重组人胰岛素原C肽对糖尿病视网膜病变的早期干预作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察胰岛素原C肽对体外培养的视网膜Müller细胞和微血管内皮细胞的影响,及其与胰岛素的相互作用。并通过在体研究,观察早期单独应用生理剂量的重组人胰岛素原C肽对实验性糖尿病大鼠视网膜表达血管内皮生长因子(VEGF)及一氧化氮合酶(NOS)活力和一氧化氮合成(NO)的影响,及其对血-视网膜屏障功能的影响,探讨其作为预防糖尿病视网膜病变药物的前景。
     方法:(1)酶消化法分离培养大鼠视网膜Müller细胞及牛视网膜微血管内皮细胞。免疫细胞化学法及透射电镜鉴定细胞性质。培养细胞各组分别添加不同浓度的胰岛素原C肽或/和胰岛素。硝酸还原酶法测定上清NO含量。ELISA法测定上清VEGF含量。(2)链脲佐菌素诱导糖尿病大鼠模型。实验动物分三组,糖尿病组、糖尿病应用C肽组(C肽剂量:130nmol/KgBW皮下注射2次/日)、正常对照组,SPF环境饲养八周,每周测定体重及血糖。免疫组织化学法对眼球切片作视网膜VEGF表达的定性检测,ELISA法对视网膜匀浆作VEGF含量的定量检测。分型测定视网膜NOS活力。硝酸还原酶法测定视网膜匀浆NO含量。伊凡斯蓝示踪法测定血-视网膜屏障功能。
     结果:(一)离体试验:(1)C肽抑制Müller细胞NO合成:胰岛素组平均NO浓度明显高于正常对照组(t=4.111,P<0.01,n=6)。C肽组低于正常组(t=2.932,P<0.05)。联合应用组与对照组无差异(t=1.891,P>0.1)。C肽作用与浓度有关。(2)单独应用胰岛素原C肽对Müller细胞表达VEGF无影响(F=0.58,P>0.05),但等摩尔浓度(10~(-5)mol/L)的C肽联合胰岛素应用时,可以抑制胰岛素引起的VEGF表达增高,两者之间的交互作用有显著意义(F=7.50,P<0.05)。(3)10~(-5)胰岛素使BREC合成NO增加(t=4.922,P<0.001);10~(-5)mol/L的胰岛素原C肽与胰岛素联合应用使BREC合成NO水平降低至胰岛素组与正常组之间(vs 10~(-5)M胰岛素组:t=2.318,P<0.05;vs对照组:t=2.806,P<0.02);浓度10~(-9)-10~(-5)M的胰岛素原C肽可以抑制BREC合成NO,各浓度间无差异(P>0.05)。(二)在体试验:(1)糖尿病组与糖尿病应用C肽组大鼠血糖维持在24.14-33.3mol/L的高水平,体重不随周龄增长,正常对照组大鼠血糖波动于正常范围,体重稳步增长。(2)三组视网膜均有VEGF阳性表达,阳性颗粒主要位于神经节细胞层与近内核层,其中糖尿病组视网膜内核层阳性颗粒密集,其他两组较少。三组视网膜VEGF含量分别为,正常对照组4.30±1.012,糖尿病组10.63±2.743,糖尿病C肽组7.49±2.262。三组间差别有统计意义(F=13.604,P<0.01)。(3)视网膜匀浆的平均NO含量分别为:糖尿病组0.115±0.023,糖尿病用C肽组0.079±0.013,正常对照组0.042±0.017(μmol/gprot)。三组间差别有极显著意义(F=16.63,P<0.01)。糖尿病组平均iNOS 2.662±0.355,cNOS 2.556±0.260,糖尿病用C肽组平均iNOS2.238±0.367,cNOS3.286±0.383,正常对照组平均iNOS 1.997±0.292,cNOS4.063±0.636(U/mgprot),三组间差别均有统计意义(iNOS:F=6.877,P<0.01;cNOS:F=9.892,P<0.01)。(4)三组视网膜EB渗漏分别为,糖尿病组186.74±16.00,糖尿病用C肽组141.47±33.48,正常对照组32.02±11.45,三组间差异有极显著的统计意义(F=47.17,P<0.01)。
     结论:(1)联合应用等摩尔胰岛素原C肽与胰岛素可以纠正胰岛素引起的视网膜Müller细胞NO合成过度。(2)联合应用等摩尔胰岛素原C肽与胰岛素可以纠正胰岛素引起的Müller细胞VEGF表达过度。(3)胰岛素原C肽可以纠正胰岛素引起的牛视网膜微血管内皮细胞合成NO过度。(4)早期单独应用胰岛素原C肽可以部分改善糖尿病引起的视网膜VEGF高表达,调节视网膜NOS活力,部分抑制视网膜NO过度合成,并部分恢复血-视网膜屏障功能、减少白蛋白渗出。
Objective: To investigate the effects of equal mole of insulin and proinsulin C-peptide on the functions of cultured rat retinal Muller cells and bovine retinal microvascular endothelial cells. And to evaluate the effects of proinsulin C-peptide on the vascular endothelial growth factor (VEGF) expression, the nitric oxide (NO) synthesis of diabetic rat retina and its protective effect on the blood-retinal barrier (BRB) function. Methods: (1) Rat retinal Muller cells and bovine retinal microvascular endothelial cells were cultured by enzyme digest method. Immunocytochemistry and electronic microscopy were used for cell identification. Different concentrations of insulin, proinsuling C-peptide were added to the cells separately or combined 24 hours before measuring. The nitric oxide level of the supernatant was measured by nitrate reductase method and VEGF concentration by ELISA. (2) Diabetic rats were induced by streptozotocin intravenously injected of 50mg/Kg body weight. All the animals (diabetic group, C-peptide interfering diabetic group, and control group) were fed in a specific pathogen free environment for eight weeks. The dose of C-peptide was 130nmol/Kg body weight by subcutaneous injection twice a day. The blood glucose level and the body weight were measured every week. Immunohistochemistry method was used to qualitatively detect the VEGF reaction on the retinal section. The VEGF concentration was measured by enzyme-linked immunoabsorption assay (ELISA) method. The vitality of different type of nitric oxide synthase was measured separately and NO level was measured by nitrate reductase method. And the BRB function was measured by Evans blue quantitatively.
    Results: In vitro: (1) The retinal Muller cells NO content was increased by insulin (p<0.01) and decreased by C-peptide (P<0.05) in the concentration of 10~(-5)M. And the efficacy of C-peptide correlated with the concentration. (2) The VEGF expression was increased by insulin, and decreased to normal level by combined using equal mole of insulin and C-peptide in cultured Muller cells. While it was not changed by C-peptide
    solely. (3) The NO over synthesis caused by insulin (t=4.922, P<0.001) in BREC could be corrected by combined with equal mole of proinsulin C-peptide (vs Insulin: t=2.318, P<0.05; vs control: t=2.806, P<0.02). There is no statistically significant difference among different concentration of C-peptide (P>0.05). In vivo: (1) The blood glucose was maintained in a very high level ranged from 24.14 to 33.3mol/L in the two diabetic groups (with/without C-peptide interfering) and the body weight was not increased with the age. While the blood glucose level was normal and the body weight was growing steadily in control group. (2) The VEGF immuno-reaction was detectable on the retinal ganglion cell layer and near the inner nuclei layer in all three groups. And the positive reaction was more distinctive in the diabetic without C-peptide interfering group than the other twos. The difference of VEGF concentrations among the three groups was statistically significant (F-13.604, P<0.01). The C-peptide interfering diabetic group had the concentration that is lower than diabetic group (P<0.05) but higher than control group (P<0.05). (3) The C-peptide group had the vitality of eNOS, iNOS and NO content between the other two groups. (4) The Evans blue exudation were 186.74±16.00 in diabetic group, 141.47±33.48 in C-peptide group, and 32.02±11.45 in control group. The EB level in C-peptide group was lower than diabetic group (P<0.05) but still higher than control group (P<0.01).
    Conclusion: (1) The nitric oxide over synthesis in Muller cells caused by insulin can return to normal level by combined using equal mole of insulin and proinsulin C-peptide. (2) The VEGF over expression in Muller cells caused by insulin can also return to normal by combined using. (3) The NO over synthesis caused by insulin in BREC could be corrected by combined with equal mole of proinsulin C-peptide. (4) Early treatment of proinsulin C-peptide solely can partially inhibit the VEGF over expression, regulate NOS vitality, inhibit NO over synthesis, ameliorate the albumin exudation in diabetic rat retina, and restore the blood-retinal barrier function.
引文
1. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on development and progression of long-term complications in insulin-dependent diabetes mellitus. [J] N Engl J Med, 1993, 329: 977-986
    2. United Kingdoms Prospective Diabetes Study(UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in over-weight patients with type II diabetes. [J] Lancet 1998, 352:854-865
    3. Nelson RG, Wolfe JA, Horton MB, et al. Proliferative retinopathy in NIDDM: incidence and risk factors in Pima Indians. [J] Diabetes, 1989, 38: 435-440
    4. Ido Y, Vindigni A, Chang K, et al. Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. [J] Science, 1997, 777: 563-566
    5. Johansson BL, Borg K, Fernquist-Forbes E, et al. C-peptide improves autonomic nerve function in patients with Type 1 diabetes. [J] Diabetologia, 1996,39:687-695
    6. Wojcikowski, et al. Effects of synthetic rat C-peptide in normal and diabetic rats. [J] Diabetologia, 1983, 25: 288
    7. Ronald Klein. Prevention of visual loss from diabetic retinopathy. [J] Survey of ophthalmology, 2002, 47(6): s246-s252
    8. Caltutt NA, Freshwater JD, Mizisin AP. Prevention of sensory disorders in diabetic Sprague-Dawley rats by aldose reductase inhibition or treatment with ciliary neurotrophic factor. [J] Diabetologia, 2004,47(4): 718-724
    9. Hammes HP, Du X, Edelstein D, et al. Bentofiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. [J] Nat Med. 2003, 9(3): 294-299
    10. Podwall D, Gooch C. Diabetic neuropathy: clinical features, etiology and therapy. [J] Curr Neurol Neurosci Rep, 2004 Jan; 4(1): 55-61
    11. Aiello LP, Northrup JM, Keyt BA, et al. Hypoxic regulation of vascular endothelial growth factor in retinal cells. [J] Arch Ophthalmol, 1995, 113: 1538-1544
    
    12. Robbins SG, Conaway JR, Ford BL, et al. Detection of VEGF protein in vascular and nonvascular cells of the normal and oxygen-injured rat retina [J]. Growth Factors, 1997,14: 229-241
    13. Witner AN, Vrensen GF, Van Noorden CJ, et al. Vascular endothelial growth factors and angiogenesis in eye disease. [J] Prog Retin Eye Res, 2003, 22(1): 1-29
    14. Radomnski MW, Valance P, Whitley G, et al. Platelet adhesion to human vascular endothelium modulated by constitutive and cytokine induced nitric oxide. [J] Cardiovasc Res, 1993, 27: 1380-1382
    15. Grau GE, Lou J. TNF in vascular pathology: the importance of platelet-endothelium interactions. [J] Res Immunol, 199, 144: 355-363
    16. Rigler R, Pramanik Ak, Jonasson P, et al. Specific binding of proinsulin C-peptide to human cell membranes. [J] Proc Natl Acad Sci USA, 1999, 96: 13318-13323
    17. Kitamura T, Kimura K, Jung B, et al. Proinsulin C-peptide activates cAMP response element-binding proteins through the p38 mitogen-activated protein kinase pathway in mouse lung capillary endothelial cells. [J] Biochem, 2002, 366: 737-744
    18. Zhong Z, Davidescu A, Ehren I, et al. C-peptide stimulates ERK1/2 and JNK MAP kinases via activation of protein kinase C in human renal tubular cells. [J] Diabetologia, 2005,48: 187-197
    19. Wahren J, Shafqat J, Johansson J, et al. C-peptide stimulates β-cell Na~+-K~--ATPase activity: a negative feedback mechanism on insulin secretion. [J] Diabetologia, 1996, 39(S1): 263
    20. Ohtomo Y, Aperia A, Sahlglen B, et al. C-peptide stimulates rat renal tubular Na~+-K~--ATPase activity in synergism with neuropeptide Y. [J] Diabetologia, 1996,39: 199-205
    21. Ohtomo Y, Bergman T, Johanson BL, et al. Differential effects of proinsulin C-peptide fragments on Na~+-K~--ATPase activity of renal tubule segments. [J] Diabetologia, 1998, 41: 287-291
    
    22. Scalia R, Coyle KM, Levine BJ, et al. C-peptide inhibits leukocyte-endothelium interaction in the microcirculation during acute endothelial dysfunction. [J] FASEB J,2000,14: 2357-2364
    
    23. lint T, Forst T, Closs E, et al. Activation of endothelial nitric oxide synthase by C-peptide. [J] Diabetologia, 1998,41(S1): A176
    
    24. Lutty GA, Mcleod DS, Merges C, et al. Localization of vascular endothelial growth factor in human retina and choroid. [J] Arch Ophthalmol, 1996, 114: 971-977
    25. Berse B, Browm LF, Van-de-Water, et al. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. [J] Mol Biol Cell, 1992, 3: 211-220
    26. Shweiki D, Itin A, Soffer D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. [J] Nature, 1992, 359(6398): 843-845
    27. Suzuma K, Takagi H, Otani A, et al. Hypoxia and vascular endothelial growth factor stimulate microvascular integrin expression in bovine retinal microvascular endothelial cells. [J] Invest Ophthalmol Vis Sci, 1998, 39: 1028-1035
    28. Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. [J] Science, 1989, 246: 1306-1309
    29. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secret a vascular permeability factor that promotes accumulation of ascites fluid. [J] Science, 1983, 219(4587): 983-985
    30. Duh E, Aiello LP. Vascular endothelial growth factor and diabetes: The agonist versus antagonist paradox. [J] Diabetes, 1999,48: 1899-1906
    31. Xu QW, Qaum T, Adamis AP. Sensitive blood-retinal barrier breakdown quantitation using Evans blue. [J] Invest Ophthalmol Vis Sci, 2001, 42: 789-794
    32. Qaum T, Xu QW, Joussen AM, et al. VEGF initiated blood-retinal barrier breakdown in early diabetes. [J] Invest Ophthalmol Vis Sci, 2001, 42: 2408-2413
    33. Pe'er J, Folberg R, Itin A,et al. Upregulated expression of vascular endothelial growth factor in proliferative diabetic retinopathy. [J] Br J Ophthalmol, 1996, 118:445-450
    34. Aiello LP, Shima EA, Rook SL, et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor using soluble VEGF-receptor chimeric proteins. [J] Proc Natl Acad Sci USA, 1995, 92: 10457-10461
    35. Robinson GS, Pierce EA, Rook SL, et al. Oligodeoxyneucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. [J] Proc Natl Acad Sci USA, 1996, 93: 4851-4856
    36. Huang Q, Yuan Y. Interaction of PKC and NOS in signal transduction of microvascular hyperpermeability. [J] Am J Physiol, 1997,273: H2442-2451
    37. Zech JC, Pouvrean I, Cotinet A, et al. Effect of cytokines and NO on tight junctions in cultured rat retinal pigment epithelial cell. [J] Invest Ophthalmol Vis Sci, 1998,39: 1600-1608
    38. Seunlaub F, Courois Y, Goureau O, et al. Inducible nitric oxide synthase mediates the change from retinal to vitreal neovascularization in ischemic retinopathy. [J] J Clin Invest, 2001, 107: 717-725
    39. Kashiwagi K, Iizuka Y, Mochizuki S, et al. Differences in nitric oxide production: a comparison of retinal ganglion cells and retinal glial cells cultured under hypoxic conditions. [J] Molecular Brain Research, 2003, 112: 126-134
    40. Heidinger V, Dreyfus H, Sahel J, et al. Excitotoxic damage of retinal glial cells depends upon normal neuron-glial cells interactions. [J] Glia, 1998, 23: 146-155
    41. Arkhipova MM, Neroev VV, Baratova LA, et al. L-arginine in the lacrimal fluid of patients with diabetic retinopathy and the possible role of nitric oxide in the pathogenesis of retinal ischemia. [J] Vestnik Oftalmologii, 2000, 116(2): 23-24
    42. Kowluru RA. Diabetes-induced elevations in retinal oxidative stress, protein kinase C and nitric oxide are interrelated. [J] Acta Diabetologica, 2001, 38(4): 179-85
    43. Du Y, Smith MA, Miller CM, et al. Diabetes-induced nitrative stress in the retina, and correction by aminoguanidine. [J] J Neurochem, 2002, 80(5): 771-779
    44. De La Cruz P, Guerrero A, Paniego J, et al. Effect of aspirin on prostanoids and nitric oxide production in streptozotocin-diabetic rats with ischemic retinopathy. [J] N-S Arch Pharm, 2002, 365(2): 96-101
    45. Arkhipova MM, Neroev VV, Baratova LA, et al. L-arginine in the lacrimal fluid of patients with diabetic retinopathy and the possible role of nitric retinopathy and the possible role of nitric ischemia. [J] Vestnik Oftalmologii, 2000, 116(2): 23-24
    46. Joussen AM, Poulaki V, Tsujikawa A, et al. Suppression of diabetic retinopathy with angiopoietin-1. [J] Am J Pathol, 2002,160(5): 1683-1693
    47. Yilmaz G, Esser P, Kociok N, et al. Elevated vitreous nitric oxide levels in patients with proliferative diabetic retinopathy. [J] Am J Ophthalmol, 2000, 130(1): 87-90
    48. Oku H, Kida T, Sugiyama T, et al. Possible involvement of endothelin-1 and nitric oxide in the pathogenesis of proliferative diabetic retinopathy. [J] Retina, 2001, 21(6): 647-651
    49. Kashiwagi K, Iizuka Y. Araie M, et al. Effects of retinal glial cells on isolated rat retinal ganglion cells. [J] Invest Ophthalmol Vis Sci, 2001, 42: 2686-2694
    50. Alder VA, Su E-N, Yu D-Y, et al. Diabetic retinopathy: early functional changes. [J] Clin Exp Pharm Physiol, 1997, 24: 785-788
    51. Di Leo MAS, Caputo S, Falsini B, et al. Presence and further development of retinal dysfunction after 3-year follow up in IDDM patients without angiographically documented vasculopathy. [J] Diabetologia, 1994, 37: 911-916
    52. Holopigian K, Seiple W, Lorenzo M, et al. A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. [J] Invest Ophthalmol Vis Sci, 1992, 33: 2773-2780
    53. Kobayashi M, Kuroiwa T, Shimokawa R, et al. Nitric oxide synthase expression in ischemic rat retinas. [J] Jpn J Ophthalmol, 2000, 44: 235-244.
    54. Lopez-Costa JJ, Goldstein J, Saavedra JP, et al. Neuronal and macrophagic nitric oxide synthase isoforms distribution in normal rat retina. [J] Neurosci Lett, 1997,232:155-158
    55. Miyamoto K, Khosrof S, Bersell SE, et al. Vescular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 inhibition (ICAM-1). [J] Am J Pathol, 2000, 156: 1733-1739
    56. Miyamoto K, Khosrof S, Bersell SE, et al. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinaopathy via intercellular adhesion molecule-1 inhibitor. [J] Proc Natl Avad Sci USA, 1999, 96: 10836-10841
    57. Radius RL, Anderson DR. Distribution of albumin in the normal monkey eye as revealed by Evans blue flueorescence microscopy. [J] Invest Ophthalmol Vis Sci, 1980, 19:238-243
    58. Maul E, Sears ML. Objective evaluation of experimental ocular irritation. [J] Invest Ophthalmol, 1976, 15: 308-312
    59. Hjeimeland LM, Harvey AK, Nohman TC, et al. Primary culture and chemolactic response of human retinal glia. [J] Inv Ophthalmol Vis Sci, 1986, 27(S): 382
    60. Puro DG, Mano T, Chan CC, et al. Thrombin stimulates the proliferation of human glia cell. [J] Graef's Arch Ophthalmol, 1990, 288: 169
    61. Vinores SA, Herman MM, Hackett SF, et al. A morphological and immunohistochemical study of human retinal pigment epithelial cells, retinal glia, and fibroblasts grown on Gelfoam matrix in an organ culture system. A comparison of structural and nonstructural proteins and their application to cell type identification. [J] Graefes Arch Clin Exp Ophthalmol, 1993, 231(5): 279-288
    
    62. Arroyo JG, Ghazvini S, Char DH. An immunocytochemical study of isolated human retinal Muller cells in culture. [J] Graefes Arch Clin Exp Ophthalmol, 1997, 235(7): 411-414
    63. Newman E, Reichenbach A. The Muller cell: a functional element of the retina. [J] Trends Neurosci, 1996, 19: 307-312
    64. Kumagai A, Glasgow BJ, Pardridge WM. GLUT1 glucose transporter expression in the diabetic and nondiabetic human eye. [J] Invest Ophthalmol Vis Sci, 1994,35:2887-2894
    65. Poitry-Yamate CL, Poitry S, Tsacopoulos M. Lactate released by Muller glial cells is metabolized by photoreceptors from mammalian retina. [J] J Neurosci, 1995,15:5179-5191
    66. Hollander H, Makarov F, Dreher Z, et al. Structure of the macroglia of the retina: sharing and division of labour between astrocytes and Muller cells. [J] J Comp Neurol, 1991, 313:587-603
    67. Linser P, Moscona AA. Induction of glutamine synthetase in embryonic neural retina: localization in Muller fibers and dependence on cell interactions. [J] Proc Natl Acad Sci USA, 1979, 76: 6476-6480
    68. Lewis GP, Erickson PA, Kaska DD, et al. An immunocytochemical comparison of Muller cells and astrocytes in the cat retina. [J] Exp Eye Res, 1988, 47: 839-853
    69. Haverkamp S, Kolb H, Cuenca N, et al. Morphological and neurochemical diversity of neuronal nitric oxide synthase-positive amacrine cells in the turtle retina. [J] Cell Tissue Res, 2000,302: 11-19
    70. Hangai M, Miyamoto K, Hiroi K, et al. Roles of constitutive nitric oxide synthase in postischemic rat retina. [J] Invest Ophthalmol Vis Sci, 1999, 40: 450-458
    71. Kashiwagi K, Iizuka Y, Mochizuki S, et al. Differences in nitric oxide production: a comparison of retinal ganglion cells and retinal glial cells cultured under hypoxic conditions. [J] Molecular Brain Res, 2003, 112: 126-134
    72. Dawson VL, Dawson TM, Bartley DA, et al. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. [J] J Neurosci, 1993, 13:2651-2661
    73. Dawson VL, Dawson TM, London ED. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. [J] Proc Natl Acad Sci USA, 1991, 88: 6368-6371
    74. Fleming I, Schulz C, Fichtlscherer B, et al. AMP-activated protein kinase (AMPK) regulates the insulin-induced activation of the nitric oxide synthase in human platelets. [J] Thrombosis Haemostasis, 2003, 90(5): 863-871
    75. Aljada A, Dandona P. Effect of insulin on human aortic endothelial nitric oxide synthase. [J] Metabolism: Clin Exp, 2000,49(2): 147-150
    76. Kawaguchi M, Koshimura K, Sohmiya M, et al. Effect of insulin on nitric oxide synthase-like immunostaining of arteries in various organs in Zucker diabetic fatty rats. [J] Euro J Endocrin, 2001,145(3): 343-349
    77. Montagnani M, Chen H, Barr VA, et al. Insulin-stimulated activation of eNOS is independent of Ca~(2-) but requires phosphorylation by Akt at Ser~(1179). [J] J Biol Chem, 2001, 276(32): 30392-30398
    78. Famiglietti EV, Stopa EG, McGookin ED, et al. Immunocytochemical localization of vascular endothelial growth factor in neurons and glial cells of human retina. [J] Brain Res, 2003, 969: 195-204
    79. Eichler W, Yafai Y, Kuhrt H, et al. Hypoxia: modulation of endothelial cell proliferation by soluble factors released by retinal cells. [J] Neuro Report, 2001, 12(18): 4103-4108
    80. Hirata C, Nakano K, Nakamura N, et al. Advanced glycation end products induce expression of vascular endothelial growth factor by retinal Muller cells. [J] Biochem Biophys Res Com 1997, 236(3): 712-715
    81. Fain JN, Madan AK. Insulin enhances vascular endothelial growth factor, interleukin-8, and plasminogen activator inhibitor 1 but not interleukin-6 release by human adipocytes. [J] Clin Exp, 2005, 54(2): 220-226
    82. Jiang ZY, He ZH, King BL,et al. Characterization of Multiple Signaling Pathways of Insulin in the Regulation of Vascular Endothelial Growth Factor Expression in Vascular Cells and Angiogenesis. [J] J Biol Chem, 2003, 278(34): 31964-31971
    83. Takahashi A, Kureishi Y, Yang J, et al. Mol Cell Biol, 2002, 22: 4803-4814
    84. Poulaki V, Qin W, Joussen AM, et al. J Clin Invest, 2002, 109:805-815
    85. Lu M, Amano S, Miyamoto K, et al. Insulin-induced vascular endothelial growth factor expression in retina. [J] Invest Ophthalmol Vis Sci, 1999, 40(13): 3281-3286
    86. Song E, Wang YH, Xu Q, et al. Effects of high concentrations insulin on VEGF expression in cultured Muller cells. [J] Chung-Hua Yen Ko Tsa Chih, 2004, 40(1): 40-44
    87.盛民立。血管内皮细胞与疾病。[M]上海医科大学出版社,上海。1993,12:187
    88. King GL, Goodman AD, Buzney S, et al. Receptors and growth-promoting effects of insulin and insulinlike growth factors on cells from bovine retinal capillaries and aorta. [J] J Clin Invest, 1985, 75:1028-1036
    89. Rajah TT, Olson AL, Grammas P. Differential glucose uptake in retina- and brain-derived endothelial cells. [J] Microvascular Res, 2001, 62(3): 236-242.
    90. Betz AL, Goldstein GW, et al. Transport of hexoses potassium and neutral acids into capillaries isolated from bovine retina. [J] Exp Eye Res, 1980(7): 593-605
    91. Buzney SM, Massicotte SJ, et al. Retinal vessels proliferation of endothelium in vitro. [J] Invest Ophthalmol Vis Sci, 1979, 18(12): 1191-1195
    92. Maciag TG, Hoover GA, Stemerman MB, et al. Serial propagation of human endothelial cells in vitro. [J] J Cell Biol, 1981, 91(3): 420-426
    93. Ruoslahti E, et al. Proteoglycans in cell regulation. [J] J Biol Chem, 1989, 264(12): 13369-13372
    94. Mallery SR, Lantry LET, Toms MC, et al. Human microvascular endothelial cell-extracellular interaction in cellular growth state determination. [J] Cell Tissue Res, 1995, 279(1): 37-45
    95. Folkman J, Haudenschild CC, Zetter BR. Long term culture of endothelial capillary cells. [J] Proe Natl Acad Sci, 1979, (8):5217-5221
    96. Peacock ML, Bar RS, Goldsmith J. Interactions of insulin with bovine endothelium. [J] Metab Clin Exp, 1982, 31(1): 52-56
    97. Capetandes A, Gerritsen ME. Simplified methods for consistent and selective culture of bovine retinal endothelial cells and pericytes. [J] Invest Ophthalmol Vis Sci, 1990, 31(9): 1738-1744
    98. Bowman PD, Betz AL, Groldstein GW. Primary culture of microvascular endothelial cells from bovine retina: selective growth using fibronectin-coated substrate and plasma-derived serum. [J] In Vitro, 1982, 18(7): 626-632
    99. Gitlin JD, D'Amore PA. Culture of retinal capillary cells using selective growth media. [J] Micro Res, 1983,26(1): 74-80
    100. Throntor SC. Using of heparin in cloning and long-term seried cultivation. [J] Science, 1983, 222(7): 623-630
    101. Kleinman HK, Lunchenbill-Edds L. Use of extracellular matrix components for cell culture. [J] Anal Biochem, 1987,166(1): 1
    102. Grant MB, Caballero S, Spoerri PE. Fibronectin fragments modulate human retinal capillary cell proliferation and migration. [J] Diabetes, 1998, 47(8): 1335-1340
    103. Schor AM, Schor SL. The isolation and culture of endothelial cells and pericytes from the bovine retinal microvasculature: a comparative study with large vessel vascular cells. [J] Microvasc Res, 1986, 32: 21-38
    104. Canfield AE, Schor AM, Schor SL, et al. The biosynthesis of extracellular matrix components by bovine retinal endothelial cells displaying distinctive morphological phenotypes. [J] Biochem J, 1986, 235: 375
    105. Meezan E, Brendel K, Carlson EC. Isolation of a purified preparation of metabolically active retinal blood vessels. [J] Nature, 1974,251(9): 65-67
    106. 席兴华, 姜德咏,唐罗生。牛视网膜微血管周细胞和内皮细胞的选择性培养 [J]眼科研究, 2000, 18(6): 493-496
    
    107. Cosentino F, Hishikawa K, Katusic ZS, et al. High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. [J] Circulation, 1997, 96: 25-28
    108. Ding YX, Vaziri ND, Coulson R, et al. Effects of simulated hyperglycemia, insulin, and glucagon on endothelial nitric oxide synthase expression. [J] Am J Physiol Endocrinol Metab, 2000, 279: E11-E17
    109. Zeng G and Quon MJ. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. [J] J Clin Invest, 1996,98:894-898
    110. Baron AD. Hemodynamic actions of insulin. [J] Am J Physiol Endocrinol Metab, 1994, 267: E187-E202
    1. Wojcikowski, et al. Effects of synthetic rat C-peptide in normal and diabetic rats. [J] Diabetologia, 1983, 25:288
    2. Ido Y, Vindigni A, Chang K, et al. Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. [J] Science, 1997, 777:563-566
    3. Ido Y, et al. C-peptide prevents increased blood flow induced by acute hyperlactatemia. [J] Diabetes, 1998, 47(S1): 1119
    4. Johansson BL, et al. The influence of human C-peptide on renal function and glucose utilization in type 1 (insulin-dependent) diabetic patients. [J] Diabetologia, 1992, 35:121
    5. Johansson BL, et al. Influence of human C-peptide and insulin administration on renal function and metabolic control in diabetes type 1. [J] J Clin Endocrinol Metab, 1993, 77:976
    6. Johansson BL, et al. Combined C-peptide and insulin treatment improves renal and nerve function in IDDM patients, [J] Diabetologia, 1995, 38:19
    7. Johansson BL, Borg K, Fernquist-Forbes E, et al. C-peptide improves autonomic nerve function in patients with Type 1 diabetes. [J] Diabetologia, 1996, 39: 687-695
    8. Johansson BL, Permow J, Wahren J. Muscle vasodilation by C-peptide is NO-mediated. [J] Diabetologia, 1996, 39: 687-695
    9. Johansson BL, et al. Effect of C-peptide on forearm blood flow in Iddm patients seem not to be endothelium-mediated. [J] Diabetologia, 1997,40(S1): 1552
    10. Johansson BL, Brog K, Fernqvist-Forbes E, et al. Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with Type 1 diabetes mellitus. [J] Diabet Med, 2000, 17:181-189
    11. Wahren J, Shafqat J, Johansson J, et al. C-peptide stimulates β-cell Na~+-K~--ATPase activity: a negative feedback mechanism on insulin secretion. [J] Diabetologia, 1996,39(S1): 263
    12. Wahren J, et al. C-peptide revisited physiological effects and therapeutic implications. [J] J. Intern Med, 1996,240: 115
    13. Wahren J, et al. C-peptide fragments stimulate renal tubular Na~+-K~+-ATPase activity. [J] Diabetologia, 1997, 40(S1): 587
    
    14. Wahren J, Johansson BL. New aspects of C-peptide physiology.[J] Horm Metab Res, 1998, 30:A2
    15. Wahren J, Ekberg K, Johansson J, et al. Role of C-peptide in human physiology. [J] Am J Physiol Endocrinol Metab, 2000, 278: E759-768
    16. Ohtomo Y, Aperia A, Sahlglen B, et al. C-peptide stimulates rat renal tubular Na~+-K~--ATPase activity in synergism with neuropeptide Y. [J] Diabetologia, 1996, 39: 199-205
    17. Ohtomo Y, Bergman T, Johanson BL, et al. Differential effects of proinsulin C-peptide fragments on Na~+-K~--ATPase activity of renal tubule segments. [J] Diabetologia, 1998, 41: 287-291
    18. Forst T, et al. Improvement of niutritive capillary blood flow during intravenous C-peptide infusion in IDDM patients. [J] Diabetologia, 1997,40(S1): 2228
    19. Forst T, et al. Biological activity of C-peptide on the skin microcirculation in patients with insulin-dependent diabetes mellitus. [J] Clin Invest, 1998, 101: 2036
    20. Scalia R, Coyle KM, Levine BJ, et al. C-peptide inhibits leukocyte-endothelium interaction in the microcirculation during acute endothelial dysfunction. [J] FASEB J,2000, 14: 2357-2364
    21. Unt T, Forst T, Closs E, et al. Activation of endothelial nitric oxide synthase by C-peptide. [J] Diabetologia, 1998, 41 (S1): A176
    22. Rigler R, Pramanik Ak, Jonasson P, et al. Specific binding of proinsulin C-peptide to human cell membranes. [J] Proc Natl Acad Sci USA, 1999, 96: 13318-13323
    23. Kitamura T, Kimura K, Jung B, et al. Proinsulin C-peptide activates cAMP response element-binding proteins through the p38 mitogen-activated protein kinase pathway in mouse lung capillary endothelial cells. [J] Biochem, 2002, 366: 737-744
    24. Zhong Z, Davidescu A, Ehren I, et al. C-peptide stimulates ERK1/2 and JNK MAP kinases via activation of protein kinase C in human renal tubular cells. [J] Diabetologia, 2005, 48: 187-197
    25. Zierath JR, et al. C-peptide stimulates glucose transport in isolated human skeletal muscle independent of insulin recepttor and tyrosine kinase activation. [J] Diabetologia, 1996, 39: 306
    26. Schlesinger PH, et al. Conductive channel properties of human C-peptide incorporated into planar lipid bilayers. [J] Diabetologia, 1998, 47(S1): 112
    27. Shashkin PN, Jiao Y, Westerblad H, et al. C-peptide does not alter carbohydrate metabolism in isolated mouse muscle. [J] Am J Physiol, 1997, 272: E245-247
    28. Sato Y, et al. Physiological levels of rat C-peptide improves glucose utilization in diabetic rats. [J] Diabetologia, 1997,40(S1): 1077
    29. Sima AAF, et al. Enhancement of insulin receptor activity by C-peptide. [J] Diabetologia, 1998, 40(S1):688
    30. De La Tour DD, Raccad D, Jannot MF, et al. Erythrodyte Na~+-K~-ATPase activity and diabetes: relationship with C-peptide level. [J] Diabetologia, 1998, 41: 1080-1084
    31. Pirags V, Zvaigzne A, Tretjakovs J, et al. The effect of C-peptide on platelet protein kinase C- β 1 in IDDM patients. [J] Diabetologia, 2000,43(S): A180
    32. Li L,Oshida Y, Kusunnoki M, et al. Rat C-peptide I and II stimulate glucose utilization in STZ-induced diabetic rats. [J] Diabetologia, 1999, 42: 958-964
    33. Wu W, Oshida Y, Wang WP, et al. Effect of C-peptide andministration on whole body glucose utilization in STZ-induced diabetic rat. [J] Acta Physiol Scand, 1996, 157: 253-255

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700