微藻生物质暗发酵和光发酵耦合产氢气以及联产甲烷的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石燃料的过度利用导致了日趋严重的能源危机和环境污染。氢气的能量密度高、燃烧产物清洁,是一’种理想的二次能源载体。利用可再生的生物质为原料通过发酵的方法制取氢气已经成为国内外制氢领域的研究热点。微藻具有光合作用效率高、生长迅速、分布广泛等特点,是一种具有大规模能源化应用潜力的生物质原料。本文以微藻生物质为研究对象,对其暗发酵和光发酵耦合产氢气以及联产甲烷进行机理研究,实现生物质成分的高效分级利用,大幅度提高氢气产率和能量转化效率。
     本文以微藻生物质中的典型蛋白质组分谷氨酸为原料,对谷氨酸的暗发酵和光发酵耦合产氢气联产甲烷的可行性进行了实验研究。在暗发酵、光发酵和甲烷发酵中使用的菌种均分离和富集于厌氧消化污泥,分别为混合产氢细菌、混合光合细菌和混合产甲烷细菌。在暗发酵阶段,谷氨酸可以被产氢细菌有效的利用和发酵产生大量的可溶代谢产物但是却很难产生氢气。暗发酵尾液中的主要代谢产物为乙酸、丁酸以及铵离子,由于高浓度的铵离子会显著抑制后续的光发酵产氢气,需要在光发酵之前去除尾液中的铵离子。沸石是一种廉价、可再生的天然资源,可以通过高效的离子交换去除溶液中的铵离子。经过沸石处理之后,尾液中的铵离子浓度由处理之前的36.7mM显著降低至3.2mM,铵离子去除率为91.1%。处理后的尾液接种光合细菌进行光发酵,得到最大氢气产率为292.9ml H2/g谷氨酸。光发酵尾液接种产甲烷细菌进行甲烷发酵,得到最大甲烷产率为102.7ml CH4/g谷氨酸。通过暗发酵和光发酵耦合产氢气联产甲烷,谷氨酸的能量转化效率由单纯产氢气的18.9%显著提高至氢气和甲烷联产的40.9%。
     本文以微藻生物质中的典型碳水化合物成分海藻糖为原料,对海藻糖的暗发酵和光发酵耦合产氢气联产甲烷的可行性进行了实验研究。海藻糖是一种非还原性二糖,性质稳定很难水解,只有经过预处理水解为单糖以后才能高效的发酵产氢气。海藻糖经过微波加热辅助稀酸预处理之后接种产氢细菌进行暗发酵,得到最大氢气产率为396.2ml H2/g海藻糖。暗发酵尾液接种光合细菌进行光发酵,得到最大氢气产率为335.1ml H2/g海藻糖。光发酵的尾液接种产甲烷细菌进行甲烷发酵,得到最大甲烷产率为116.9ml H2/g海藻糖。通过暗发酵和光发酵耦合产氢气联产甲烷,海藻糖的能量转化效率由单纯产氢气的47.2%显著提高至氢气和甲烷联产的72.2%。
     本文以钝顶节旋藻为原料,讨论和比较了微藻的两种暗发酵产氢气模式:利用外加产氢细菌的[FeFe]氢酶通过异相暗发酵产氢气和利用节旋藻的[NiFe]氢酶通过自相暗发酵产氢气。在异相暗发酵中,经过超声波破碎和酶水解之后的节旋藻可以被产氢细菌高效利用,在节旋藻浓度为20g/l得到最大的氢气产率为92.0ml H2/g DW。在自相暗发酵中,当节旋藻浓度由1g/l提高到20g/l时,最大氢气产率由51.4ml H2/g DW大幅度降低至11.0ml H2/gDW。在较高的节旋藻浓度条件下(20g/l),异相暗发酵的产氢峰值速率和最大氢气产率是自相暗发酵的110.0倍和8.4倍。因此在后续的实验中,微藻生物质应选用异相暗发酵产氢气的模式。节旋藻经过微波加热辅助稀酸预处理和酶水解可以有效的促进生物质的水解和强化暗发酵产氢气,随后利用沸石去除暗发酵尾液中的铵离子可以实现高效的光发酵产氢气。通过暗发酵和光发酵耦合产氢气,节旋藻的最大氢气产率大幅度提高至337.0mlH2/g DW。
     本文以海洋微拟球藻为原料,讨论和比较了三种微藻生物质发酵产氢气和甲烷的方法:(1)暗发酵和光发酵耦合产氢气联产甲烷;(2)暗发酵产氢气联产甲烷;(3)直接发酵产甲烷。微拟球藻通过微波加热辅助稀硫酸预处理之后接种产氢细菌进行暗发酵产氢气。在暗发酵中产氢细菌对大部分经过预处理水解生成的氨基酸的消耗时间大约是还原糖消耗时间的两倍。微拟球藻通过暗发酵和光发酵耦合产氢气联产甲烷得到的最大氢气产率为161.3ml H2/g TVS,最大甲烷产率为183.9ml CH4/g TVS,整体能量转化效率为暗发酵产氢气联产甲烷的1.7倍、直接产甲烷的1.3倍。
     本文以蛋白核小球藻为原料,研究了多种预处理方式对微藻生物质暗发酵产氢气的影响。经过蒸汽加热辅助稀酸和微波加热辅助稀酸预处理能够显著促进小球藻的水解和暗发酵产氢气。通过暗发酵和光发酵耦合产氢气联产甲烷,小球藻的最大氢气产率为198.3ml H2/g TVS,最大甲烷产率为186.2ml CH4/g TVS,整体能量转化效率为34.0%。在批次实验的基础之上,进行了小球藻的半连续流发酵产氢气的实验研究。通过长时间小球藻驯化得到的复杂产氢细菌菌群比之前通过葡萄糖驯化得到的简单菌群更能适应和高效利用小球藻生物质的各个成分,可以实现连续稳定的发酵产氢气。为了进一步提高生物质发酵的能量转化效率,以小球藻和木薯淀粉为混合原料,研究了碳氮摩尔比对发酵产氢气的影响。混合生物质在碳氮摩尔比为25.3的条件下得到的最大暗发酵氢气产率为276.2ml H2/gTVS,分别是单纯用小球藻和木薯淀粉为原料最大氢气产率的3.7倍和1.8倍。通过暗发酵和光发酵耦合产氢气联产甲烷,混合生物质的最大氢气产率和甲烷产率分别为664.2ml H2/g TVS和126.0ml CH4/g TVS,整体能量转化效率达到67.2%。
The extensive utilization of fossil fuels has resulted in serious energy crisis and environmental pollution. Hydrogen is considered as an ideal carbon-free secondary energy carrier with high energy density and clean combustion product. Hydrogen production from renewable biomass through fermentation is increasingly attracting worldwide attention. Microalgae biomass is a potential feedstock for fermentative hydrogen production because of its high photosynthetic efficiency, fast growth, and global distribution. In this study, microalgae biomass was used as feedstock to cogenerate hydrogen and methane through a novel three-stage method comprising dark-fermentation, photo-fermentation, and methanogenesis. The components in microalgae biomass were efficiently used through the three-stage method, therefore hydrogen yield and energy conversion efficiency (ECE) were significantly increased.
     Glutamic acid, a typical amino acid degraded from protein components in microalgae biomass, was used as feedstock to investigate the feasibility of cogeneration of hydrogen and methane through the three-stage method comprising dark-fermentation, photo-fermentation, and methanogenesis. Hydrogen-producing bacteria (HPB), photosynthetic bacteria (PSB), and methane-producing bacteria (MPB) were used as the inocula during dark-fermentation, photo-fermentation, and methanogenesis, respectively. HPB can efficiently ferment glutamic acid to abundant soluble metabolite products (SMPs) and little hydrogen during dark-fermentation. The residual solution of dark-fermentation mainly contained acetate, butyrate, and ammonium. Because high concentration of ammonium (36.7mM) in the residual solution of dark-fermentation can significantly inhibit the activities of PSB in sequential photo-fermentation, a modified zeolite were used to extract ammonium by ion exchange to reduce the ammonium concentration to3.2mM (91.1%of ammonium removal efficiency). After ammonium removal, the treated solution was inoculated with PSB, exhibiting the maximum hydrogen yield of292.9ml H2/g glutamic acid during photo-fermentation. The residual solution from photo-fermentation was reused by MPB to produce the maximum methane yield of102.7ml CH4/g glutamic acid. The ECE from glutamic acid to gas fuels significantly increased from18.9%in hydrogen fermentation to40.9%in combined hydrogen fermentation and methanogenesis.
     Trehalose, a typical carbohydrate component in microalgae biomass, was used as feedstock to investigate the feasibility of cogeneration of hydrogen and methane through the three-stage method comprising dark-fermentation, photo-fermentation, and methanogenesis. As a stable non-reducing sugar, trehalose was not easily used by HPB for efficient hydrogen production. Trehalose was first pretreated by microwave heating with dilute acid, and then was inoculated with HPB to produce hydrogen during dark-fermentation. The residual solution of dark-fermentation was reused by PSB during photo-fermentation. The residual solution of photo-fermentation was reused by MPB during methanogenesis. Overall, the maximum hydrogen yield of731.3ml H2/g trehalose and methane yield of116.9ml CH4/g trehalose were achieved. The sequential generation of hydrogen and methane from trehalose remarkably enhanced the ECE from47.2%in hydrogen fermentation to72.2%in combined hydrogen fermentation and methanogenesis.
     Hydrogen production from Arthrospira platensis biomass through dark-heterofermentation by the [FeFe] hydrogenase of HPB and dark-auto fermentation by the [NiFe] hydrogenase of A. platensis was discussed. A. platensis biomass pretreated by ultrasonication and enzymatic hydrolysis was inoculated with HPB to produce hydrogen during dark-heterofermentation. The maximum hydrogen yield of92.0ml H2/g dry weight (DW) was obtained at20g/l of A. platensis biomass. In dark-autofermentation, hydrogen yield decreased from51.4ml H2/g DW to11.0ml H2/g DW with increasing substrate concentration from1g/1to20g/1. The hydrogen production peak rate and maximum hydrogen yield at20g/1of A. platensis biomass in dark-heterofermentation showed110.0-and8.4-fold increases, respectively, relative to those in dark-autofementation. Therefore, dark-heterofermentation was selected for the further investigation of fermentative hydrogen production from microalgae biomass. A. platensis biomass was pretreated by microwave heating with dilute acid to improve saccharification during enzymatic hydrolysis and hydrogen production during dark-fermentation. The residual solution of dark-fermentation was treated by zeolite to reduce ammonium concentration before photo-fermentation. The maximum hydrogen yield from A. platensis biomass was significantly increased to337.0ml H2/g DW through combined dark-fermentation and photo-fermentation.
     Three methods for hydrogen and methane production from Nannochloropsis oceanica biomass were discussed as the following:(1) three-stage method comprising dark-fermentation. photo-fermentation, and methanogenesis;(2) two-stage comprising dark-fermentation and methanogenesis;(3) single-stage methanogenesis. N. oceanica pretreated by microwave heating with dilute acid was inoculated with HPB to produce hydrogen during dark-fermentation.The consumption time of most amino acids was about2times as long as that of most reducing sugars during dark-fermentation. The total ECE from N. oceanica biomass to gas fuels through the three-stage method showed1.7-and1.3-fold increases, respectively, compared with those through the two-stage and single-stage methods.
     Effects of pretreatment methods on biomass saccharification and hydrogen fermentation from Chlorella pyrenoidosa were investigated. The steam heating with dilute acid and microwave heating with dilute acid can remarkably enhance the biomass hydrolysis and hydrogen fermentation. The maximum hydrogen yield of198.3H2ml/g total volatile solids (TVS) and methane yield of186.2ml H2/g TVS were achieved through the three-stage method comprising dark-fermentation, photo-fermentation, and methanogenesis. Semi-continuous fermentation of C. pyrenoidosa biomass was carried out based on batch fermentation. Compared with the simple microbial community formed at earlier stages of fermentation, the complex microbial community formed at later stages of fermentation was more adaptable to C. pyrenoidosa biomass and can utilize C. pyrenoidosa biomass more efficiently, thereby resulting in efficient and stable hydrogen fermentation. In order to enhance the ECE from C. pyrenoidosa biomass, cassava starch was mixed with C. pyrenoidosa biomass to optimize the carbon/nitrogen (C/N) molar ratio for efficient dark-fermentation. The maximum dark hydrogen yield of276.2ml H2/g TVS from the mixed biomass at C/N molar ratio of25.3showed3.7-and1.8-fold increases, respectively, compared with those from only C. pyrenoidosa biomass and only cassava starch. The maximum hydrogen yield of664.2H2ml/g TVS and methane yield of126.0ml H2/g TVS corresponding to the total ECE of67.2%were achieved through the three-stage method comprising dark-fermentation, photo-fermentation, and methanogenesis.
引文
[1]毛宗强.氢能-21世纪的理想能源.2005,北京:化学工业出版社.
    [2]Himmel, M.E., Ding, S.-Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D. Biomass recalcitrance:Engineering plants and enzymes for biofuels production. Science 2007;315:804-807.
    [3]Scharlemann, J.P.W., Laurance, W.F. Environmental science-How green are biofuels? Science 2008:319:43-44.
    [4]BP世界能源统计年鉴2012. http://www.bp.com/.
    [5]中国统计年鉴2012. http://www.stats.gov.cn/.
    [6]能源发展“十二五”规划http://www.gov.cn/.
    [7]国家中长期科学和技术发展规划纲要http://www.gov.cn/.
    [8]毛宗强.氢能及其近期应用前景.科技导报2005;23:34-38.
    [9](日)氢能协会.氢能技术.2009,北京:科学出版社.
    [10]毛宗强.无限的氢能—未来的能源.自然杂志2006;28:14-18.
    [11]Argun, H., Kargi, F. Bio-hydrogen production by different operational modes of dark and photo-fermentation:An overview. International Journal of Hydrogen Energy 2011;36: 7443-7459.
    [12]Holladay, J.D., Hu. J., King, D.L., Wang, Y. An overview of hydrogen production technologies. Catalysis Today 2009:139:244-260.
    [13]Ni, M., Leung, M.K.H., Leung, D.Y.C., Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable & Sustainable Energy Reviews 2007;11:401-425.
    [14]Qu, Y., Duan, X. Progress, challenge and perspective of heterogeneous photocatalysts. Chemical Society Reviews 2013:42:2568-2580.
    [15]Liu, D., Liu, D., Zeng, R.J., Angelidaki, I. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Research 2006:40: 2230-2236.
    [16]Pattra, S., Sangyoka, S., Boonmee, M., Reungsang. A. Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. International Journal of Hydrogen Energy 2008;33:5256-5265.
    [17]Lee, Y. J., Miyahara, T., Noike, T. Effect of iron concentration on hydrogen fermentation. Bioresource Technology 2001;80:227-231.
    [18]Nath, K., Muthukumar, M., Kumar, A., Das, D. Kinetics of two-stage fermentation process for the production of hydrogen. International Journal of Hydrogen Energy 2008;33:1195-1203.
    [19]Chen, W.-H., Chen, S.-Y., Khanal, S.K., Sung, S. Kinetic study of biological hydrogen production by anaerobic fermentation. International Journal of Hydrogen Energy 2006;31:2170-2178.
    [20]Datar, R., Huang, J., Maness, P.-C., Mohagheghi, A., Czemik, S., Chornet, E. Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. International Journal of Hydrogen Energy 2007;32:932-939.
    [21]Navarro, R.M., Sanchez-Sanchez, M.C., Alvarez-Gal van, M.C., del Valle, F., Fierro, J.L.G. Hydrogen production from renewable sources:biomass and photocatalytic opportunities. Energy & Environmental Science 2009;2:35-54.
    [22]Mizuno, O., Dinsdale, R., Hawkes, F.R., Hawkes, D.L., Noike, T. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresource Technology 2000;73:59-65.
    [23]Khanal, S.K., Chen, W.H., Li, L., Sung, S.W. Biological hydrogen production:effects of pH and intermediate products. International Journal of Hydrogen Energy 2004;29: 1123-1131.
    [24]Nath, K., Das, D. Improvement of fermentative hydrogen production:various approaches. Applied Microbiology and Biotechnology 2004;65:520-529.
    [25]Stephenson, M., Stickland, L.H. Hydrogenase:a bacterial enzyme activating molecular hydrogen. I. The properties of the enzyme. Biochemical Journal 1931;25:205-214.
    [26]Gaffron, H. Reduction of carbon dioxide with molecular hydrogen in green algae. Nature 1939; 143:204-205.
    [27]Gest, H., Kamen, M.D. Photoproduction of molecular hydrogen by Rhodospirillum-rubrum. Science 1949;109:558-559.
    [28]Zheng, G.H., Wang, L., Kang, Z.H. Feasibility of biohydrogen production from tofu wastewater with glutamine auxotrophic mutant of Rhodobacter sphaeroides. Renewable Energy 2010;35:2910-2913.
    [29]任南琪,郭婉茜,刘冰峰.生物制氢技术的发展及应用前景.哈尔滨工业大学学报2010;42:855-863.
    [30]邢新会,张种.发酵生物制氢研究进展.生物加工过程2005;3:1-8.
    [31]Hallenbeck, P.C., Benemann, J.R. Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy 2002;27:1185-1193.
    [32]Hawkes, F.R., Dinsdale, R., Hawkes, D.L., Hussy, I. Sustainable fermentative hydrogen production:challenges for process optimisation. International Journal of Hydrogen Energy 2002;27:1339-1347.
    [33]Aoyama, K., Uemura, I., Miyake, J., Asada, Y. Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis. Journal of Fermentation and Bioengineering 1997;83:17-20.
    [34]Carrieri, D., Ananyev, G., Costas, A.M.G., Bryant, D.A., Dismukes, G.C. Renewable hydrogen production by cyanobacteria:nickel requirements for optimal hydrogenase activity. International Journal of Hydrogen Energy 2008;33:2014-2022.
    [35]Pott, R.W.M., Howe, C.J., Dennis, J.S. Photofermentation of crude glycerol from biodiesel using Rhodopseudomonas palustris:Comparison with organic acids and the identification of inhibitory compounds. Bioresource Technology 2013; 130:725-730.
    [36]Willison, J.C., Madern, D., Vignais, P.M. Increased photoproduction of hydrogen by non-autotrophic mutants of Rhodopseudomonas-capsulata. Biochemical Journal 1984;219:593-600.
    [37]Liu, B.-F., Ren, N.-Q., Xing, D.-F., Ding, J., Zheng, G.-X., Guo, W.-Q., Xu, J.-F., Xie, G.-J. Hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria E. harbinense B49. Bioresource Technology 2009;100:2719-2723.
    [38]Kars, G., Gunduz, U., Yucel, M., Rakhely, G., Kovacs, K.L., Eroglu, I. Evaluation of hydrogen production by Rhodobacter sphaeroides OU001 and its hupSL deficient mutant using acetate and malate as carbon sources. International Journal of Hydrogen Energy 2009;34:2184-2190.
    [39]Kim, E.-J., Lee, M.-K., Kim, M.-S., Lee, J.K. Molecular hydrogen production by nitrogenase of Rhodobacter sphaeroides and by Fe-only hydrogenase of Rhodospirillum rubrum. International Journal of Hydrogen Energy 2008;33:1516-1521.
    [40]Su, H., Cheng, J., Zhou, J., Song, W., Cen, K. Combination of dark- and photo-fermentation to enhance hydrogen production and energy conversion efficiency. International Journal of Hydrogen Energy 2009;34:8846-8853.
    [41]Cheng, J., Su, H., Zhou, J., Song, W., Cen, K. Hydrogen production by mixed bacteria through dark and photo fermentation. International Journal of Hydrogen Energy 2011;36: 450-457.
    [42]Xie, B., Cheng, J., Zhou, J., Song, W., Cen, K. Cogeneration of hydrogen and methane from glucose to improve energy conversion efficiency. International Journal of Hydrogen Energy 2008;33:5006-5011.
    [43]任南琪,王爱杰,马放.产酸发酵微生物生理生态学.2005,北京:科学出版社.
    [44]柯水洲,马晶伟.生物制氢研究进展(Ⅰ):产氢机理与研究动态.化工进展2006;25:1001-1005,1010.
    [45]Carrieri, D., Momot, D., Brasg, I.A., Ananyev, G., Lenz, O., Bryant, D.A., Dismukes, G.C. Boosting Autofermentation Rates and Product Yields with Sodium Stress Cycling: Application to Production of Renewable Fuels by Cyanobacteria. Applied and Environmental Microbiology 2010;76:6455-6462.
    [46]Carrier, D. Physiological control of photosynthesis and fermentation in the cyanobacterium Arthrospira (Spirulina) maxima CS-328 for biofuel production.2009, Princeton University Doctoral Dissertation, New Jersey.
    [47]刘坤.暗发酵-光发酵两阶段联合生物制氢技术研究进展.微生物学通报2012;39:1145-1159.
    [48]Koku, H., Eroglu, I., Gunduz, U., Yucel, M., Turker, L. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy 2002;27:1315-1329.
    [49]Basak, N., Das, D. The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production:The present state of the art. World Journal of Microbiology & Biotechnology 2007;23:31-42.
    [50]Winkler, M., Hemschemeier, A., Gotor, C., Melis, A., Happe, T. Fe -hydrogenases in green algae:photo-fermentation and hydrogen evolution under sulfur deprivation. International Journal of Hydrogen Energy 2002;27:1431-1439.
    [51]Melis, A. Photosynthetic H-2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 2007;226:1075-1086.
    [52]Kosourov, S., Tsygankov, A., Seibert, M., Ghirardi, M.L. Sustained hydrogen photoproduction by Chlamydomonas reinhardtii:Effects of culture parameters. Biotechnology and Bioengineering 2002;78:731-740.
    [53]Florin, L., Tsokoglou, A., Happe, T. A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. Journal of Biological Chemistry 2001;276:6125-6132.
    [54]Melis, A., Happe, T. Hydrogen production. Green algae as a source of energy. Plant Physiology 2001;127:740-748.
    [55]柯水洲,马晶伟.生物制氢研究进展(Ⅱ).化工进展2006;25:1006-1010.
    [56]Su, H., Cheng, J., Zhou, J., Song, W., Cen, K. Improving hydrogen production from cassava starch by combination of dark and photo fermentation. International Journal of Hydrogen Energy 2009;34:1780-1786.
    [57]Cheng, J., Su, H., Zhou, J., Song, W., Cen, K. Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark-and photo-fermentation. International Journal of Hydrogen Energy 2011;36:2093-2101.
    [58]Su, H., Cheng, J., Zhou, J., Song, W., Cen, K. Hydrogen production from water hyacinth through dark- and photo- fermentation. International Journal of Hydrogen Energy 2010;35:8929-8937.
    [59]Song, W., Cheng, J., Zhou, J., Xie, B., Su, H., Cen, K. Cogeneration of hydrogen and methane from protein-mixed food waste by two-phase anaerobic process. International Journal of Hydrogen Energy 2010;35:3141-3146.
    [60]Lin, C.Y., Chang, R.C. Hydrogen production during the anaerobic acidogenic conversion of glucose. Journal of Chemical Technology and Biotechnology 1999;74:498-500.
    [61]Fang, H.H.P., Liu, H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology 2002;82:87-93.
    [62]Maintinguer, S.I., Fernandes, B.S., Duarte, I.C.S., Saavedra, N.K., Adorno, M.A.T., Varesche, M.B.A. Fermentative hydrogen production with xylose by Clostridium and Klebsiella species in anaerobic batch reactors. International Journal of Hydrogen Energy 2011;36:13508-13517.
    [63]Lin, C.-Y., Wu, C.-C., Hung, C.-H. Temperature effects on fermentative hydrogen production from xylose using mixed anaerobic cultures. International Journal of Hydrogen Energy 2008;33:43-50.
    [64]Chen, W.M., Tseng, Z.J., Lee, K.S., Chang, J.S. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy 2005;30:1063-1070.
    [65]Tao, Y., Chen, Y., Wu, Y, He, Y., Zhou, Z. High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. International Journal of Hydrogen Energy 2007;32:200-206.
    [66]Ghosh, D., Hallenbeck, P.C. Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineered Escherichia coli DJT135. International Journal of Hydrogen Energy 2009;34:7979-7982.
    [67]Lee, K.-S., Hsu, Y.-F., Lo, Y.-C., Lin, P.-J., Lin, C.-Y.,Chang, J.-S. Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. International Journal of Hydrogen Energy 2008;33:1565-1572.
    [68]Ren, N.-Q., Xu, J.-F., Gao, L.-F., Xin, L., Qiu, J., Su, D.-X. Fermentative bio-hydrogen production from cellulose by cow dung compost enriched cultures. International Journal of Hydrogen Energy 2010;35:2742-2746.
    [69]Nguyen, T.-A.D., Kim, K.-R., Kim, M.S., Sim, S.J. Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana. International Journal of Hydrogen Energy 2010;35:13392-13398.
    [70]Xie, B., Cheng, J., Zhou, J., Song, W., Liu, J., Cen, K. Production of hydrogen and methane from potatoes by two-phase anaerobic fermentation. Bioresource Technology 2008;99:5942-5946.
    [71]张立宏.混合菌种生物技术(MCB)光合产氢的试验研究.2008,浙江大学博士学位 论文,杭州.
    [72]Das, D., Veziroglu, T.N. Hydrogen production by biological processes:a survey of literature. International Journal of Hydrogen Energy 2001;26:13-28.
    [73]Wu, T.Y., Hay, J.X.W., Kong, L.B., Juan, J.C., Jahim, J.M. Recent advances in reuse of waste material as substrate to produce biohydrogen by purple non-sulfur (PNS) bacteria. Renewable & Sustainable Energy Reviews 2012; 16:3117-3122.
    [74]Cheng, J., Song, W., Xia, A., Su, H., Thou, J., Cen, K. Sequential generation of hydrogen and methane from xylose by two-stage anaerobic fermentation. International Journal of Hydrogen Energy 2012;37:13323-13329.
    [75]Lo, Y.-C., Chen, S.-D., Chen, C.-Y., Huang, T.-L., Lin, C.-Y., Chang, J.-S. Combining enzymatic hydrolysis and dark-photo fermentation processes for hydrogen production from starch feedstock:A feasibility study. International Journal of Hydrogen Energy 2008;33:5224-5233.
    [76]Tawfik, A., Salem, A., El-Qelish, M., Fahmi, A.A., Moustafa, M.E. Factors affecting hydrogen production from rice straw wastes in a mesophillic up-flow anaerobic staged reactor. Renewable Energy 2013;50:402-407.
    [77]Chen, C.-C., Chuang, Y.-S., Lin, C.-Y., Lay. C.-H., Sen, B. Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. International Journal of Hydrogen Energy 2012;37:15540-15546.
    [78]Wang, H., Zhi, Z., Wang, J., Ma, S. Comparison of various pretreatment methods for biohydrogen production from cornstalk. Bioprocess and Biosystems Engineering 2012:35:1239-1245.
    [79]Cao, G.-L., Guo, W.-Q., Wang, A.-J., Zhao, L., Xu, C.-J., Zhao, Q.-l., Ren, N.-Q. Enhanced cellulosic hydrogen production from lime-treated cornstalk wastes using thermophilic anaerobic microflora. International Journal of Hydrogen Energy 2012;37: 13161-13166.
    [80]Li, Q., Liu, C.-Z. Co-culture of Clostridium thermocellum and Clostridium thermosaccharolyticum for enhancing hydrogen production via thermophilic fermentation of cornstalk waste. International Journal of Hydrogen Energy 2012;37: 10648-10654.
    [81]Chuang, Y.-S., Lay, C.-H., Sen. B., Chen. C.-C., Gopalakrishnan, K., Wu, J.-H., Lin, C.-S., Lin, C.-Y. Biohydrogen and biomethane from water hyacinth (Eichhornia crassipes) fermentation:Effects of substrate concentration and incubation temperature. International Journal of Hydrogen Energy 2011;36:14195-14203.
    [82]Cheng,J., Xie, B., Zhou.,J., Song, W., Cen, K. Cogeneration of H-2 and CH4 from water hyacinth by two-step anaerobic fermentation. International Journal of Hydrogen Energy 2010:35:3029-3035.
    [83]Kim. S.-H., Cheon, H.-C., Lee, C.-Y. Enhancement of hydrogen production by recycling of methanogenic effluent in two-phase fermentation of food waste. International Journal of Hydrogen Energy 2012;37:13777-13782.
    [84]Zhou, P., Elbeshbishy, E., Nakhla, G. Optimization of biological hydrogen production for anaerobic co-digestion of food waste and wastewater biosolids. Bioresource Technology 2013;130:710-718.
    [85]Kim, D.-H., Kim. M.S. Development of a novel three-stage fermentation system converting food waste to hydrogen and methane. Bioresource Technology 2013;127: 267-274.
    [86]苏会波.生物质暗发酵和光发酵耦合产氢的机理研究.2011,浙江大学博士学位论文,杭州.
    [87]宋文路.基因改造和驯化细菌利用水葫芦发酵联产氢气和甲烷的机理研究.2011,浙江大学博士学位论文.杭州.
    [88]de Vrije, T., de Haas, G.G., Tan, G.B., Keijsers. E.R.P., Claassen, P.A.M. Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. International Journal of Hydrogen Energy 2002;27:1381-1390.
    [89]de Vrije, T., Bakker, R.R., Budde, M.A.W., Lai, M.H., Mars. A.E.. Claassen, P.A.M. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnology for Biofuels 2009;2.
    [90]Ahn, H.K., Smith, M.C., Kondrad, S.L., White, J.W. Evaluation of Biogas Production Potential by Dry Anaerobic Digestion of Switchgrass-Animal Manure Mixtures. Applied Biochemistry and Biotechnology 2010;160:965-975.
    [91]El-Mashad, H.M. Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae. Bioresource Technology 2013;132:305-312.
    [92]O-Thong, S., Hniman, A., Prasertsan, P., Imai, T. Biohydrogen production from cassava starch processing wastewater by thermophilic mixed cultures. International Journal of Hydrogen Energy 2011;36:3409-3416.
    [93]Dismukes, G.C., Carried, D., Bennette, N., Ananyev, G.M., Posewitz, M.C. Aquatic phototrophs:efficient alternatives to land-based crops for biofuels. Current Opinion in Biotechnology 2008; 19:235-240.
    [94]Carrieri, D., Ananyev, G., Lenz, O., Bryant, D.A., Dismukes, G.C. Contribution of a sodium ion gradient to energy conservation during fermentation in the cyanobacterium Arthrospira (Spirulina) maxima CS-328. Applied and Environmental Microbiology 2011:77:7185-7194.
    [95]Carrieri, D., McNeely, K., De Roo, A.C., Bennette, N., Pelczer,I., Dismukes, G.C. Identification and quantification of water-soluble metabolites by cryoprobe-assisted nuclear magnetic resonance spectroscopy applied to microbial fermentation. Magnetic Resonance in Chemistry 2009;47:S138-S146.
    [96]Carrieri, D., Wawrousek, K., Eckert, C., Yu, J., Maness, P.-C. The role of the bidirectional hydrogenase in cyanobacteria. Bioresource Technology 2011:102: 8368-8377.
    [97]Ananyev, G., Carrieri, D., Dismukes, G.C. Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium "Arthrospira (Spirulina) maxima". Applied and Environmental Microbiology 2008;74: 6102-6113.
    [98]Ferreira, A.F., Marques, A.C., Batista, A.P., Marques, P.A.S.S., Gouveia, L., Silva, C.M. Biological hydrogen production by Anabaena sp-Yield, energy and CO2 analysis including fermentative biomass recovery. International Journal of Hydrogen Energy 2012;37:179-190.
    [99]Choi, J.-A., Hwang, J.-H., Dempsey, B.A., Abou-Shanab, R.A.I., Min, B., Song, H., Lee, D.S., Kim, J.R., Cho, Y., Hong, S., Jeon, B.-H. Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energy & Environmental Science 2011;4: 3513-3520.
    [100]Ananyev,. G.M., Skizim, N.J., Dismukes, G.C. Enhancing biological hydrogen production from cyanobacteria by removal of excreted products. Journal of Biotechnology 2012;162:97-104.
    [101]Cheng, J., Zhang, M., Song, W., Xia, A., Zhou, J., Cen, K. Cogeneration of hydrogen and methane from Arthrospira maxima biomass with bacteria domestication and enzymatic hydrolysis. International Journal of Hydrogen Energy 2011;36:1474-1481.
    [102]张明辉.蓝藻发酵联产氢气和甲烷的机理研究.2011,浙江大学硕士学位论文,杭州.
    [103]岑沛霖,蔡谨.工业微生物学.2008,北京:化学工业出版社.
    [104]Ying, Y., Lv, Z., Min, H., Cheng, J. Dynamic changes of microbial community diversity in a photohydrogen producing reactor monitored by PCR-DGGE. Journal of Environmental Sciences-China 2008;20:1118-1125.
    [105]谢斌飞.淀粉/纤维素类生物质发酵联产氢气和甲烷的机理研究.2009,浙江大学博士学位论文,杭州.
    [106]Trevelyan, W.E., Harrison, J.S. Studies on yeast metabolism.1. Fractionation and microdetermination of cell carbohydrates. Biochemical Journal 1952;50:298-303.
    [107]陈国荣.糖化学基础.2009,上海:华东理工大学出版社.
    [108]Ernst, A., Kirschenlohr, H., Diez, J., Boger, P. Glycogen-content and nitrogenase activity in Anabaena-variabilis. Archives of Microbiology 1984; 140:120-125.
    [109]Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 1959;31:426-428.
    [110]Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 1951;193:265-275.
    [111]张以顺,黄霞,陈云凤.植物生理学实验教程.2009,北京:高等教育出版社.
    [112]杨胜.饲料分析及饲料质量检测技术.1999,北京:中国农业大学出版社.
    [113]张廉奉.气相色谱原理及应用.2009,银川:宁夏人民出版社
    [114]于世林.高效液相色谱方法及应用.2000,北京:化学工业出版社.
    [115]Lay, J.J., Lee, Y.J., Noike, T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research 1999;33:2579-2586.
    [116]Klaehn, S., Hagemann, M. Compatible solute biosynthesis in cyanobacteria. Environmental Microbiology 2011;13:551-562.
    [117]Lin, C.Y., Cheng, C.H. Fermentative hydrogen production from xylose using anaerobic mixed microflora. International Journal of Hydrogen Energy 2006:31:832-840.
    [118]Rodriguez, J.R.B., Reina, G.G., Rodriguez, J.J.S. Determination of free amino acids in microalgae by high-performance liquid chromatography using pre-column fluorescence derivatization. Biomedical Chromatography 1997; 11:335-336.
    [119]Smith, A.D., Holtzapple, M.T. Investigation of the optimal carbon-nitrogen ratio and carbohydrate-nutrient blend for mixed-acid batch fermentations. Bioresource Technology 2011; 102:5976-5987.
    [120]Lin, C.Y., Lay, C.H. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy 2004;29:41-45.
    [121]Christopher, K., Dimitrios, R. A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy & Environmental Science 2012;5: 6640-6651.
    [122]Chen, C.-Y., Yang, M.-H., Yeh, K.-L., Liu, C.-H., Chang. J. Biohydrogen production using sequential two-stage dark and photo fermentation processes. International Journal of Hydrogen Energy 2008;33:4755-4762.
    [123]温东辉.天然沸石吸附—生物再生技术及其在滇池流域暴雨径流污染控制中的试验与机理研究.2003,北京:中国环境科学出版社.
    [124]Hedstrom, A. Ion exchange of ammonium in zeolites:a literature review. Journal of Environmental Engineering-Asce 2001;127:673-681.
    [125]Widiastuti, N., Wu, H., Ang, M., Zhang, D.-K. The potential application of natural zeolite for greywater treatment. Desalination 2008;218:271-280.
    [126]Sarioglu, M. Removal of ammonium from municipal wastewater using natural Turkish (Dogantepe) zeolite. Separation and Purification Technology 2005;41:1-11.
    [127]Romero Garcia, J.M., Acien Fernandez, F.G., Fernandez Sevilla, J.M. Development of a process for the production of L-amino-acids concentrates from microalgae by enzymatic hydrolysis. Bioresource Technology 2012;112:164-170.
    [128]Wu, J.F., Pond, W.G. Amino-acid-composition and microbial-contamination of Spirulina-maxima, a blue-green-alga, grown on the effluent of different fermented animal wastes. Bulletin of Environmental Contamination and Toxicology 1981;27: 151-159.
    [129]Karpinets, T.V., Pelletier, D.A., Pan, C., Uberbacher, B.C., Melnichenko, G.V., Hettich, R.L., Samatova, N.F. Phenotype fingerprinting suggests the involvement of single-genotype consortia in degradation of aromatic compounds by Rhodopseudomonas palustris. Plos One 2009;4.
    [130]Wang, S., Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal 2010; 156:11-24.
    [131]Dephilippis, R., Sili, C., Vincenzini, M. Glycogen and poly-beta-hydroxybutyrate synthesis in Spirulina maxima. Journal of General Microbiology 1992;138:1623-1628.
    [132]Warr, S.R.C., Reed, R.H., Chudek, J.A., Foster, R., Stewart, W.D.P. Osmotic adjustment in Spirulina-platensis. Planta 1985; 163:424-429.
    [133]Page-Sharp, M., Behm, C.A., Smith, G.D. Involvement of the compatible solutes trehalose and sucrose in the response to salt stress of a cyanobacterial Scytonema species isolated from desert soils. Biochimica Et Biophysica Acta-General Subjects 1999; 1472: 519-528.
    [134]Richards, A.B., Krakowka, S., Dexter, L.B., Schmid, H., Wolterbeek, A.P.M., Waalkens-Berendsen, D.H., Shigoyuki, A., Kurimoto, M. Trehalose:a review of properties, history of use and human tolerance, and results of multiple safety studies. Food and Chemical Toxicology 2002;40:871-898.
    [135]Ohtake, S., Wang, Y.J. Trehalose:current use and fture applications. Journal of Pharmaceutical Sciences 2011;100:2020-2053.
    [136]Keller, F., Schellenberg, M., Wiemken, A. Localization of trehalase in vacuoles and of trehalose in the cytosol of yeast (Saccharomyces-cerevisiae). Archives of Microbiology 1982;131:298-301.
    [137]Vianna, C.R., Silva, C.L.C., Neves, M.J., Rosa, C.A. Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaca:trehalose metabolism, heat and ethanol resistance. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 2008;93:205-217.
    [138]Mori, H., Lee, J.-H., Okuyama, M., Nishimoto, M., Ohguchi, M., Kim, D., Kimura. A., Chiba, S. Catalytic reaction mechanism based on alpha-secondary deuterium isotope effects in hydrolysis of trehalose by European honeybee trehalase. Bioscience Biotechnology and Biochemistry 2009;73:2466-2473.
    [139]http://www.megazyme.com/.
    [140]Chen, W.-H., Tu, Y.-J., Sheen, H.-K. Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Applied Energy 2011;88:2726-2734.
    [141]Chen, W.-H., Ye. S.-C., Sheen, H.-K. Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Applied Energy 2012;93:237-244.
    [142]Orozco, A., Ahmad, M., Rooney, D., Walker, G. Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system. Process Safety and Environmental Protection 2007;85:446-449.
    [143]Cheng, J., Zhou, J., Li, Y., Liu, J., Cen, K. Improvement of coal water slurry property through coal physicochemical modifications by microwave irradiation and thermal heat. Energy & Fuels 2008;22:2422-2428.
    [144]Lam, S.S., Russell, A.D., Chase, H.A. Microwave pyrolysis. a novel process for recycling waste automotive engine oil. Energy 2010;35:2985-2991.
    [145]Yokoi, H., Saitsu, A., Uchida, H., Hirose, J., Hayashi, S., Takasaki, Y. Microbial hydrogen production from sweet potato starch residue. Journal of Bioscience and Bioengineering 2001;91:58-63.
    [146]Saeman, J.F. Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Industrial and Engineering Chemistry 1945;37:43-52.
    [147]Mohan, D., Pittman, C.U., Jr., Steele, P.H. Pyrolysis of wood/biomass for bio-oil:A critical review. Energy & Fuels 2006;20:848-889.
    [148]Kebede, E., Ahlgren, G. Optimum growth conditions and light utilization efficiency of Spirulina platensis (equals Arthrospira fusiformis) (Cyanophyta) from Lake Chitu, Ethiopia. Hydrobiologia 1996;332:99-109.
    [149]Kebede, E. Response of Spirulina platensis (=Arthrospira fusiformis) from Lake Chitu, Ethiopia, to salinity stress from sodium salts. Journal of Applied Phycology 1997;9: 551-558.
    [150]Vonshak, A., Guy, R., Guy, M. The response of the filamentous cyanobacterium Spirulina-platensis to salt stress. Archives of Microbiology 1988; 150:417-420.
    [151]Vaneykelenburg, C. On the morphology and ultrastructure of the cell wall of Spirulina platensis. Antonie Van Leeuwenhoek Journal of Microbiology 1977;43:89-99.
    [152]Mussgnug, J.H., Klassen, V., Schlueter, A., Kruse, O. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology 2010; 150:51-56.
    [153]Yin, G., Liu, Z., Li, C., Liu, F., Ding, F.X., Yuan, N.J. Isolation, characterization and properties of Spirulina glycoprotein. Chemical Journal of Chinese Universities-Chinese 1999;20:565-568.
    [154]俞聪.水葫芦微波水解和发酵制取燃料酒精的机理研究.2010,浙江大学硕士学位论文,杭州.
    [155]Fabregas, J., Maseda, A., Dominguez, A., Otero, A. The cell composition of Nannochloropsis sp changes under different irradiances in semicontinuous culture. World Journal of Microbiology & Biotechnology 2004;20:31-35.
    [156]Rebolloso-Fuentes, M.M., Navarro-Perez, A., Garcia-Camacho, F., Ramos-Miras, J.J., Guil-Guerrero, J.L. Biomass nutrient profiles of the microalga Nannochloropsis. Journal of Agricultural and Food Chemistry 2001;49:2966-2972.
    [157]Liu, C.-H., Chang, C.-Y., Cheng, C.-L., Lee, D.-J., Chang, J.-S. Fermentative hydrogen production by Clostridium butyricum CGS5 using carbohydrate-rich microalgal biomass as feedstock. International Journal of Hydrogen Energy 2012;37:15458-15464.
    [158]Yan, Q., Zhao, M., Miao, H., Ruan, W., Song, R. Coupling of the hydrogen and polyhydroxyalkanoates (PHA) production through anaerobic digestion from Taihu blue algae. Bioresource Technology 2010; 101:4508-4512.
    [159]Yan, Q., Wang, A., Yu, C., Ren, N., Zhang, Y., Zhang, G. Enzymatic characterization of acid tolerance response (ATR) during the enhanced biohydrogen production process from Taihu cyanobacteria via anaerobic digestion. International Journal of Hydrogen Energy 2011;36:405-410.
    [160]Balasubramanian, S., Ortego, J., Rusch, K.A., Boldor, D. Efficiency of artemia cysts removal as a model invasive spore using a continuous microwave system with heat recovery. Environmental Science & Technology 2008;42:9363-9369.
    [161]Kim, M.S., Baek, J.S., Yun, Y.S., Sim, S.J., Park, S., Kim, S.C. Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation. International Journal of Hydrogen Energy 2006;31:812-816.
    [162]Drapcho, C, Nghiem, J., Walker, T. Biofuels Engineering Process Technology.2008, New York:McGraw-Hill.
    [163]Talukder, M.M.R., Das, P., Wu, J.C. Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid. Biochemical Engineering Journal 2012;68:109-113.
    [164]Lee, H.-S., Salerno, M.B., Rittmann, B.E. Thermodynamic evaluation on H(2) production in glucose fermentation. Environmental Science & Technology 2008;42: 2401-2407.
    [165]Dean, J.A., Lange, N.A. Lange's Handbook of Chemistry.1999, New York: McGraw-Hill.
    [166]Madigan, M.T., Martinko, J.M. Brock Biology of Microorganisms.2006, New Jersey: Pearson Prentice Hall.
    [167]Carlozzi, P., Sacchi, A. Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor. Journal of Biotechnology 2001;88:239-249.
    [168]Kim, J.K., Lee, B.K. Mass production of Rhodopseudomonas palustris as diet for aquaculture. Aquacultural Engineering 2000;23:281-293.
    [169]Wijffels, R.H., Barbosa, M.J. An Outlook on Microalgal Biofuels. Science 2010:329: 796-799.
    [170]Chisti, Y. Biodiesel from microalgae. Biotechnology Advances 2007;25:294-306.
    [171]Demirbas, A. Use of algae as biofuel sources. Energy Conversion and Management 2010:51:2738-2749.
    [172]Williams, P.J.L.B. Biofuel:microalgae cut the social and ecological costs. Nature 2007;450:478-478.
    [173]Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O., Hankamer, B. Second generation biofuels:high-efficiency microalgae for biodiesel production. Bioenergy Research 2008;1:20-43.
    [174]Phukan, M.M., Chutia, R.S., Konwar, B.K., Kataki, R. Microalgae Chlorella as a potential bio-energy feedstock. Applied Energy 2011;88:3307-3312.
    [175]Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 2006;101:87-96.
    [176]Lv, J.-M., Cheng, L.-H., Xu, X.-H., Zhang, L., Chen, H.-L. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology 2010;101:6797-6804.
    [177]Biller, P., Ross, A.B. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology 2011;102:215-225.
    [178]Yeh, K.-L., Chang, J.-S., Chen, W.-m. Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Engineering in Life Sciences 2010; 10:201-208.
    [179]Xia, J.R., Gao, K.S. Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae. Journal of Integrative Plant Biology 2005;47:668-675.
    [180]Ogbonna, J.C., Tanaka, H. Night biomass loss and changes in biochemical composition of cells during light/dark cyclic culture of Chlorella pyrenoidosa. Journal of Fermentation and Bioengineering 1996;82:558-564.
    [181]Brown, M.R., Jeffrey, S.W. Biochemical-composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae.1. Amino-acids, sugars and pigments. Journal of Experimental Marine Biology and Ecology 1992;161:91-113.
    [182]Tokusoglu, O., Unal, M.K. Biomass nutrient profiles of three microalgae:Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science 2003;68: 1144-1148.
    [183]Elbeshbishy, E., Hafez, H., Nakhla, G. Viability of ultrasonication of food waste for hydrogen production. International Journal of Hydrogen Energy 2012;37:2960-2964.
    [184]Guo, L., Li, X.-M., Bo, X., Yang, Q., Zeng. G.-M., Liao, D.-x., Liu, J.-J. Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge. Bioresource Technology 2008;99:3651-3658.
    [185]Cheng, C.-L., Lo, Y.-C., Lee, K.-S., Lee, D.-J., Lin, C.-Y., Chang, J.-S. Biohydrogen production from lignocellulosic feedstock. Bioresource Technology 2011:102: 8514-8523.
    [186]Sun, J., Yuan, X., Shi, X., Chu, C., Guo, R., Kong, H. Fermentation of Chlorella sp for anaerobic bio-hydrogen production:Influences of inoculum-substrate ratio, volatile fatty acids and NADH. Bioresource Technology 2011; 102:10480-10485.
    [187]Ho, K.-L., Lee. D.-J., Su, A., Chang, J.-S. Biohydrogen from cellulosic feedstock: Dilution-to-stimulation approach. International Journal of Hydrogen Energy 2012:37: 15582-15587.
    [188]Yun. Y.-M., Jung, K.-W., Kim, D.-H., Oh, Y.-K., Shin. H.-S. Microalgal biomass as a feedstock for bio-hydrogen production. International Journal of Hydrogen Energy 2012:37:15533-15539.
    [189]Liao, L., Xu, X.-W., Jiang, X.-W., Wang, C.-S., Zhang, D.-S., Ni, J.-Y, Wu, M. Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean. Ferns Microbiology Ecology 2011;78:565-585.
    [190]Liao, L., Xu, X.-w., Wang, C.-s., Zhang, D.-s., Wu, M. Bacterial and archaeal communities in the surface sediment from the northern slope of the South China Sea. Journal of Zhejiang University-Science B 2009;10:890-901.
    [191]http://blast.ncbi.nlm.nih.gov/Blast.cgi.
    [192]Fang. M.-X., Zhang, W.-W., Zhang, Y.-Z., Tan, H.-Q., Zhang. X.-Q., Wu. M., Zhu, X.-F. Brassicibacter mesophilus gen, nov., sp nov., a strictly anaerobic bacterium isolated from food industry wastewater. International Journal of Systematic and Evolutionary Microbiology 2012;62:3018-3023.
    [193]Tan, H.-Q., Li, T.-T., Zhu, C., Zhang, X.-Q., Wu, M., Zhu. X.-F. Parabacteroides chartae sp nov., an obligately anaerobic species from wastewater of a paper mill. International Journal of Systematic and Evolutionary Microbiology 2012:62:2613-2617.
    [194]Argun, H., Kargi. F., Kapdan, F.K., Oztekin, R. Biohydrogen production by dark fermentation of wheat powder solution:Effects of C/N and C/P ratio on hydrogen yield and formation rate. International Journal of Hydrogen Energy 2008:33:1813-1819.
    [195]Hcrnandez-Eugenio. G., Fardeau, M.L., Cayol, J.C., Patel, B.K.C., Thomas, P., Macarie, H., Garcia, J.L., Ollivier, B. Sporanaerobacter acetigenes gen. nov., sp now. a novel acetogenic, facultatively sulfur-reducing bacterium. International Journal of Systematic and Evolutionary Microbiology 2002:52:1217-1223.
    [196]Rezgui, R., Maaroufi, A., Fardeau, M.-L., Gam, Z.B.A., Cayol, J.-L., Ben Hamed, S., Labat, M. Anaerosalibacter bizertensis gen. nov., sp nov., a halotolerant bacterium isolated from sludge. International Journal of Systematic and Evolutionary Microbiology 2012:62:2469-2474.
    [197]Weiss, A., Jerome, V., Freitag, R., Mayer, H.K. Diversity of the resident microbiota in a thermophilic municipal biogas plant. Applied Microbiology and Biotechnology 2008:81: 163-173.
    [198]Cirne, D.G., Bond, P., Pratt, S., Lant, P., Batstone, D.J. Microbial community analysis during continuous fermentation of thermally hydrolysed waste activated sludge. Water Science and Technology 2012;65:7-14.
    [199]Orlygsson, J., Krooneman, J., Collins, M.D., Pascual, C., Gottschall, J.C. Clostridium acetireducens sp nov, a novel amino acid-oxidizing, acetate-reducing anaerobic bacterium. International Journal of Systematic Bacteriology 1996;46:454-459.
    [200]Kitahara, M., Takamine, F., Imamura, T., Benno, Y. Assignment of Eubacterium sp VPI 12708 and related strains with high bile acid 7 alpha-dehydroxylating activity to Clostridium scindens and proposal of Clostridium hylemonae sp nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology 2000;50:971-978.
    [201]Morris, G.N., Winter, J., Cato, E.P., Ritchie, A.E., Bokkenheuser. V.D. Clostridium scindens sp. nov., a human intestinal bacterium with desmolytic activity on corticoids. International Journal of Systematic Bacteriology 1985:35:478-481.
    [202]Wilde, E., Collins, M.D., Hippe, H. Clostridium pascui sp nov. a new glutamate-fermenting sporeformer from a pasture in Pakistan. International Journal of Systematic Bacteriology 1997;47:164-170.
    [203]Mead, G.C. Amino acid-fermenting clostridia. Journal of General Microbiology 1971:67: 47-56.
    [204]Laanbroek, H.J., Stal, L.J., Veldkamp, H. Utilization of hydrogen and formate by Campylobacter spec. under aerobic and anaerobic conditions. Archives of Microbiology 1978;119:99-102.
    [205]Buckel, W., Barker, H.A. Two pathways of glutamate fermentation by anaerobic bacteria. Journal of Bacteriology 1974; 117:1248-1260.
    [206]Chaganti, S.R., Pendyala, B., Lalman, J.A., Veeraoalli, S.S., Heath, D.D. Influence of linoleic acid, pH and HRT on anaerobic microbial populations and metabolic shifts in ASBRs during dark hydrogen fermentation of lignocellulosic sugars. International Journal of Hydrogen Energy 2013;38:2212-2220.
    [207]Yossan, S., O-Thong, S., Prasertsan, P. Effect of initial pH, nutrients and temperature on hydrogen production from palm oil mill effluent using thermotolerant consortia and corresponding microbial communities. International Journal of Hydrogen Energy 2012;37:13806-13814.
    [208]Liu, H., Zhang, T., Fang, H.H.P. Thermophilic H2 production from a cellulose-containing wastewater. Biotechnology Letters 2003:25:365-369.
    [209]Lay, C.-H., Sen, B., Chen, C.-C., Wu, J.-H., Lee, S.-C., Lin, C.-Y. Co-fermentation of water hyacinth and beverage wastewater in powder and pellet form for hydrogen production. Bioresource Technology 2013; 135:610-615.
    [210]Chen. Y., Xiao, N., Zhao, Y., Mu, H. Enhancement of hydrogen production during waste activated sludge anaerobic fermentation by carbohydrate substrate addition and pH control. Bioresource Technology 2012;114:349-356.
    [211]http://faostat3.fao.org/faostat-gateway/go/to/home/E.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700