International 2013,52:66-74.
    6. 李娜,高志东,罗德刚,唐迅,陈大方,胡永华.北京周口店地区环境硒含量及居民血清硒水平分析.首都公共卫生 2007,1:13-17.
    7. Matsui K, Kodama N, Nanba H. Effects of Maitake (Grifola frondosa) D-Fraction on the carcinoma angiogenesis. Cancer Letters 2001, 172(2):193-198.
    8. Kodama N, Murata Y, Asakawa A, Inui A, Hayashi M, Sakai N, Nanba H: Maitake D-Fraction enhances antitumor effects and reduces immunosuppression by mitomycin-C in tumor-bearing mice. Nutrition 2005, 21(5):624-629.
    9. Schwarz K., C F:Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. Journal of the American Chemical Society 1957, 79:3292-3293.
    10.夏弈明.中国人体硒营养研究回顾.营养学报2011,33:329-334.
    11.周鑫斌,施卫明,王校常,李保海,杨林章.江苏省苏南村镇居民硒硒营养水平评价.土壤 2007,39:541-544.
    12. Combs Jr GF, Clark LC, BW. T, Biofactors. An analysis of cancer prevention byselenium.2001,14(1-4):153-159.
    13. Reid ME, Duffield-Lillico AJ, Slate E, Natarajan N, Turnbull B, Jacobs E. The nutritional prevention of cancer:400 mcg per day selenium treatment. Nutr Cancer 2008,60(2):155-163.
    14. Combs Jr GF, Clark LC, BW. T. Reduction of cancer mortality andincidence by selenium supplementation. Med Klin (Munich) 1997,92(Suppl.3):42-45.
    15. Hurst R, Hooper L, Norat T, Lau R AD, DC. G Selenium and prostate cancer: systematic review and meta-analysis. Am J Clin Nutr 2012,96(1):111-122.
    16. Clark LC, Combs Jr GF, Turnbull BW, Slate EH, Chalker DK, Chow J. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin.A randomized controlled trial. Nutritional Preventionof Cancer Study Group. JAMA 1996,276(24):1957-1963.
    17. Bardia A, Tleyjeh IM, Cerhan JR, Sood AK, Limburg PJ, Erwin PJ. Efficacy of antioxidant supplementation in reducing primary cancer incidence and mortality:systematic review and meta-analysis. Mayo Clin Proc 2008, 83(1):23-34:23-34.
    18. Hurst R, Hooper L, Norat T, Lau R, Aune D, Greenwood DC. Selenium and prostate cancer:systematic review and meta-analysis. Am J Clin Nutr 2012, 96(1):111-122.
    19. Jayaprakash V, Marshall JR. Selenium and other antioxidants for chemoprevention of gastrointestinal cancers. Best Practice & Research Clinical Gastroenterology 2011,25(4-5):507-518.
    20. Chiu S-T, Hsieh S-L, Yeh S-P, Jian S-J, Cheng W, Liu C-H. The increase of immunity and disease resistance of the giant freshwater prawn, Macrobrachium rosenbergii by feeding with selenium enriched-diet. Fish & Shellfish Immunology 2010,29(4):623-629.
    21. Hawkes WC, Kelley DS, PC. T. The effects of dietary selenium on theimmune system in healthy men.Biol Trace Elem Res 2001,81(3):189-213.
    22. Roy M, Kiremidjian-Schumacher L, Wishe HI, Cohen MW, G. S. Supple-mentation with selenium restores age-related decline in immune cellfunction. Proc Soc Exp Biol Med 1995,209(4):369-375.
    23. Roy M, Kiremidjian-Schumacher L, Wishe HI, Cohen MW, G. S. Supple-mentation with selenium and human immune cell functions. Biol Trace Elem Res 1994,41(1-2):103-114.
    24. MP. R. The importance of selenium to human health. Lancet 2000, 356(9225):233-241.
    25. Wood B, Yosioka D, Watson. beta-Carotene and selenium supplementation enhances immune response in aged humans. Integr Med 2000,2(2):85-92.
    26. Broome CS, McArdle F, Kyle JAM, Andrews F, Lowe NM, Hart CA. An increase in selenium intake improves immune function andpoliovirus handling in adults with marginal selenium status. Am J Clin Nutr 2004,80(1):154-162.
    27. Kiremidjian-Schumacher, Roy M, R. G, Res BTE. Selenium and immune competence in patients with head and neck cancer.2000,73:97-111.
    28. 黄克和,陈振旅,王小龙.硒对雏鸡生长体液免疫功能和抗自然感染能力的研究[J].南京农业才学学报1990,13(4):98-102.
    29. Szymonik-Lesiuk S, Czechowska G, Stryjecka-Zimmer M, Slomka M M, Celi'nski K. Catalase, superoxide dismutase, and glutathione peroxi-dase activities in various rat tissues after carbon tetrachloride intoxication. JHepatobiliary Pancreat Surg 2003,10(4):309-315.
    30. Kieliszek M, S. Bz. Selenium:significance, and outlook for supplemen-tation.. Nutrition 2013,29(5):713-718.
    31. Kunwar A, Mishra B, Barik A, Kumbhare LB, Pandey R, Jain VK. 3,3(-diselenodipropionic acid, an efficient peroxyl radical scavenger and a GPxmimic, protects erythrocytes (RBCs) from AAPH-induced hemolysis. ChemRes Toxicol 2007,20(10):1482-1487.
    32. Indira Priyadarsini KG, Singh B, A. K, Biol C. Current developments on synthe-sis, redox reactions and biochemical studies of selenium antioxidants. 2013,7(1):37-46.
    33. 唐咏梅,刘毅,宁鸿珍,王茜,李碧.学龄儿童微量元素摄入水平及其与体内抗氧化能力的关系.现代预防功医学2011,38(10):1829-1831.
    34. 张世珍,李建喜,王兴亚,齐志明,李世平,孟嘉仁,王毓文,瑗朱.硒与动物自由基代谢内在关系的实验研究.中国兽医科技1997,27(4):31-33.
    35. Maseko T, Howell K, Dunshea FR, Ng K. Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food Chemistry 2014, 146(0):327-333.
    36. Shi L, Zhang C, Yue W, Shi L, Zhu X, Lei F. Short-term effect of dietary selenium-enriched yeast on semen parameters, antioxidant status and Se concentration in goat seminal plasma. Animal Feed Science and Technology 2010,157(1-2):104-108.
    37. Lubos E, Sinning CR, Schnabel RB, Wild PS, Zeller T, Rupprecht HJ, Bickel C, Lackner KJ, Peetz D, Loscalzo J. Serum selenium and prognosis in cardiovascular disease:results from the Athero Gene study. Atherosclerosis 2010,209(1):271-277.
    38. Tsai C-F, Ou B-R, Liang Y-C, Yeh J-Y. Growth inhibition and antioxidative status induced by selenium-enriched broccoli extract and selenocompounds in DNA mismatch repair-deficient human colon cancer cells. Food Chemistry 2013,139(1-4):267-273.
    39. Steevens J, van den Brandt PA, Goldbohm RA, Schouten LJ. Selenium Status and the Risk of Esophageal and Gastric Cancer Subtypes:The Netherlands Cohort Study. Gastroenterology 2010,138(5):1704-1713.
    40. Rezaei SA, Dalir-Naghadeh B. Association of plasma and heart homocysteine and blood malondialdehyde with cardiovascular diseases induced by acute selenium deficiency in lambs. Small Ruminant Research 2009,83(1-3):22-28.
    41. Rayman MP, Stranges S. Epidemiology of selenium and type 2 diabetes:Can we make sense of it? Free Radical Biology and Medicine 2013,65:1557-1564.
    42. Tan Ja, Zhu W, Wang W, Li R, Hou S, Wang D, Yang L. Selenium in soil and endemic diseases in China. Science of The Total Environment 2002, 284(1-3):227-235.
    43. Hartikainen H. Biogeochemistry of selenium and its impact on food chain quality and human health. Journal of Trace Elements in Medicine and Biology 2005,18(4):309-318.
    44. Li Q, Liu M, Hou J, Jiang C, Li S, Wang T. The prevalence of Keshan disease in China. International Journal of Cardiology 2013,168(2):1121-1126.
    45. Yang GQ, YM. X. Studies on human dietary requirements and safe range of dietary intakes of selenium in China and their application to the prevention of related endemic diseases. Biomed Environ Sci 1995,8:187-201.
    46. Gong L, G. M. The selenium elemental and health. Environ Sci Manage 2007, 32(9):32-35.
    47. Lei C, Niu X, Wei J, Zhu J, Zhu Y. Interaction of glutathione peroxidase-1 and selenium in endemic dilated cardiomyopathy. Clinica Chimica Acta 2009, 399(1-2):102-108.
    48. Li G, Wang F, Kang D, Li C. Keshan disease:An endemic cardiomyopathy in China. Human Pathology 1985,16(6):602-609.
    49. 王凡,康德仁,刘松岩,杨青,王光武,佟伟民.硒和维生素E联合缺乏与克山病病因的关系.中国地方冷不防治杂志 1991,6(5):306-307.
    50. Fang WX, Wu PW, RZ H. Environmental Se-Mo-B deficiency and its possible effects in Jiantou Keshan Disease area in Shaanxi Province, China. Environ Geochem Health 2002,24:349-358.
    51. Lu AL, Guo X, Aisha MMT, Shi XW, Zhang YZ, Zhang YY. Kashin-Beck disease and Sayiwak disease in China:Prevalence and a comparison of the clinical manifestations, familial aggregation, and heritability. Bone 2011, 48(2):347-353.
    52. Yao Y, Pei F, Kang P. Selenium, iodine, and the relation with Kashin-Beck disease. Nutrition 2011,27(11-12):1095-1100.
    53. Zou K, Liu G, Wu T, Du L. Selenium for preventing Kashin-Beck osteoarthropathy in children:a meta-analysis. Osteoarthritis and Cartilage 2009,17(2):144-151.
    54. Moreno-Reyes R. Chapter 71-Iodine, Selenium Deficiency and Kashin-Beck Disease. In:Comprehensive Handbook of Iodine. Edited by Preedy VR, Burrow GN, Watson R. San Diego:Academic Press; 2009:685-700.
    55. 康龙丽,许鹏,扎西桑珠,巴桑卓玛,李小迎,郭雄.西藏大骨节病患者血清透明质酸、一氧化氮和硒水平检测分析.中国地方厉学杂,志2006,25(6):694-696.
    56. Peng A, Wang WH, Wang CX, Wang ZJ, Rui HF, WZ W. The role of humic substances in drinking water in Kashin-Beck Disease in China.1999, 107:293-296.
    57. Zhang Y, L. N. Study of apoptosis of malignant lymphoma cells induced by arsenic trioxide. Cell Biol Int 2001,25:1003-1006.
    58. Alaejos MS, Diaz Romero FJ, Diaz Romero C. Selenium and cancer:some nutritional aspects. Nutrition 2000,16(5):376-383.
    59. Yu SY, Chu YJ, Gong XL. Regional variation of cancer mortality incidence and its relation to selenium levels in China. Biol Trace Elem Res 1985, 7:21-29.
    60. Zeng YC, Xue M, Chi F, Xu ZG, Fan GL, Fan YC, Zheng MH, Zhong WZ, Wang SL, Zhang ZY. Serum levels of selenium in patients with brain metastases from non-small cell lung cancer before and after radiotherapy. Cancer/Radiotherapie 2012,16(3):179-182.
    61. Vekariya KK, Kaur J, Tikoo K. ERa signaling imparts chemotherapeutic selectivity to selenium nanoparticles in breast cancer. Nanomedicine: Nanotechnology, Biology and Medicine 2012,8(7):1125-1132.
    62. Keshavarzi B, Moore F, Najmeddin A, Rahmani F. The role of selenium and selected trace elements in the etiology of esophageal cancer in high risk Golestan province of Iran. Science of The Total Environment 2012,433:89-97.
    63. Palmquist B-M, Fagerholm P, Landau I. Selenium-induced cataract-A correlation of dry mass content and light scattering. Experimental Eye Research 1986,42(1):35-42.
    64. Chuang H-Y, Kuo C-H, Chiu Y-W, Ho C-K, Chen C-J, Wu T-N. A case-control study on the relationship of hearing function and blood concentrations of lead, manganese, arsenic, and selenium. Science of The Total Environment 2007, 387(1-3):79-85.
    65. Fordyce FM, Johnson CC, Navaratna URB, Appleton JD, Dissanayake CB. Selenium and iodine in soil, rice and drinking water in relation to endemic goitre in Sri Lanka. Science of The Total Environment 2000, 263(1-3):127-141.
    66. Chen T, Wong Y-S. Selenocystine induces reactive oxygen species-mediated apoptosis in human cancer cells. Biomedicine & Pharmacotherapy 2009, 63(2):105-113.
    67. Wang Y, Shen X, Liao W, Fang J, Chen X, Dong Q, Ding K. A heteropolysaccharide, 1-fuco-d-manno-1,6-a-d-galactan extracted from Grifola frondosa and antiangiogenic activity of its sulfated derivative. Carbohydrate Polymers 2014,101:631-641.
    68. Cui F, Zan X, Li Y, Yang Y, Sun W, Zhou Q, Yu S, Dong Y. Purification and partial characterization of a novel anti-tumor glycoprotein from cultured mycelia of Grifola frondosa. International Journal of Biological Macromolecules 2013,62:684-690.
    69. Gu C-Q, Li J-W, Chao F, Jin M, Wang X-W, Shen Z-Q. Isolation, identification and function of a novel anti-HSV-1 protein from Grifola frondosa. Antiviral Research 2007,75(3):250-257.
    70. Gu C-Q, Li J-W, Chao F-H. Inhibition of hepatitis B virus by D-fraction from Grifola frondosa:Synergistic effect of combination with interferon-a in HepG2 2.2.15. Antiviral Research 2006,72(2):162-165.
    71. Yang B-K, Gu Y-A, Jeong Y-T, Jeong H, Song C-H. Chemical characteristics and immuno-modulating activities of exo-biopolymers produced by Grifola frondosa during submerged fermentation process. International Journal of Biological Macromolecules 2007,41(3):227-233.
    72. Lei H, Guo S, Han J, Wang Q, Zhang X, Wu W. Hypoglycemic and hypolipidemic activities of MT-α-glucan and its effect on immune function of diabetic mice. Carbohydrate Polymers 2012,89(1):245-250.
    73. Liuqing Yang, Hongyuan Qu, Guanghua Mao, Ting Zhao, Fang Li, Bole Zhu, Bingtao Zhang, Wu X. Optimization of subcritical water extraction of polysaccharides from Grifola frondosa using response surface methodology. Pharmacognosy Magazine 2013,9(34):120-129.
    74. Ohn o N, Adachi Y, Su zuki I. Charact erizat ion of the ant itumor glucan obt ained from liquid -cultured Grifola frondosa. Chem P harm Bull 1986,34(4) 1709-1715.
    75. Fan Y, Wu X, Zhang M, Zhao T, Zhou Y, Han L, Yang L. Physical characteristics and antioxidant effect of polysaccharides extracted by boiling water and enzymolysis from Grifola frondosa. International Journal of Biological Macromolecules 2011,48(5):798-803.
    76. Chen G-t, Ma X-m, Liu S-t, Liao Y-l, Zhao G-q. Isolation, purification and antioxidant activities of polysaccharides from Grifola frondosa. Carbohydrate Polymers 2012,89(1):61-66.
    77. 乔彦茹,罗永煌,周帅,杨焱,贾薇,唐庆九,刘艳芳,张劲松,周昌艳.灰树花多糖GFP75-2-2B的分离及其对刺激巨噬细胞释放NO的影响.食用菌学报 2010,17(4):48-51.
    78. 杜巍,袁静,李元瑞,程江峰.灰树花菌丝体多糖G.F.-1的分离纯化及其理化特性的研究.食品科学2003,24(3):35-39.
    79. 史宝军,聂小华,杨平平,陶文沂.碱提灰树花多糖的分离纯化及其性质研究.四川中医2003,21(9):16-18.
    80.杨阳,刘承初,贾薇,刘艳芳,杨炎,张劲松,周昌艳.灰树花多糖的超滤分 离及免疫活性研究.食品科学2008,29(9):277-280.
    81. Xu H, Liu J-h, Shen Z-y, Fei Y, Chen X-D. Analysis of chemical composition, structure of Grifola frondosa polysaccharides and its effect on skin TNF-a levels, lgG content, T lymphocytes rate and caspase-3 mRNA. Carbohydrate Polymers 2010,82(3):687-691.
    82.李小定,欧阳天赞,荣建华,吴谋成.灰树花多糖PGF-2的理化性质及化学结构的初步表征.菌物学报2005,24(2):245-250.
    83. 陈向东,刘晓雯,吴梧桐.低分子量灰树花多糖的分离、纯化和抗肿瘤活性.中国天然药物 2006,4(1):77-80.
    84. Kato K, Inagaki T, Teranishi T, Yamauchi R, Okuda K, Sano T, Ueno Y. Structural analysis of the alkali-soluble β-d-glucan from the fruit body of Grifola frondosa. Carbohydrate Research 1983,124(2):247-252.
    85. Cui FJ, Tao WY, Xu ZH, Guo WJ, Xu HY, Ao ZH, Jin J, Wei YQ. Structural analysis of anti-tumor heteropolysaccharide GFPS1b from the cultured mycelia of Grifola frondosa GF9801. Bioresource Technology 2007, 98(2):395-401.
    86. Tada R, Adachi Y, Ishibashi K-i, Ohno N. An unambiguous structural elucidation of a 1,3-β-d-glucan obtained from liquid-cultured Grifola frondosa by solution NMR experiments. Carbohydrate Research 2009,344(3):400-404.
    87. Ohno N, Suzuki I, Sato K. Purification and structural characterization of an antitumor β-1.3-Glucan isolated from hot water ex tract of the fruit body of cultured Grifola frondosa. Chemical and Pharmaceutical Bulletin,1985, 33(10):4522-4527.
    88. Hishida I, Nanba H, H K. Antitumor activity ex hibited by orally administered extracted from fruit body of Grifola frondosa. Chemical and Pharmaceutical Bulletin,1988,36(5):1819-1827.
    89. Nanba H, Hamaguchi A, H. K. The chemical structure of an antitumor polysaccharide in fruit bodies of Grifola frondosa (maitake).1987 35(3):1162-1168.
    90. Kodama N, Komuta K, H. N. Can maikate MD fraction aid cancer patients. Altern Med Rev 2002,7:236-238.
    91. Nie X, Shi B, Ding Y, Tao W. Preparation of a chemically sulfated polysaccharide derived from Grifola frondosa and its potential biological activities. International Journal of Biological Macromolecules 2006, 39(4-5):228-233.
    92. Shi BJ, Nie X-H, Chen L-Z, Liu Y-L, Tao W-Y. Anticancer activities of a chemically sulfated polysaccharide obtained from Grifola frondosa and its combination with 5-Fluorouracil against human gastric carcinoma cells. Carbohydrate Polymers 2007,68(4):687-692.
    93. Wang C-l, Meng M, Liu S-b, Wang L-r, Hou L-h, Cao X-h. A chemically sulfated polysaccharide from Grifola frondosa induces HepG2 cell apoptosis by notch1-NF-KB pathway. Carbohydrate Polymers 2013,95(1):282-287.
    94. Cui F-J, Li Y, Xu Y-Y, Liu Z-Q, Huang D-M, Zhang Z-C, Tao W-Y. Induction of apoptosis in SGC-7901 cells by polysaccharide-peptide GFPS1b from the cultured mycelia of Grifola frondosa GF9801. Toxicology in Vitro 2007, 21(3):417-427.
    95. Inoue A, Kodama N, N Na. Effect of Maitake (Grifola frondosa) D-fraction on the control of the T lymph node Th1/Th2 proportion. Chem Pharm Bull 2002,25 (4):536-540.
    96. Suzuki Y, Adachi Y, Ohno N. Thl/Th2 Balancing immunomodulating activity of gel forming (1-3)-β-glucans from fungi. Biol Pharm Bull 2001, 24.811-815.
    97. Ohno H, Egawa Y, Hashimoto T. Effect of β-Glucans on the nitric oxide synthesis by peritoneal macrophage in mice. Biol Pharm Bull 1996, 19(4):608-610.
    98. Kubo K, Nanba H. Modification of cellular immune responses in experimental autoimmune hepatitis in mice by maitake (Grifola frondosa). Mycoscience 1998,39(4):351-360.
    99. Kodama N, Mizuno S, Asakawa A, Inui A, Nanba H. Effect of a hot water-soluble extraction from Grifola frondosa on the viability of a human monocyte cell line exposed to mitomycin C. Mycoscience 2010, 51(2):134-138.
    100. Masuda Y, Kodama N, Nanba H. Macrophage J774.1 cell is activated by MZ-Fraction (Klasma-MZ) polysaccharide in Grifola frondosa. Mycoscience 2006,47(6):360-366.
    101. Nanba H, Kodama N, Schar D, Turner D. Effects of Maitake (Grifola frondosa) glucan in HIV-infected patients. Mycoscience 2000,41(4):293-295.
    102. Mori K, Kobayashi C, Tomita T, Inatomi S, Ikeda M. Antiatherosclerotic effect of the edible mushrooms Pleurotus eryngii (Eringi), Grifola frondosa (Maitake), and Hypsizygus marmoreus (Bunashimeji) in apolipoprotein E-deficient mice. Nutrition Research 2008,28(5):335-342.
    103. Kurushima H, Kodama N, Nanba H. Activities of polysaccharides obtained from Grifola frondosa on insulin-dependent diabetes mellitus induced by streptozotocin in mice. Mycoscience 2000,41(5):473-480.
    104. Cui B, Han L, Qu J, Lv Y. Hypoglycemic Activity of Grifola frondosa Rich in Vanadium. Biological Trace Element Research 2009,131 (2):186-191.
    105. Kubo K, H. N. Anti-hyperliposis effect of maitake fruit body (Grifola frondosa). Biol Pharm Bull 1997,20(7):781-785.
    106. Mao G, Zou Y, Feng W, Wang W, Zhao T, Ye C, Zhu Y, Wu X, Yang L, Wu X. Extraction, preliminary characterization and antioxidant activity of Se-enriched Maitake polysaccharide. Carbohydrate Polymers 2014, 101:213-219.
    107. Luo C, Chen Y-S. Optimization of extraction technology of Se-enriched Hericium erinaceum polysaccharides by Box-Behnken statistical design and its inhibition against metal elements loss in skull. Carbohydrate Polymers 2010,82(3):854-860.
    108. Shi W-L, Han H, Chen G-Z, Chen X, Hong Y-K, Chen L-K, Chen D, Lu Z. Extraction, characterization of the polysaccharide extracts from Se-enriched G lucidum (Se-GLP) and its inhibition against oxidative damage in ischemic reperfusion mice. Carbohydrate Polymers 2010,80(3):774-778.
    109. 尚德静,王关林,王孝敏,田星,悦安.两种灵芝硒多糖分离纯化及性质鉴定.大连理工大学学报 2001,41(2):165-168.
    110. 崔乔,尚德静,霞邹.硒多糖的研究进展.中国生化药物杂志2003,24(3):155-157.
    111. Xu CL, Wang YZ, Jin ML, Yang XQ. Preparation, characterization and immunomoduiatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206. Bioresource Technology 2009, 100(6):2095-2097.
    112. Turlo J, Gutkowska B, Herold F, Cieslak M, Kazmierczak-Baranska J. Isolation, composition analysis, antioxidant activity and cytotoxicity of selenium-enriched polysaccharide fractions isolated from Lentinula edodes mycelial cultures. New Biotechnology 2009,25, Supplement(0):S12.
    113.邓丹,凌娜,季宇彬.MTT法检测多种肿瘤细胞对硒酸酯多糖的敏感性研究.亚太传纺医药2009,5(10):16—17.
    114. Wang Y, Chen J, Zhang D, Zhang Y, Wen Y, Li L, Zheng L. Tumoricidal effects of a selenium (Se)-polysaccharide from Ziyang green tea on human osteosarcoma U-2 OS cells. Carbohydrate Polymers 2013,98(1):1186-1190.
    115. Cao Y, Ikeda I. Antioxidant activity and antitumor activity (in vitro) of xyloglucan selenious ester and surfated xyloglucan. International Journal of Biological Macromolecules 2009,45(3):231-235.
    116. Guo Y, Pan D, Li H, Sun Y, Zeng X, Yan B. Antioxidant and immunomodulatory activity of selenium exopolysaccharide produced by Lactococcus lactis subsp. lactis. Food Chemistry 2013,138(1):84-89.
    117.王红连,张东升,张凌裳,杜郭君,张银志,赵晓联.硒化灵芝多糖制备及免疫学相关研究.食品群学2009,29(17):316-318.
    118.羊雪芹,靳明亮,徐春兰,单体中,汪以真.Z0206细菌富硒多糖对小鼠的免疫调节作用.农业生物技术学报 2009,17(5):815-819.
    119. Yu J, Cui P-J, Zeng W-L, Xie X-L, Liang W-J, Lin G-B, Zeng L. Protective effect of selenium-polysaccharides from the mycelia of Coprinus comatus on alloxan-induced oxidative stress in mice. Food Chemistry 2009,117(1):42-47.
    120. Zhao B, Zhang J, Yao J, Song S, Yin Z, Gao Q. Selenylation modification can enhance antioxidant activity of Potentilla anserina L. polysaccharide. International Journal of Biological Macromolecules 2013,58(0):320-328.
    121. 铁梅,惠秀娟,张剑慧,陈忠林,王杰,刘晓波,臧树良.有机硒多糖对铬致小鼠细胞DNA损伤与氧化损伤的保护作用.环境科学学报2010,30(1):192-197.
    122. Liu Y, Sun J, Rao S, Su Y, Li J, Li C, Xu S, Yang Y. Antidiabetic activity of mycelia selenium-polysaccharide from Catathelasma ventricosum in STZ-induced diabetic mice. Food and Chemical Toxicology 2013,62:285-291.
    123. Jin M, Lu Z, Huang M, Wang Y, Wang Y. Effects of Se-enriched polysaccharides produced by Enterobacter cloacae Z0206 on alloxan-induced diabetic mice. International Journal of Biological Macromolecules 2012, 50(2):348-352.
    124. Ren Y, Wang Q, Shi L, Yue W, Zhang C, Lei F. Effects of maternal and dietary selenium (Se-enriched yeast) on the expression of p34cdc2 and CyclinB1 of germ cells of their offspring in goats. Animal Reproduction Science 2011, 123(3-4):187-191.
    125.沈霞,余胜光.灰树花的富硒深层培养及其营养成分分析.山东农业大学学报(自然群学版)2009,40(4):521-527.
    126. 陈石良,许正宏,孙微,刘萍,谷文英,陶文沂.灰树花富硒培养研究.食用菌学报 2000,7(1)27-31.
    127.秦顺义,黄克和.富硒益生菌的急性毒性和遗传毒性试验.癌变畸变突变2007,19(2):96-98.
    128. O lafsdo ttir E S, K. Ilt. Polysaccharides from lichens:structural characteristics and bio logical activity. Planta Med 2001,67:199-208.
    129. O lafsdo ttir E S, Omarsdo ttir S, Paulsen B S. Rhamnopyranosyl galactofuranan, a new immuno logically active polysaccharide from Thamnolia subuliformis. P hyto medicine 1999,6 (4) 273-279.
    130. Perret J, Bruneteau M, M icheal G. Effect of growth conditions on the structure of β-D-glucans from Phytophthora parasitica Dastur, a phytoph thogenic fungus. Carbohydrate Polym er 1991,17 (2):231-236.
    131. 赵婷.五味子多糖的分离纯化、结构表征及其活性研究[J].硕士论文2009,江苏大学.
    132. Yu Z, Ming G, Kaiping W, Zhixiang C, Liquan D, Jingyu L, Fang Z. Structure, chain conformation and antitumor activity of a novel polysaccharide from Lentinus edodes. Fitoterapia 2010,81 (8):1163-1170.
    133. Lei Chen, Bo-Bo Zhang, Jia-Lun Chen, Cheung PCK. Cell wall structure of mushroom sclerotium(Pleurotus tuber-regium):Part 2. Fine structure of a novel alkali-soluble hyper-branched cell wall polysaccharide. Food Hydrocolloids 2014,38:48-55.
    134. Ting Zhao, Guanghua Mao, Weiwei Feng, Riwen Mao, Xiaoyun Gua, Ting Li, Qian Li, Yongtuan Bao, Liuqing Yang, Wu X. Isolation, characterization and antioxidant activity of polysaccharidefrom Schisandra sphenanthera. Carbohydrate Polymers 2014 105:26-33.
    135.陈海霞.高活性茶多糖的一级结构表征、空间构象及生物活性的研究[J]. 博士论文[D]2002,华中农业大学.
    136. He R, Ye J, Zhao Y, Su W. Partial characterization, antioxidant and antitumor activities of polysaccharides from Philomycusbilineatus. International Journal of Biological Macromolecules 2014,65:573-580.
    137. Wei J, Wang S, Liu G, Pei D, Liu Y, Liu Y, Di D. Polysaccharides from Enteromorpha prolifera enhance the immunity of normal mice. International Journal of Biological Macromolecules 2014,64:1-5.
    138. Yang T, Jia M, Zhou S, Pan F, Mei Q. Antivirus and immune enhancement activities of sulfated polysaccharide from Angelica sinensis. International Journal of Biological Macromolecules 2012,50(3):768-772.
    139. Zhang T, Gao J, Jin Z-Y, Xu X-M, Chen H-Q. Protective effects of polysaccharides from Lilium lancifolium on streptbzotocin-induced diabetic mice. International Journal of Biological Macromolecules 2014,65:436-440.
    140. Zhang J, Liu Y-j, Park H-s, Xia Y-m, Kim G-s. Antitumor activity of sulfated extracellular polysaccharides of Ganoderma lucidum from the submerged fermentation broth. Carbohydrate Polymers 2012,87(2):1539-1544.
    141. Park SE, Kim J, Lee Y-W, Yoo H-S, Cho C-K. Antitumor Activity of Water Extracts From Cordyceps Militaris in NCI-H460 Cell Xenografted Nude Mice. Journal of Acupuncture and Meridian Studies 2009,2(4):294-300.
    142. Zhao T, Mao G, Zhang M, Zou Y, Feng W, Gu X, Zhu Y, Mao R, Yang L, Wu X. Enhanced antitumor and reduced toxicity effect of Schisanreae polysaccharide in 5-Fu treated Heps-bearing mice. International Journal of Biological Macromolecules 2014,63:114-118.
    143. Yang B, Xiao B, Sun T. Antitumor and immunomodulatory activity of Astragalus membranaceus polysaccharides in H22 tumor-bearing mice. International Journal of Biological Macromolecules 2013,62(0):287-290.
    144. Byun E-B, Sung N-Y, Kim J-H, Choi J-i, Matsui T, Byun M-W, Lee J-W. Enhancement of anti-tumor activity of gamma-irradiated silk fibroin via immunomodulatory effects. Chemico-Biological Interactions 2010, 186(1):90-95.
    145. Hadden JW. Immunodeficiency and cancer:prospects for correction. International Immunopharmacology 2003,3(8):1061-1071.
    146. Li X-L, Wang Z-H, Zhao Y-X, Luo S-J, Zhang D-W, Xiao S-X, Peng Z-H. Isolation and antitumor activities of acidic polysaccharide from Gynostemma pentaphyllum Makino. Carbohydrate Polymers 2012,89(3):942-947.
    147. Xu H-S, Wu Y-W, Xu S-F, Sun H-X, Chen F-Y, Yao L. Antitumor and immunomodulatory activity of polysaccharides from the roots of Actinidia eriantha. Journal of Ethnopharmacology 2009,125(2):310-317.
    148. Bai L, Zhu L-Y, Yang B-S, Shi L-J, Liu Y, Jiang A-M, Zhao L-L, Song G, Liu T-F. Antitumor and immunomodulating activity of a polysaccharide from Sophora flavescens Ait. International Journal of Biological Macromolecules 2012,51(5):705-709.
    149. Bohn JA, BeMiller JN. (1→3)-β-d-Glucans as biological response modifiers:a review of structure-functional activity relationships. Carbohydrate Polymers 1995,28(1):3-14.
    150. Leung MYK, Liu C, Koon JCM, Fung KP. Polysaccharide biological response modifiers. Immunology Letters 2006,105(2):101-114.
    151. Liu C, Leung MYK, Koon JCM, Zhu LF, Hui YZ, Yu B, Fung KP. Macrophage activation by polysaccharide biological response modifier isolated from Aloe vera L. var. chinensis (Haw.) Berg. International Immunopharmacology 2006,6(11):1634-1641.
    152. Park S-D, Lai Y-S, Kim C-H. Immunopontentiating and antitumor activities of the purified polysaccharides from Phellodendron chinese SCHNEID. Life Sciences 2004,75(22):2621-2632.
    153. Zhao T, Mao G, Mao R, Zou Y, Zheng D, Feng W, Ren Y, Wang W, Zheng W, Song J. Antitumor and immunomodulatory activity of a water-soluble low molecular weight polysaccharide from Schisandra chinensis (Turcz.) Baill. Food and Chemical Toxicology 2013,55(0):609-616.
    154. Wang D, Sun S-Q, Wu W-Z, Yang S-L, Tan J-M. Characterization of a water-soluble polysaccharide from Boletus edulis and its antitumor and immunomodulatory activities on renal cancer in mice. Carbohydrate Polymers 2014,105:127-134.
    155. Zeng WC, Zhang Z, Gao H, Jia LR, Chen WY. Characterization of antioxidant polysaccharides from Auricularia auricular using microwave-assisted extraction. Carbohydrate Polymers 2012,89:694-700.
    156. Marino E, Cardier JE. Differential effect of IL-18 on endothelial cell apoptosis mediated by TNF-a and Fas (CD95). Cytokine 2003,22(5):142-148.
    157. Wagley Y, Yoo Y-C, Seo HG, Rhee MH, Kim T-H, Kang KW, Nah S-Y, Oh J-W. The IL-6/sIL-6R treatment of a malignant melanoma cell line enhances susceptibility to TNF-a-induced apoptosis. Biochemical and Biophysical Research Communications 2007,354(4):985-991.
    158. Yun UJ, Park SE, Jo YS, Kim J, Shin DY. DNA damage induces the IL-6/STAT3 signaling pathway, which has anti-senescence and growth-promoting functions in human tumors. Cancer Letters 2012, 323(2):155-160.
    159. Sun X, Gao R-L, Xiong Y-K, Huang Q-C, Xu M. Antitumor and immunomodulatory effects of a water-soluble polysaccharide from Lilii Bulbus in mice. Carbohydrate Polymers 2014,102(0):543-549.
    160. Schepetkin IA, Quinn MT. Botanical polysaccharides:Macrophage immunomodulation and therapeutic potential. International Immunopharmacology 2006,6(3):317-333.
    161. Chen Y, Duan J-a, Qian D, Guo J, Song B, Yang M. Assessment and comparison of immunoregulatory activity of four hydrosoluble fractions of Angelica sinensis in vitro on the peritoneal macrophages in ICR mice. International Immunopharmacology 2010,10(4):422-430.
    162. Lee JS, Cho JY, Hong EK. Study on macrophage activation and structural characteristics of purified polysaccharides from the liquid culture broth of Hericium erinaceus. Carbohydrate Polymers 2009,78(1):162-168.
    163. 尹美珍,阮启刚,余桂朋,操凤,肖安菊,喻昕.艾叶多糖对体外培养巨噬细胞吞噬功能的影响.时珍国医国药2012,23(1):162-163.
    164. Zhe Ji, Qingjiu Tang, Jinsong Zhang, Yan Yang, Wei Jia, Pan Y. Immunomodulation of RAW264.7 macrophages by GLIS, a proteopolysaccharide from Ganoderma lucidum. Journal of Ethnopharmacology 2007112:445-450.
    165. Chen Z-G, Zhang D-N, Zhu Q, Yang Q-H, Han Y-B. Purification, preliminary characterization and in vitro immunomodulatory activity of tiger lily polysaccharide. Carbohydrate Polymers 2014,106(0):217-222.
    166. Katsiari CG, Liossis S-NC, Sfikakis PP. The Pathophysiologic Role of Monocytes and Macrophages in Systemic Lupus Erythematosus:A Reappraisal. Seminars in Arthritis and Rheumatism 2010,39(6):491-503.
    167. Chen W, Zhang W, Shen W, Wang K. Effects of the acid polysaccharide fraction isolated from a cultivated Cordyceps sinensis on macrophages in vitro. Cellular Immunology 2010,262(1):69-74.
    168. Wang J, Zuo G, Li J, Guan T, Li C, Jiang R, Xie B, Lin X, Li F, Wang Y. Induction of tumoricidal activity in mouse peritoneal macrophages by ginseng polysaccharide. International Journal of Biological Macromolecules 2010, 46(4):389-395.
    169. Ting Zhao, Yun Feng, Jing Li, Riwen Mao, Ye Zou, Weiwei Feng, Daheng Zheng, Wei Wang, Yao Chen, Yang L. Schisandra polysaccharide evokes immunomodulatory activity through TLR 4-mediated activation of macrophages. International Journal of Biological Macromolecules 2014, 65:33-40.
    170. Ji Z, Tang Q, Zhang J, Yang Y, Jia W, Pan Y. Immunomodulation of RAW264.7 macrophages by GLIS, a proteopolysaccharide from Ganoderma lucidum. Journal of Ethnopharmacology 2007,112(3):445-450.
    171. Bosca L, Zeini M, Traves PG, Hortelano S. Nitric oxide and cell viability in inflammatory cells:a role for NO in macrophage function and fate. Toxicology 2005,208(2):249-258.
    172. Zhang X, Wang J, Xu Z, Li Z, Feng S, Lu H. The impact of rhubarb polysaccharides on Toll-like receptor 4-mediated activation of macrophages. International Immunopharmacology 2013,17(4):1116-1119.
    173. Li X, Xu W. TLR4-mediated activation of macrophages by the polysaccharide fraction from Polyporus umbellatus(pers.) Fries. Journal of Ethnopharmacology 2011,135(1):1-6.
    174. Fu S-L, Hsu Y-H, Lee P-Y, Hou W-C, Hung L-C, Lin C-H, Chen C-M, Huang Y-J. Dioscorin isolated from Dioscorea alata activates TLR4-signaling pathways and induces cytokine expression in macrophages. Biochemical and Biophysical Research Communications 2006,339(1):137-144.
    175. Yin X, Chen L, Liu Y, Yang J, Ma C, Yao Z, Yang L, Wei L, Li M. Enhancement of the innate immune response of bladder epithelial cells by Astragalus polysaccharides through upregulation of TLR4 expression. Biochemical and Biophysical Research Communications 2010, 397(2):232-238.
    176. Brown GD, S. G. Immune recognition. A new receptor for beta-glucans. Nature 2001,413(6851):36-37.
    177. Toshinobu Nakamura, Hiroshi Suzuki, Youichiro Wada, Tatsuhiko Kodama. Fucoidan induces nitric oxide production via p38 mitogen-activated protein kinase and NF-kappaB-dependent signaling pathways through macrophage scavenger receptors. Biochemical and Biophysical Research Communications 2006,343(1):286-294.
    178. Jeon YJ, Han SB, Ahn KS, HM. K. Act ivat ion of NF-JB/Rel in an gelan stimulated macrophages. Im munopharmacology 1999,43:1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700