D-氨甲酰水解酶可溶性表达的遗传改造和结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大肠杆菌重组表达系统的主要问题之一,是过量表达的目的蛋白常常以不可溶的形式存在,因而不具有生物学活性。这影响了许多蛋白的性质研究和工业应用,因此需要建立新型有效的改造方法。本论文以重要工业用酶D-氨甲酰水解酶(D-carbamoylase, DCase)为研究对象,通过共表达和基因改造技术提高其在大肠杆菌中的可溶性表达,并对突变体进行结构与功能研究。D-氨甲酰水解酶是β-内酰胺类抗生素中间体D-对羟基苯甘氨酸制备的关键酶。我们克隆了一个来源于皮氏伯克霍尔德氏菌(Burkholderia pickettii)的D-氨甲酰水解酶,但在大肠杆菌过量表达后,80%左右目的蛋白以包涵体的形式存在,所以基因工程菌的酶活力比较低,成为工业应用瓶颈。
     为提高D-氨甲酰水解酶在大肠杆菌中的可溶性表达,首先采用了分子伴侣共表达技术。将三种分子伴侣DnaK-DnaJ-GrpE(DnaKJE)、GroEL-GroES(GroELS)和trigger factor(TF)分别与D-氨甲酰水解酶共表达。结果显示,在分子伴侣GroESL的辅助下,D-氨甲酰水解酶在大肠杆菌表达系统中的可溶性明显增加,相比于野生型,酶活提高了3倍。然而在实际应用中会涉及分子伴侣诱导物可使用性问题,因此我们又尝试了基因定向进化的方法。
     定向进化技术是在实验室里模拟自然进化的过程,通过对编码蛋白质的基因进行随机突变,从而定向筛选出特定突变体的有效方法。我们首先使用易错PCR和DNA Shuffling操作,对DCase基因进行随机突变,再通过一种蛋白质可溶性结构互补监测系统将正突变检出,筛选获得了一系列可溶性表达增加的突变体。通过详细分析这些突变体的氨基酸序列,并结合定点突变鉴定这些突变位点,揭示了与DCase的可溶性表达密切相关的三个重要氨基酸残基A~(18)、Y~(30)和K~(34)。同源四聚体和单体的结构模建结果显示,A~(18)位于β-折叠片和α-螺旋之间的一个转角上,而Y~(30)和K~(34)位于同一个α-螺旋,且三个突变点都位于蛋白分子的表面,远离蛋白的催化和活性中心。进一步的定点替换突变分析表明,这三个氨基酸残基的电荷改变和(或)亲水性的变化是D-氨甲酰水解酶突变体在E. coli中可溶性表达增加的两个关键因素。突变酶A18T和Y30N可溶性的增加主要由于突变位点氨基酸残基亲水性的提高;而K34E突变酶可溶性的提高可能主要归功于蛋白负电荷的增加。在此基础上,又对这三个位点进行了组合突变。SDS-PAGE结果表明,其中一个命名为DCase-M3的三联突变体(A18T/Y30N/K34E)在E. coli过量表达时,80%以上的目的蛋白成为可溶状态,很好地体现了有效突变的叠加作用。此外,对纯化的野生型DCase和突变型DCase-M3进行了酶学性质测定和对比,二者在动力学常数、热力学稳定性、最适温度、最适pH以及热稳定性等方面相似,可见在突变提高可溶性表达的同时并没有改变D-氨甲酰水解酶原有的特性。
     在上述研究的基础上,为了进一步弄清所获得的可溶性显著提高的D-氨甲酰水解酶突变体在工业发酵中应用的可行性,我们进行了D-氨甲酰水解酶改造前后发酵活力的比较实验。首先对野生型D-氨甲酰水解酶和单点突变D-氨甲酰水解酶K34E进行多种组合的摇瓶发酵实验,包括使用三种不同的培养基(LB、TB和改良的工业培养基)和三种不同的诱导温度(22℃、30℃和37℃)。结果显示,在所使用的培养条件下,单点突变D-氨甲酰水解酶K34E的酶活都不同程度地优于野生型。同时我们综合考虑D-对羟基苯甘氨酸制备的两个关键酶:D-乙内酰脲酶(DHase)和D-氨甲酰水解酶(DCase),通过引入突变DCas(eK34E),串联构建了一菌两酶的大肠杆菌基因工程菌株E.coli BL21(DE3)/pCHWT(DHase/ DCase)和E.coli BL21(DE3)/pCHMU(DHase/ K34E)。发酵结果显示,突变工程菌E. coli BL21(DE3)/pCHMU表现出的DHase/DCase的综合催化效率明显高于E. coli BL21(DE3)/pCHWT,提高近一倍。此外,我们还对高可溶性表达的三突变酶DCase-M3进行了5升发酵罐发酵研究,结果说明,在放大发酵培养的条件下,突变酶DCase-M3与野生型DCase相比活力提高了近7倍,表现出很大的工业应用潜力。
One of the greatest bottlenecks in producing recombinant proteins in Escherichia coli is that the target proteins, when expressed in a high amount, are often present in an insoluble form without detectable activities. This affects research on characterization of the target proteins and their application. D-carbamoylase (DCase), catalyzing a rate-limiting step in a two-step reaction system for producing D-p-hydroxyphenylglycine (D-HPG), is an important enzyme in semi-synthesis ofβ-lactam antibiotics in industry. We used a co-expression system with molecular chaperone and directed evolution techniques to improve soluble expression of DCase in Escherichia coli, followed by investigatng the relationship between structure and function of the enzyme.
     A DCase gene was cloned from Burkholderia pickettii, and over-expressed in E. coli as a recombinant protein. The resultant DCase activity was, however, very low because nearly 80% of recombinant DCase was partitioned into insoluble aggregates. To facilitate the expression of soluble and active DCase, three different of molecular chaperones, DnaK-DnaJ-GrpE (DnaKJE), GroEL-GroES (GroELS) and trigger factor (TF), were co-expressed with the DCase, respectively. The target protein aggregate from DCase overproduction were alleviated with the aid of GroELS, resulting in a three-fold increase in DCase enzyme activity compared to the wild-type strain. However, owing to problems related to application of expression inducer in above strategy, alternative method is used for directed evolution of the protein.
     Directed evolution incorporates Darwinian principles of mutation and selection into experimental strategies for improving biocatalyst or enzyme properties in the laboratory. In this study, error-prone PCR and DNA shuffling techniques are applied to randomly mutate its encoding sequence, followed by an efficient screening based on structural complementation. Several mutants of DCase with reduced aggregation are isolated. Solubility tests of these mutants and several other mutants generated by site-directed mutagenesis indicate that three amino acid residues of DCase (A18, Y30 and K34) are related to the DCase protein solubility in DCase. In the structure model of the DCase-M3 homotetramer and the DCase-M3 monomer, the amino acid of the 18th position is situated at a turn betweenβ-sheet andα-helix, and amino acids of both the 30th and 34th positions were are located inα-helix. The three residues are distributed on the surface of the target protein, and are located far from the catalytic sites (Glu~(47), Lys~(127) and Cys~(172)). In silico structural modeling analyses further suggested that hydrophilicity and/or negative charge at these three residues may be responsible for the increased solubility of DCase proteins produced in E. coli. Substitutions of A~(18) and Y~(30) with selected hydrophilic amino acids revealed that solubility of A18T and Y30N muteins was clearly improved. Additional replacement at the K~(34) position showed that increased negative charge of K34E mutein led to improvement of solubility of the mutated proteins. Based on the information, multiple engineering-designed mutants were constructed by site-directed mutagenesis; among them, a triple mutant A18T/Y30N/K34E (named as DCase-M3) was successfully over-expressed in E. coli with up to 80% of DCase-M3 proteins in soluble form. These results indicate that more soluble proteins can be obtained by combination of mutations. DCase-M3 was purified to homogeneity and a comparative analysis with WT DCase showed that DCase-M3 enzyme is similar to the native DCase in its biochemical properties, including kinetic and thermodynamic parameters, optimal temperature, optimal pH, and thermo-stability at 60℃and 65℃.
     Based on the data obtained from laboratory studies, the WT and the mutant DCase were fermented and the DCase activity was dertermined for industrial use. Firstly, we fermented the WT DCase and a single-point mutant DCase (K34E), using three different culture media (LB, TB and improved industrial culture medium) and three inducing temperatures (22℃、30℃ and 37℃), respectively. The results showed that K34E mutein had a higher activity than that of WT Dcase in each culture conditions. Considering that two enzymes (D-hydantoinase and D-carbamoylase) are involved in D-HPG production, it was interesting to see their combinational effect after mutation, DHase and mutant DCase (K34E) genes were cloned in Escherichia coli in rank to form E. coli BL21 (DE3)/pCHWT (DHase/ DCase) and E. coli BL21 (DE3) /pCHMU (DHase/ K34E). The fermentation results showed that D-HPG production efficiency of E. coli BL21(DE3)/pCHMU was twice as much as that of E. coli BL21(DE3)/pCHWT. In addition, we enlarged the fermentation scale to 5L for WT DCase and DCase-M3 constructs. It showed that activity of DCase-M3 mutein was increased by seven-fold incomparison with that of WT DCase, indicating that DCase-M3 mutein has a great potential in industrial application.
引文
Abecassis, V., Pompon, D., and Truan, G. (2000) High efficiency family shuffling based on multi-step PCR and in vivo DNA recombination in yeast: statistical and functional analysis of a combinatorial library between human cytochrome P450 1A1 and 1A2. Nucl. Acids Res. 28: e88.
    Amara, A.A., Steinbuchel, A., and Rehm, B.H.A. (2002) In vivo evolution of the Aeromonas punctata polyhydroxyalkanoate (PHA) synthase: isolation and characterization of modified PHA synthases with enhanced activity. Appl. Microbiol. Biotechnol. 59: 477-482.
    Bittker, J.A., Le, B.V., Liu, J.M., and Liu, D.R. (2004) Directed evolution of protein enzymes using nonhomologous random recombination. Proc. Natl. Acad. Sci. U. S. A. 101: 7011-7016.
    Castle, L.A., Siehl, D.L., Gorton, R., Patten, P.A., Chen, Y.H., Bertain, S., Cho, H.J., Duck, N., Wong, J., Liu, D.L., and Lassner, M.W. (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304: 1151-1154.
    Chartrain, M., Salmon, P.M., Robinson, D.K., and Buckland, B.C. (2000) Metabolic engineering and directed evolution for the production of pharmaceuticals. Curr. Opin. Biotechnol. 11: 209-214.
    Chatterjee, R., and Yuan, L. (2006) Directed evolution of metabolic pathways. Trends Biotechnol. 24: 28-38.
    Chen, K., and Arnold, F.H. (1993) Tuning the Activity of an Enzyme for Unusual Environments: Sequential Random Mutagenesis of Subtilisin E for Catalysis in Dimethylformamide. Proc. Natl. Acad. Sci. U. S. A. 90: 5618-5622.
    Chica, R.A., Doucet, N., and Pelletier, J.N. (2005) Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr. Opin. Biotechnol. 16: 378-384.
    Coco, W.M., Levinson, W.E., Crist, M.J., Hektor, H.J., Darzins, A., Pienkos, P.T., Squires, C.H., and Monticello, D.J. (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat. Biotechnol. 19: 354-359.
    Crameri, A., Raillard, S.-A., Bermudez, E., and Stemmer, W.P.C. (1998) DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391: 288-291.
    Fernandez-Gacio, A., Uguen, M., and Fastrez, J. (2003) Phage display as a tool for the directed evolution of enzymes. Trends Biotechnol. 21: 408-414.
    Fong, S., Machajewski, T.D., Mak, C.C., and Wong, C.H. (2000) Directed evolution of D-2-keto-3-deoxy-6-phosphogluconate aldolase to new variants for the efficient synthesis of D- and L-sugars. Chemistry & Biology 7: 873-883.
    Iffland, A., Tafelmeyer, P., Saudan, C., and Johnsson, K. (2000) Directed molecular evolution of cytochrome c peroxidase. Biochemistry 39: 10790-10798.
    Iffland, A., Gendreizig, S., Tafelmeyer, P., and Johnsson, K. (2001) Changing the Substrate Specificity of Cytochrome c Peroxidase Using Directed Evolution. Biochem. Biophys. Res. Commun. 286: 126-132.
    Jaeger, K.-E., and Reetz, M.T. (2000) Directed evolution of enantioselective enzymes for organic chemistry. Curr. Opin. Chem. Biol. 4: 68-73.
    Jaeger, K.-E., and Eggert, T. (2004) Enantioselective biocatalysis optimized by directed evolution. Curr. Opin. Biotechnol. 15: 305-313.
    Ju, J., Misano, H., and Ohnishi, K. (2005) Directed evolution of bacterial alanine racemases with higher expression level. J. Biosci. Bioeng. 100: 246-254.
    Kichise, T., Taguchi, S., and Doi, Y. (2002) Enhanced Accumulation and Changed Monomer Composition in Polyhydroxyalkanoate (PHA) Copolyester by In Vitro Evolution of Aeromonas caviae PHA Synthase. Appl. Environ. Microbiol. 68: 2411-2419.
    Kitamura, K., Kinoshita, Y., Narasaki, S., Nemoto, N., Husimi, Y., and Nishigaki, K. (2002) Construction of block-shuffled libraries of DNA for evolutionary protein engineering: Y-ligation-based block shuffling. Protein Eng. 15: 843-853.
    Kolkman, J.A., and Stemmer, W.P.C. (2001) Directed evolution of proteins by exon shuffling. Nat. Biotechnol. 19: 423-428.
    Komeda, H., Ishikawa, N., and Asano, Y. (2003) Enhancement of the thermostability and catalytic activity of D-stereospecific amino-acid amidase from Ochrobactrum anthropi SV3 by directed evolution. Journal Of Molecular Catalysis B-Enzymatic 21: 283-290.
    Kuhlman, B., Dantas, G., Ireton, G.C., Varani, G., Stoddard, B.L., and Baker, D. (2003) Design of a Novel Globular Protein Fold with Atomic-Level Accuracy. Science 302: 1364-1368.
    Lingen, B., Grotzinger, J., Kolter, D., Kula, M.R., and Pohl, M. (2002) Improving the carboligase activity of benzoylformate decarboxylase from Pseudomonas putida by a combination of directed evolution and site-directed mutagenesis. Protein Eng. 15: 585-593.
    Lucker, J., Schwab, W., Franssen, M.C.R., van der Plas, L.H.W., Bouwmeester, H.J., and Verhoeven, H.A. (2004) Metabolic engineering of monoterpene biosynthesis: two-step production of (+)-trans-isopiperitenol by tobacco. Plant J. 39: 135-145.
    Lutz, S., and Patrick, W.M. (2004) Novel methods for directed evolution of enzymes: quality, not quantity. Curr. Opin. Biotechnol. 15: 291-297.
    Mattheakis, L.C., Bhatt, R.R., and Dower, W.J. (1994) An in vitro Polysome Display System for Identifying Ligands from very Large Peptide Libraries. Proc. Natl. Acad. Sci. U. S. A. 91: 9022-9026.
    May, O., Nguyen, P.T., Arnold, F.H.: (1999) Multi-enzyme process for L-methionine production by inversion of enantioselectivity. Enzyme engineering XV: 10-15.
    Mills, D.R., Peterson, R.L., and Spiegelman, S. (1967) An Extracellular Darwinian Experiment with a Self-Duplicating Nucleic Acid Molecule. Proc. Natl. Acad. Sci. U. S. A. 58: 217-224.
    Morawski, B., Quan, S., and Arnold, F.H. (2001) Functional expression and stabilization of horseradish peroxidase by directed evolution in Saccharomyces cerevisiae. Biotechnol. Bioeng. 76: 99-107.
    Ness, J.E., Kim, S., Gottman, A., Pak, R., Krebber, A., Borchert, T.V., Govindarajan, S., Mundorff, E.C., and Minshull, J. (2002) Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently. Nat. Biotechnol. 20: 1251-1255.
    O'Maille, P.E., Tsai, M.-D., Greenhagen, B.T., Chappell, J., Noel, J.P., and Dan, E.R.a.J.P.N. (2004) Gene Library Synthesis by Structure-Based Combinatorial Protein Engineering. In Methods in Enzymology. Vol. Volume 388: Academic Press, pp. 75-91.
    Ostermeier, M., Shim, J.H., and Benkovic, S.J. (1999) A combinatorial approach to hybrid enzymes independent of DNA homology. Nat. Biotechnol. 17: 1205-1209.
    Otten, L.G., and Quax, W.J. (2005) Directed evolution: selecting today's biocatalysts. Biomol. Eng. 22: 1-9.
    Park, H.-S., Nam, S.-H., Lee, J.K., Yoon, C.N., Mannervik, B., Benkovic, S.J., and Kim, H.-S. (2006) Design and Evolution of New Catalytic Activity with an Existing Protein Scaffold. Science 311: 535-538.
    Petri, R., and Schmidt-Dannert, C. (2004) Dealing with complexity: evolutionary engineering and genome shuffling. Curr. Opin. Biotechnol. 15: 298-304.
    Reetz, M.T., Zonta, A., Schimossek, K., Liebeton, K., and Jaeger, K.E. (1997) Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution. Angewandte Chemie-International Edition 36: 2830-2832.
    Rohlin, L., Oh, M.-K., and Liao, J.C. (2001) Microbial pathway engineering for industrial processes: evolution, combinatorial biosynthesis and rational design. Curr. Opin. Microbiol. 4: 330-335.
    Roodveldt, C., and Tawfik, D.S. (2005) Directed evolution of phosphotriesterase from Pseudomonas diminuta for heterologous expression in Escherichia coli results in stabilization of the metal-free state. Protein Eng. Des. Sel. 18: 51-58.
    Schmidt-Dannert, C., Umeno, D., and Arnold, F.H. (2000) Molecular breeding of carotenoid biosynthetic pathways. Nat. Biotechnol. 18: 750-753.
    Sieber, V., Martinez, C.A., and Arnold, F.H. (2001) Libraries of hybrid proteins from distantly related sequences. Nat. Biotechnol. 19: 456-460.
    Siehl, D.L., Castle, L.A., Gorton, R., Chen, Y.H., Bertain, S., Cho, H.J., Keenan, R., Liu, D.L., and Lassner, M.W. (2005) Evolution of a microbial acetyltransferase for modification of glyphosate: a novel tolerance strategy. Pest Manag. Sci. 61: 235-240.
    Song, J.K., Chung, B., Oh, Y.H., and Rhee, J.S. (2002) Construction of DNA-Shuffled and Incrementally Truncated Libraries by a Mutagenic and Unidirectional Reassembly Method: Changing from a Substrate Specificity of Phospholipase to That of Lipase. Appl. Environ. Microbiol. 68: 6146-6151.
    Stemmer, W.P.C. (1994) DNA Shuffling by Random Fragmentation and Reassembly: In vitro Recombination for Molecular Evolution. Proc. Natl. Acad. Sci. U. S. A. 91: 10747-10751.
    Stutzman-Engwall, K., Conlon, S., Fedechko, R., McArthur, H., Pekrun, K., Chen, Y., Jenne, S., La, C., Trinh, N., Kim, S., Zhang, Y.X., Fox, R., Gustafsson, C., and Krebber, A. (2005) Semi-synthetic DNA shuffling of aveC leads to improved industrial scale production of doramectin by Streptomyces avermitilis. Metab. Eng. 7: 27-37.
    Turner, N.J. (2003) Directed evolution of enzymes for applied biocatalysis. Trends Biotechnol. 21: 474-478.
    Umeno, D., Tobias, A.V., and Arnold, F.H. (2005) Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol. Mol. Biol. Rev. 69: 51-78.
    Waldo, G.S. (2003) Genetic screens and directed evolution for protein solubility. Curr. Opin. Chem. Biol. 7: 33-38.
    Wang, C.W., Oh, M.K., and Liao, J.C. (2000) Directed evolution of metabolically engineered Escherichia coli for carotenoid production. Biotechnol. Prog. 16: 922-926.
    Yang, J.K., Park, M.S., Waldo, G.S., and Suh, S.W. (2003) Directed evolution approach to a structural genomics project: Rv2002 from Mycobacteriumtuberculosis. Proc. Natl. Acad. Sci. U. S. A. 100: 455-460.
    Yano, T., Oue, S., and Kagamiyama, H. (1998) Directed evolution of an aspartate aminotransferase with new substrate specificities. Proc. Natl. Acad. Sci. U. S. A. 95: 5511-5515.
    Zhao, H., Giver, L., Shao, Z., Affholter, J.A., and Arnold, F.H. (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16: 258-261.
    Zhao, H., and Arnold, F.H. (1999) Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng. 12: 47-53.
    Altenbuchner, J., Siemann-Herzberg, M., and Syldatk, C. (2001) Hydantoinases and related enzymes as biocatalysts for the synthesis of unnatural chiral amino acids. Curr. Opin. Biotechnol. 12: 559-563.
    Batisse, N., Weigel, P., Lecocq, M., and Sakanyan, V. (1997) Two amino acid amidohydrolase genes encoding L-stereospecific carbamoylase and aminoacylase are organized in a common operon in Bacillus stearothermophilus. Appl. Environ. Microbiol. 63: 763-766.
    Buson, A., Negro, A., Grassato, L., Tagliaro, M., Basaglia, M., Grandi, C., Fontana, A., and Nuti, M.P. (1996) Identification, sequencing and mutagenesis of the gene for a -carbamoylase from Agrobacterium radiobacter. FEMS Microbiol. Lett. 145: 55-62.
    Chao, Y.P., Fu, H., Lo, T.E., Chen, P.T., and Wang, J.J. (1999a) One-step production of D-p-hydroxyphenylglycine by recombinant Escherichia coli strains. Biotechnol. Prog. 15: 1039-1045.
    Chen, C.Y., Chiu, W.C., Liu, J.S., Hsu, W.H., and Wang, W.C. (2003) Structural basis for catalysis and substrate specificity of Agrobacterium radiobacter N-carbamoyl-D-amino acid amidohydrolase. J. Biol. Chem. 278: 26194-26201.
    Chuang, S.-E., Yeh, P.-Y., Lu, Y.-S., Lai, G.-M., Liao, C.-M., Gao, M., and Cheng, A.-L. (2002) Basal levels and patterns of anticancer drug-induced activation of nuclear factor-[kappa]B (NF-[kappa]B), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochemical Pharmacology 63: 1709-1716.
    Grifantini, R., Pratesi, C., Galli, G., and Grandi, G. (1996) Topological Mapping of the Cysteine Residues of N-Carbamyl-D-amino-acid Amidohydrolase and Their Role in Enzymatic Activity. J. Biol. Chem. 271: 9326-9331.
    Grifantini, R., Galli, G., Carpani, G., Pratesi, C., Frascotti, G., and Grandi, G. (1998) Efficient conversion of 5-substituted hydantoins to D-alpha-amino acids using recombinant Escherichia coli strains. Microbiology 144 (Pt 4): 947-954.
    Gross, C., Syldatk, C., and Wagner, F. (1987) Screening method for microorganisms producing L-aminoacids from D, L-5-monosubstituted hydantoins. Biotechnol. Tech. 1: 85-90.
    H. R. Chien, and W. H. Hsu (1996) Rapid and sensitive detection of D-hydantoinase producing microorgamisms by using microtiter plate assay. Biotechnol. Tech. 10: 879-882.
    Hils, M., Münch, P., and Altenbuchner, J. (2001) Cloning and characterization of genes from Agrobacterium sp.IP I671 involved in hydantoin degradation. Appl. Microb. Biotechnol. 57: 680-688.
    Ikenaka, Y., Nanba, H., Yajima, K., Yamada, Y., Takano, M., and Takahashi, S. (1998a) Increase in thermostability of N-carbamyl-D-amino acid amidohydrolase on amino acid substitutions. Biosci. Biotechnol. Biochem. 62: 1668-1671.
    Ikenaka, Y., Nanba, H., Yajima, K., Yamada, Y., Takano, M., and Takahashi, S. (1998b) Relationship between an increase in thermostability and amino acid substitutions in N-carbamyl-D-amino acid amidohydrolase. Biosci. Biotechnol. Biochem. 62: 1672-1675.
    Ikenaka, Y., Nanba, H., Yamada, Y., Yajima, K., Takano, M., and Takahashi, S. (1998c) Screening, characterization, and cloning of the gene for N-carbamyl-D-amino acid amidohydrolase from thermotolerant soil bacteria. Biosci. Biotechnol. Biochem. 62: 882-886.
    Ikenaka, Y., Nanba, H., Yajima, K., Yamada, Y., Takano, M., and Takahashi, S. (1999) Thermostability reinforcement through a combination of thermostability-related mutations of N-carbamyl-D-amino acid amidohydrolase. Biosci. Biotechnol. Biochem. 63: 91-95.
    Ishikawa, T., Watabe, K., Mukohara, Y., Kobayashi, S., Nakamura, H. (1993) Microbial Conversion of DL-5-substituted Hydantoins to the Corresponding L-amino Acids by Pseudomonas sp. Strain NS671. Biosci. Biotech. Biochem. 57: 982-986.
    Kim, G.J., and Kim, H.S. (1995) Optimization Of The Enzymatic-Synthesis Of D-P-Hydroxyphenylglycine From Dl-5-Substituted Hydantoin Using D-Hydantoinase And N-Carbamoylase. Enzyme Microb. Technol. 17: 63-67.
    Kim, G.J., Cheon, Y.H., and Kim, H.S. (2000) Directed evolution of a novel N-carbamylase/D-hydantoinase fusion enzyme for functional expression with enhanced stability. Biotechnol. Bioeng. 68: 211-217.
    Louwrier, A., Knowles, C.J. (1996) The Purification and Characterisation of a Novel D(-)-specific Carbamoylase Enzyme from an Agrobacterium sp. Enzyme Microb.Technol. 19: 562-571.
    Moller, A., Syldatk, C., Schulze, M., and Wagner, F. (1988) Stereo- and substrate-specificity of a D-hydantoinase and a acid amidohydrolase of Arthrobacter crystallopoietes AM 2. Enzyme Microb. Technol. 10: 618-625.
    Mukohara, Y., Ishikawa, T., Watabe, K., and Nakamura, H. (1993) Molecular Cloning and Sequencing of the Gene for a Thermostable N-Carbamyl-D-Amino acid Amidohydrolase from Bacillus stearothermophilus Strain NS1122A. Biosci. Biotechnol.Biochem. 57: 1935-1937.
    Nakai, T., Hasegawa, T., Yamashita, E., Yamamoto, M., Kumasaka, T., Ueki, T., Nanba, H., Ikenaka, Y., Takahashi, S., Sato, M., and Tsukihara, T. (2000) Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. Structure 8: 729-737.
    Nanba, H., Ikenaka, Y., Yamada, Y., Yajima, K., Takano, M., Ohkubo, K., Hiraishi, Y., Yamada, K., and Takahashi, S. (1998a) Immobilization of N-carbamyl-D-amino acid amidohydrolase. Biosci. Biotechnol. Biochem. 62: 1839-1844.
    Nanba, H., Ikenaka, Y., Yamada, Y., Yajima, K., Takano, M., and Takahashi, S. (1998b) Isolation of Agrobacterium sp. strain KNK712 that produces N-carbamyl-D-amino acid amidohydrolase, cloning of the gene for this enzyme, and properties of the enzyme. Biosci. Biotechnol. Biochem. 62: 875-881.
    Neal, R.J., Griffin, A.M., Scott, M., Shatzman, A.R., Gorham, H.C. (1994) D-N-Carbamoyl-amino Acid Amidohydrolase and Hydantoinase. World Patent: WO 92/10579.
    Ogawa, J., Shimizu, S., and Yamada, H. (1993a) N-carbamoyl-D-amino acid amidohydrolase from Comamonas sp. E222c purification and characterization. Eur. J. Biochem. 212: 685-691.
    Ogawa, J., Chung, M.C., Hida, S., Yamada, H., and Shimizu, S. (1994a) Thermostable N-carbamoyl-D-amino acid amidohydrolase: screening, purification and characterization. J. Biotechnol. 38: 11-19.
    Ogawa, J., and Shimizu, S. (1999) Microbial enzymes: new industrial applications from traditional screening methods. Trends Biotechnol. 17: 13-21.
    Oh, K.H., Nam, S.H., and Kim, H.S. (2002) Improvement of oxidative and thermostability of N-carbamyl-d-amino Acid amidohydrolase by directed evolution. Protein Eng. 15: 689-695.
    Olivieri R, F.E., Angelini L, Degen L. (1981) Microbial Transformation of Racemic Hydantoins to D-Amino Acids. Biotechnol. Bioeng. 23: 2173-2183.
    Park, J.H., Oh, K.H., Lee, D.C., and Kim, H.S. (2002) Modeling and kinetic analysis of the reaction system using whole cells with separately and co-expressed D-hydantoinase and N-carbamoylase. Biotechnol. Bioeng. 78: 779-793.
    Pietzsch, M., Wiese, A., Ragnitz, K., Wilms, B., Altenbuchner, J., Mattes, R., and Syldatk, C. (2000) Purification of recombinant hydantoinase and L-N-carbamoylase from Arthrobacter aurescens expressed in Escherichia coli: comparison of wild-type and genetically modified proteins. J. Chromatogr. B. Biomed. Sci. Appl. 737: 179-186.
    Roger Chien, H.C., Hsu, C.L., Hu, H.Y., Wang, W.C., and Hsu, W.H. (2002) Enhancing oxidative resistance of Agrobacterium radiobacter N-carbamoyl D-amino acid amidohydrolase by engineering solvent-accessible methionine residues. Biochem. Biophys. Res. Commun. 297: 282-287.
    Sareen, D., Sharma, R., Nandanwar, H.S., and Vohra, R.M. (2001) Two-Step Purification of (-)-Specific Carbamoylase from Agrobacterium tumefaciens AM 10. Protein Expres. Purif. 21: 170-175.
    Serge R, N.C., Eric O. (1990) D-p-Hydroxyphenylglycine Production from DL-5-p-Hydroxyphenylhydantoin by Agrobacterium sp. Appl. Microbiol. Biotechnol. 33: 382-388.
    Syldatk, C., May, O., Altenbuchner, J., Mattes, R., and Siemann, M. (1999) Microbial hydantoinases - industrial enzymes from the origin of life? Appl. Microbiol. Biotechnol. 51: 293-309.
    Wang, W.C., Hsu, W.H., Chien, F.T., and Chen, C.Y. (2001) Crystal structure and site-directed mutagenesis studies of N-carbamoyl-D-amino-acid amidohydrolase from Agrobacterium radiobacter reveals a homotetramer and insight into a catalytic cleft. J. Mol. Biol. 306: 251-261.
    Wiese, A., Wilms, B., Syldatk, C., Mattes, R., and Altenbuchner, J. (2001) Cloning, nucleotide sequence and expression of a hydantoinase and carbamoylase gene from Arthrobacter aurescens DSM 3745 in Escherichia coli and comparison with the corresponding genes from Arthrobacter aurescens DSM 3747. Appl. Microbiol. Biotechnol. 55: 750-757.
    Wilms, B., Wiese, A., Syldatk, C., Mattes, R., Altenbuchner, J., and Pietzsch, M. (1999) Cloning, nucleotide sequence and expression of a new L-N-carbamoylase gene from Arthrobacter aurescens DSM 3747 in E. coli. J. Biotechnol. 68: 101-113.
    Yamada, H., and Shimizu, S. (1988) Microbial and Enzymatic Processes for the Production of Biologically and Chemically Useful Compounds. Angew. Chem. Int. Engl. 27: 622-642.
    Yokozeki, K., S. Nakamori, S. Yamanaka, C. Eguchi, K. Mitsugi, and F. Yoshinaga. (1987) Optimal conditions for the enzymatic production of D-amino acids from the corresponding 5-substituted hydantoins. Agric. Biol. Chem. 51: 715-719.
    Buson, A., Negro, A., Grassato, L., Tagliaro, M., Basaglia, M., Grandi, C., Fontana, A., and Nuti, M.P. (1996) Identification, sequencing and mutagenesis of the gene for a D-carbamoylase from Agrobacterium radiobacter. FEMS Microbiol. Lett. 145: 55-62.
    Chao, Y.P., Fu, H., Lo, T.E., Chen, P.T., and Wang, J.J. (1999) One-step production of D-p-hydroxyphenylglycine by recombinant Escherichia coli strain. Biotechnol. Prog. 15: 1039-1045.
    D.-H. Lee, M.-D. Kim, W.-H. Lee, D.-H. Kweon, and J.-H. Seo (2004) Consortium of fold-catalyzing proteins increases soluble expression of cyclohexanone monooxygenase in recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 63: 549-552.
    Fourie, A.M., Sambrook, J.F., and Gething, M.J. (1994) Common and divergent peptide binding specificities of hsp70 molecular chaperones. J. Biol. Chem. 269: 30470-30478.
    Goloubinoff, P., Gatenby, A.A., and Lorimer, G.H. (1989) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337: 44-47.
    Gragerov, A., Zeng, L., Zhao, X., Burkholder, W., and Gottesman, M.E. (1994) Specificity of DnaK-peptide Binding. J. Mol. Biol 235: 848-854.
    Grifantini, R., Pratesi, C., Galli, G., and Grandi, G. (1996) Topological mapping of the cysteine residues of N-carbamyl-D-amino-acid amidohydrolase and their role in enzymatic activity. J. Biol. Chem. 271: 9326-9331.
    Hockney, R.C. (1994) Recent developments in heterologous protein production in Escherichia coli. Trends Biotechnol. 12: 456-463.
    Kim, G.J., and Kim, H.S. (1995) Optimization of the enzymatic synthesis of D-p-hydroxyphenylglycine from DL-5-substituted hydantoin using D-hydantoinase and N-carbamoylase. Enzyme Microb. Technol. 17: 63-67.
    Mizobata, T., Kagawa, M., Murakoshi, N., Kusaka, E., Kameo, K., Kawata, Y., and Nagai, J. (2000) Overproduction of Thermus sp. YS 8-13 manganese catalase in Escherichia coli: Production of soluble apoenzyme and in vitro formation of active holoenzyme. Eur. J. Biochem. 267: 4264-4271.
    Moller, A., Syldatk, C., Schulze, M., and Wagner, F. (1988) Stereo- and substrate-specificity of a D-hydantoinase and a DN-carbamoyl-amino acid amidohydrolase of Arthrobacter crystallopoietes AM 2. Enzyme Microb. Technol. 10: 618-625.
    Nanba, H., Ikenaka, Y., Yamda, Y., Yajima, K., Takano, M., and Takahashi, S. (1998) Isolation of Agrobacterium sp. strain KNK712 that produces N-carbamyl-D-amino acid amidohydrolase, cloning of the gene for this enzyme, and properties of the enzyme. Biosci. Biotechnol. Biochem. 62: 875-881.
    Nishihara, K., Kanemori, M., Kitagawa, M., Yanagi, H., and Yura, T. (1998) Chaperone Coexpression Plasmids: Differential and Synergistic Roles of DnaK-DnaJ-GrpE and GroEL-GroES in Assisting Folding of an Allergen of Japanese Cedar Pollen, Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 64: 1694-1699.
    Nishihara, K., Kanemori, M., Yanagi, H., and Yura, T. (2000) Overexpression of Trigger Factor Prevents Aggregation of Recombinant Proteins in Escherichia coli. Appl. Environ. Microbiol. 66: 884-889.
    Ogawa, J., Max Ching-Ming, C., Hida, S., Yamada, H., and Shimizu, S. (1994) Thermostable N-carbamoyl-D-amino acid amidohydrolase: screening, purification and characterization. J. Biotechnol. 38: 11-19.
    Olivieri. R, Fascetti. E, Angelini. L, and Degen. L (1981) Microbial transformation of racemic hydantoins to -amino acids. Biotechnol. Bioeng. 23: 2173-2183.
    Patzelt, H., Rudiger, S., Brehmer, D., Kramer, G., Vorderwulbecke, S., Schaffitzel, E., Waitz, A., Hesterkamp, T., Dong, L., Schneider-Mergener, J., Bukau, B., and Deuerling, E. (2001) Binding specificity of Escherichia coli trigger factor. Proc. Natl. Acad. Sci. U. S. A. 98: 14244-14249.
    Syldatk C, L ufer A, Müller R, and Hake, H. (1990) Production of optical pure D-and L-a-amino acids by bioconversion of D, L-monosubstituted hydantoin derivatives. Adv. Biochem. Eng. biotechnol. 41: 29-75.
    Takahashi. S, Ohashi. T, Kii. Y, Kumagai. H, and Yamada. H (1979) Microbial transformation of hydantoins to N-carbamoyl--amino acids. J. Ferment. Technol. 57: 328-332.
    Thomas. JG, Ayling. A, and Baneyz. F (1997) Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. Appl. Biochem. Biotechnol. 66: 197-238.
    Xu, Z., Jiang, W.H., Jiao, R.S., and Yang, Y.L. (2002) Cloning, sequencing and high expression in Escherichia coli of D-hydantoinase gene from Burkholderia pickettii. Chin. J. Biotechnol. 18: 149-154.
    Aiyar, A., Xiang, Y., and Leis, J. (1996) Site-directed mutagenesis using overlap extension PCR. Methods Mol. Biol. 57: 177-191.
    Bernstein, H.J. (2000) Recent changes to RasMol, recombining the variants. Trends Biochem. Sci. 25: 453-455.
    Bower, M.J., Cohen, F.E., and Dunbrack, R.L. (1997) Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: A new homology modeling tool. J. Mol. Biol. 267: 1268-1282.
    Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
    Chopra, A.K., Brasier, A.R., Das, M., XU, X.J., and Petersoir, J.W. (1994) Improved synthesis of Salmonella typhimurium enterotoxin using gene fusion expression systems. Gene 144: 81-85.
    Dale, G.E., Broger, C., Langen, H., D'Arcy, A., and Stuber, D. (1994) Improving protein solubility through rationally designed amino acid replacements: solubilization of the trimethoprim-resistant type S1 dihydrofolate reductase. Protein Eng. 7: 933-939.
    Dill, K.A., Bromberg, S., Yue, K., Fiebig, K.M., Yee, D.P., Thomas, P.D., and Chan, H.S. (1995) Principles of protein folding - a perspective from simple exact models. Protein Sci. 4: 561-602.
    Eisenberg, D., Weiss, R.M., and Terwilliger, T.C. (1982) The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299: 371-374.
    Esteban, O., and Zhao, H.M. (2004) Directed evolution of soluble single-chain human class II MHC molecules. J. Mol. Biol. 340: 81-95.
    Goloubinoff, P., Gatenby, A.A., and Lorimer, G.H. (1989) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337: 44-47.
    Gouet, P., E. Courcelle, D. I. Stuart, and Metoz., F. (1999) ESPript: multiple sequence alignments in PostScript. Bioinformatics 15: 305-308.
    Grifantini, R., Pratesi, C., Galli, G., and Grandi, G. (1996) Topological mapping of the cysteine residues of N-carbamyl-D-amino-acid amidohydrolase and their role in enzymatic activity. J. Biol. Chem. 271: 9326-9331.
    Ikenaka, Y., Nanba, H., Yajima, K., Yamada, Y., Takano, M., and Takahashi, S. (1999) Thermostability reinforcement through a combination of thermostability-related mutations of N-carbamyl-D-amino acid amidohydrolase. Biosci. Biotechnol. Biochem. 63: 91-95.
    Kleman, G.L., and Strohl, W.R. (1994) Developments in high cell density and high productivity microbial fermentation. Curr. Opin. Biotechnol. 5: 180-186.
    Kyte, J., and Doolittle, R.F. (1982) A simple method for displaying the hydrophobic character of a protein. J. Mol. Biol. 157: 105-132.
    Lee, S.C., and Olins, P.O. (1992) Effect of overproduction of heat shock chaperones GroESL and DnaK on human procollagenase production in Escherichia coli. J. Biol. Chem. 267: 2849-2852.
    Maxwell, K.L., Mittermaier, A.K., Forman-Kay, J.D., and Davidson, A.R. (1999) A simple in vivo assay for increased protein solubility. Protein Sci. 8: 1908-1911.
    Moller, A., Syldatk, C., Schulze, M., and Wagner, F. (1988) Stereo- and substrate-specificity of a D-hydantoinase and a DN-carbamoyl-amino acid amidohydrolase of Arthrobacter crystallopoietes AM 2. Enzyme Microb. Technol. 10: 618-625.
    Mosavi, L.K., and Peng, Z.Y. (2003) Structure-based substitutions for increased solubility of a designed protein. Protein Eng. 16: 739-745.
    Nakai, T., Hasegawa, T., Yamashita, E., Yamamoto, M., Kumasaka, T., Ueki, T., Nanba, H., Ikenaka, Y., Takahashi, S., Sato, M., and Tsukihara, T. (2000) Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. Structure 8: 729-737.
    Nanba, H., Ikenaka, Y., Yamda, Y., Yajima, K., Takano, M., and Takahashi, S. (1998) Isolation of Agrobacterium sp. strain KNK712 that produces N-carbamyl-D-amino acid amidohydrolase, cloning of the gene for this enzyme, and properties of the enzyme. Biosci. Biotechnol. Biochem. 62: 875-881.
    Nicholls, A., Sharp, K.A., and Honig, B. (1991) Protein folding and association - insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins: Struct. Funct. Genet. 11: 281-296.
    Ogawa, J., Max Ching-Ming, C., Hida, S., Yamada, H., and Shimizu, S. (1994) Thermostable N-carbamoyl-D-amino acid amidohydrolase: screening, purification and characterization. J. Biotechnol. 38: 11-19.
    Pace, C.N., Hirs, C.H.W., and Timasheff, S.N. (1986) Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 131: 266-228.
    Pedelacq, J.D., Piltch, E., Liong, E.C., Berendzen, J., Kim, C.Y., Rho, B.S., Park, M.S., Terwilliger, T.C., and Waldo, G.S. (2002) Engineering soluble proteins for structural genomics. Nat. Biotechnol. 20: 927-932.
    Roman, L.J., Sheta, E.A., Martasek, P., Gross, S.S., Liu, Q., and Masters, B.S.S. (1995) High-level expression of functional rat neuronal nitric oxide synthase in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 92: 8428-8432.
    Stemmer, W.P.C. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370: 389-391.
    Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
    Timberlake, K.C. (1992). Chemistry–5th Edition: Haper-Collins Publishers Inc New York. Waldo, G.S., Standish, B.M., Berendzen, J., and Terwilliger, T.C. (1999) Rapid protein-folding assay using green fluorescent protein. Nat. Biotechnol. 17: 691-695.
    Wang, W.C., Hsu, W.H., Chien, F.T., and Chen, C.Y. (2001) Crystal structure and site-directed mutagenesis studies of N-carbamoyl-D-amino-acid amidohydrolase from Agrobacterium radiobacter reveals a homotetramer and insight into a catalytic cleft. J. Mol. Biol. 306: 251-261.
    Wetzel, R. (1996) For protein misassembly, it's the ''I'' decade. Cell 86: 699-702. Wigley, W.C., Stidham, R.D., Smith, N.M., Hunt, J.F., and Thomas, P.J. (2001) Protein solubility and folding monitored in vivo by structural complementation of a genetic marker protein. Nat. Biotechnol. 19: 131-136.
    Wurth, C., Guimard, N.K., and Hecht, M.H. (2002) Mutations that reduce aggregation of the Alzheimer's A[beta]42 Peptide: an unbiased search for the sequence determinants of A[beta] amyloidogenesis. J. Mol. Biol. 319: 1279-1290.
    Xu, Z., Jiang, W.H., Jiao, R.S., and Yang, Y.L. (2002) Cloning, sequencing and high expression in Escherichia coli of D-hydantoinase gene from Burkholderia pickettii. Chin. J. Biotechnol. 18: 149-154.
    Yang, J.K., Park, M.S., Waldo, G.S., and Suh, S.W. (2003) Directed evolution approach to a structural genomics project: Rv2002 from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 100: 455-460.
    Zhang, Y.B., Howitt, J., McCorkle, S., Lawrence, P., Springer, K., and Freimuth, P. (2004) Protein aggregation during overexpression limited by peptide extensions with large net negative charge. Protein Expres. Purif. 36: 207-216.
    Jiang, S., Li, C., Zhang, W., Cai, Y., Yang, Y., Yang, S., and Jiang, W. (2007) Directed evolution and structural analysis of N-carbamoyl-D-amino acid amidohydrolase provide insights into recombinant protein solubility in Escherichia coli. Biochem. J. 402: 429-437.
    Ogawa, J., and Shimizu, S. (1999) Microbial enzymes: new industrial applications from traditional screening methods. Trends Biotechnol. 17: 13-21.
    Xu, Z., Jiang, W.H., Jiao, R.S., and Yang, Y.L. (2002) Cloning, sequencing and high expression in Escherichia coli of D-hydantoinase gene from Burkholderia pickettii. Chin. J. Biotechnol. 18: 149-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700