人工智能在地震滑坡危险性评价中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震滑坡是一种常见的地震次生灾害形式,以其巨大的致灾力引起人们的广泛关注,在山岳地区,所造成的损失有时甚至远远超过地震本身。目前,世界上很多国家都在进行地震滑坡潜在危险性研究,其意义在于潜在地震滑坡危险区的确定,使我们在进行基础建设和区域规划时,有依据选择合适的场地,避开危险地段,或者采取必要的防范措施,从而达到减少经济损失,保护人民生命财产安全的目的。
     我国是一个多山、多丘陵的国家,据统计,山地和丘陵面积约占国土面积的70%,这就从客观上决定了我国有大量的自然边坡。我国西南地区区域地质背景复杂,是中国大陆内强震活动频度最高的地区。据两千多年来的历史资料记载,西南地区曾发生过很多强烈的地震,引发的滑坡、崩塌问题特别严重。我国正处于开发西部的征程中,由于经济的发展,对土地的需求在不断地增加,对土地的合理利用提出了迫切的要求;同时,西南地区许多重大水利水电工程正在建设中或处于论证阶段,而这些重大工程的选址又常常在高山峡谷中,对边坡的稳定性研究显得更为重要。因此,对地震滑坡、崩塌问题的研究具有不仅有重要的理论意义,而且具有重要的实践意义。
     地震滑坡作为滑坡的一种类型,有其自身的特点,本文通过对大量有地震滑坡纪录的震例分析中,系统地总结了地震滑坡的分布特征、形成条件和相关影响因素。在前人研究成果的基础上,研究了地质构造背景、岩石结构、岩性特点、地形地貌、水文条件等对地震滑坡的影响,同时对地震滑坡与地震动参数之间的关系进行了论述。论文对现有的斜坡稳定性评价方法进行了回顾,并针对目前区域性地震滑坡稳定性评价所用方法中存在的所需工程地质参数太多、数据获取困难、赋值主观性较强等缺陷,本文进行了一系列的改进。
     在本文的研究过程中,地理信息技术(GIS)的应用对地震滑坡研究起了极大的推动作用。一方面,地震滑坡是由地震触发的,在分布上具有量多面广的特点,这种区域特点的问题适宜于GIS对空间数据管理的特点;另一方面,地震滑坡的影响因素众多,各个因素之间互相影响、互相牵掣,传统的数据分析很难把这些不同来源、不同性质的数据集中分析,而GIS空间数据库功能可以把各种影响因素搁置于统一的地理平台进行讨论,在数据相关性分析上具有不可比拟的优势。GIS把地质、地貌、岩性、构造、植被、降水等与地震滑坡相关的环境资料一起储存在空间数据库中,并应用GIS的空间分析功能对这些数据进行分析研究。GIS的引入,使得对滑坡的研究不再是孤立地研究单一因素与滑坡的关系,而是把滑坡事件与周围的地质、地貌环境等资料综合起来进行分析。
     地震滑坡形成机制复杂,涉及因素众多,它在空间上不是完全随机分布的,换言之,地震滑坡的影响因素和它的分布规律之间存在着相关性。为了表达这些特征因素与地震滑坡发生的关系,本文利用径向基概率神经网络自学习、自适应的特性,通过对样本训练、检测,最终得到一个稳定可靠的模式识别网络,从而通过该模式对研究区域的地震滑坡进行识别。应用神经网络研究地震滑坡危险性预测是有其理论基础的。从工程地质学构造类比的角度讲,对潜在地震滑坡危险性进行判断,实质上是一种模式识别问题。神经网络方法的运用使得对这一事件的认识更客观、更接近实际。本文在对地震滑坡数据进行空间分析的基础上,结合前人的研究成果,采用易于获取的信息资料,包括水系、断裂、岩性、坡度、地震烈度等5项指标作为地震滑坡危险性研究的神经网络的输入指标。
     在对地震滑坡危险性评价的工作中,影响因素权重大小以及划分危险性级别的各指标界限的确定问题上的模糊性,决定了该工作的复杂性。传统的确定各个影响因素重要性的方法是根据专家的经验,避免不了主观因素的影响。层次分析法则提供了一种确定权重的较好方法。它通过两两对比的方式,确定各个因素的相对重要性,基于统一的标准建立判断矩阵进行综合判断,最终可得出各因素按其重要程度的排序。在危险性界别的划分上,通过建立单因素指标评价矩阵,与层次分析法确定的影响因素的权重向量进行模糊合成,最终根据最大隶属度确定危险性所属级别。这一方法的实施,解决了危险程度划分界限不能明确表达的难题。
     为了对上述理论的实际应用性进行检验,本文以发生在我国西南地区的3个强烈地震(1973年炉霍地震,M=7.9;1974年昭通地震,M=7.1;1996年丽江地震,M=7.0)为例,应用神经网络、层次分析模糊数学对震区的地震滑坡危险性进行了研究。(1)在研究各个地震震区滑坡分布规律的基础上,对每一震区选出各自的训练样本建立相应的网络模型,然后对整个区域进行识别。各个震区的识别结果表明了神经网络对地震滑坡单元具有良好的识别能力;(2)在单独对各个震区的地震滑坡进行识别的基础上,合并各个震区的训练样本,用统一的网络模型对研究区域的地震滑坡进行研究。结果表明,统一的网络模型在各个区域均取得较好的识别效果;(3)对地震滑坡的5个主要影响因素水系、断裂、岩性、坡度、地震烈度等,根据本区地震滑坡分布规律与它们之间的关系,采用层次分析的方法,确定了这5个因素之间的相互重要性并建立单因素的评价标准。本文中这5个影响因素的权重向量W=(0.0491 0.1379 0.3393 01850 0.2855),进而通过模糊合成形成判断集B=WOA,即可对每个单元进行等级判断。从最终结果中可以看到三起地震中实际滑坡发生的位置大部分均在本文划分的高度危险区中。
     从上述两种方法的理论基础并结合实际应用中取得的成果来看,可得到如下的认识:本文选用的地震滑坡影响因素作为神经网络的输入特征指标具有科学性和实用性,根据3起地震提取的样本训练而成的神经网络模型,可用以对有相似地质构造背景的地区进行地震滑坡危险性预测。不同构造区域中,相同影响因素的权重可能不同,也就是说,在一个区域中具有较大影响的因素在另一个区域中的作用可能不是很大。这从一个方面反映了地震滑坡的复杂性。
As a kind of secondary disasters caused by strong earthquakes, the earthquake-induced landslide has drawn much attention in the world because of severe hazards it causes. In a mountainous region, sometimes a great loss of lives and properties caused by landslide even exceeds the losses caused by the earthquake itself. These large landslides usually cannot be prevented by current mitigating measures, whereas the only possible preventive measures are early warning and evacuation of vulnerable communities. In order to reduce the damage, researches on the potential earthquake-induced landslide zoning are conducting in many countries at present. The purpose of the zoning map is to provide a tool for regional planning. Based on it, the government can avoid the dangerous areas and select suitable sites for constructions, thereby protect peoples' lives and properties.
     In southwest China, due to its complex geological and geographical conditions, many strong earthquakes have occurred, inducing lots of landslide, therefore, earthquake-induced landslide remains one of the most serious seismic hazards there. So, the study of this issue is very important in theory as well as practice especially when our government is implementing the grand strategy to develop western China.
     Supported by hundreds of bibliographies, this thesis systemically details the earthquake-induced landslide's distribution characteristics, formation conditions and related influencing factors. Based on previous research results, this work summarizes relationships between landslides and influencing factors, such as geological background, rock mass structure, topography as well as hydrogeology condition. Also, this thesis gives a brief glance to the methods used in the slope stability study and puts forward some improvements to the old methods. In this work, Geographic Information System(GIS) technology has been used as a power tool in the research. The question concerned is the spatial features that meet the GIS capacity very well. Spatial database has the ability of controlling all the data from diverse sources, and the factors influencing earthquake-induced landslide which are taken into account have different combinations as known. So, in this thesis, all the factors have been studied together on a uniform platform supported by GIS instead of studying single factors independently.
     The studies show that earthquake-induced landslide is not distributed at random, rather it has its regularity. It means the corresponding relationship between the earthquake- induced landslide and the geological factors, though it is a non-linear relationship. This work uses neural network named Radial Basis Probabilistic Neural Network(RBPNN) to study this non-linear relationship through the training of landslide samples. In terms of geo-technological structure analogy, to determine the potential landslide places is essentially a pattern recognition question, because the areas where earthquake-induced landslides occur have similar geology conditions. Through repeated sample training, neural network could obtain the model of relationship, and then the model can be used to simulate the potential area that would be influenced by earthquake-induced landslide. The non-linear relationship obtained through neural network training would be more objective than others because the whole process is fulfilled automaticly. In this work, rivers, faults, rock, slope angle and seismic intensity are taken as the neutral network input indexes into account of the existing knowledge of the landslide.
     It is known that there are many factors influencing earthquake-induced landslide, and different factors have different actions to the same thing. Due to both a great variation in landslide characteristics and our insufficient understanding on mechanisms of landslide, traditional methods in deciding factors' weights mainly depend on the experts' experiences, so the results would be subjective to some degree. Analytic Hierarchy Process(AHP) is a good technical approach for converting subjective assessment into a set of weight. It has proven to be very useful in assisting selection from a finite set of alternatives as well as in ranking things. Through comparing factors two by two, pairwise comparison matrix is built, after solving the matrix, weights of relative importance for different factors are obtained. Despite of the complexity of the factor ranking, there is another difficult problem needing to be solved. It is difficult to give a clear boundary for different earthquake-induced landslide hazard grades when we need to tell where the area is more danger than another. Fuzzy Mathematics is good helpful to solve this question. Building a single factor influence matrix according to the grades needed (in this work, the risk is divided into 3 grades: high hazard area, middle hazard area and no hazard area), synthesis it with the weight matrix obtained by AHP, and then a degree of membership matrix is obtained. At last, the hazard grade is decided by the maximal membership degree. The application of AHP and Fussy mathematics could be a useful attempt in the hazard zoning work.
     In this thesis, three examples are taken and used as target areas to apply the method presented above. They are the Luhuo Earthquake(1973, M=7.9), Lijiang Earthquake(1996, M=7.0) and Zhaotong Earthquake(1974, M=7.1). All of the three earthquakes occurred in southwest China and triggered lots of landslides. Specific steps of analysis are as follows:
     (1) After the study of every strong earthquake triggered landslides' distribution, selecting training samples and constructing neural network for every example earthquake, then use the neutral network model to simulate the potential area influenced by earthquake-induced landslide. The results show the good capacity of neutral network in landslide area recognition.
     (2) Based on the neutral network identifying in different areas, this work takes all the training samples together to obtain a uniform model. The results also show the good capacity of neutral network in landslide area recognition.
     (3) Based on the study of relationships between rivers, faults, rock, slope angle, seismic intensity and distribution of earthquake-induced landslide, this work decides weights of relative importance for the 5 factors using AHP technique and builds single factor influence matrix(A) at the same time. The weights matrix(W) of the 5 factors is: W= (0.04910.1379 0.3393 01850 0.2855) . Further more, fussy synthesis of 2 matrix is made: B -WOA, where B is a matrix of the final evaluation. This work classes the hazard areas into 3 grades: high hazard area, moderate hazard area and no hazard area. From the zoning results, it's clear that almost the entire area influenced by earthquake-induced landslide has been enclosed in the high hazard range. In summary, this thesis selects 5 factors out of all influencing earthquake-induced landslide to study its distribution. The results indicate that the 5 factors are scientific and of utility in the neutral network input index and AHP fuzzy mathematics. The neutral network model drawn from the Luhuo earthquake, Lijiang earthquake and Zhaotong earthquake can be used as a tool to identify the dangerous areas which have similar geological conditions and support the land planning. It's also worth attention that in different geological settings, the same factor may have different actions and different weights.
引文
A. S. Al-Homoud, W. W. Tahtamoni. SARETL: an expert system for probabilistic displacementbased dynamic 3-D slope stability analysis and remediation of earthquake triggered landslides. Environmental Geology 39(8) June 2000: 849-874.
    Ashok K. Chugh, Timothy D. Stark. Permanent seismic deformation analysis of a landslide. Landslides(2005) 00.
    Azm S. Al-homoud and WisaM W. Tahtamoni. A Reliability Based Expert System for Assessment and Mitigation of Landslides Hazard Under Seismic Loading. Natural Hazards 24: 13-51, 2001.
    Azm S. Al-homoud, Wisam W. Tahtamoni. Seismic reliability analysis of earth slopes under short term stability eonditions. Geotechnical and Geological Engineering 20: 201-233, 2002.
    Baoping Wen, Sijing Wang, Enzhi Wang, Jianmin Zhang. Characteristics of rapid giant landslides in China. Landslides(2004) 1: 247-261.
    C. F. Lee, H. Ye, M. R. Yeung, et al. AIGIS-based methodology for natural terrain landslide susceptibility mapping in Hong Kong[J]. Episodes. 24(3): 150~159.
    C. J. van Westen, T. W. J. van Asch, R. Soeters. Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Env(2005).
    Celine Bourdeau, Hans-Balder Havenith, Jean-Alain Fleurisson etc. Numerical Modelling of Seismic Slope Stability. Robert Hack, Rafig Azzam, and Robert Charlier(Eds.): LNES 104, pp.671-684, 2004.
    Chen, S., C. F. Cowan, and P. M. Grant. 1991. Orthogonal Least Squares Leaming Algorithm for Radial Basis Function Networks[J]. IEEE Transactions on Neural Networks. 2(2): 302~309.
    Clemente kigaray Fema A Ndez, Toma A S Fema A Ndez Del Castillo, Rachid El Hamdouni etc. Technical communication varification of landslide susceptibility mapping: a case study. Earth Surf. Process. Landforms 24, 537-544(1999)
    Daniel J. Miller, Joan Sias. Deciphering large landslides: linking hydrological, groundwater and slope stability models through GIS. Hydrol. Process. 12, 923-941(1998)
    David K. Keefer, Landslides caused by earthquakes, Geological society of America Bulletin, 1984, April vol 95, p406-421.
    David K. Keefer. Investigation landslide caused by earthquakes—a historical review. Surveys in Geophysics 23: 473-510, 2002.
    David J. Wachal, Paul F. Hudak. Mapping landslide susceptibility in Travis County, Texas, USA. GeoJoumal 51: 245-253, 2000.
    Domenico Capolongo, Alberto Refice, Joseph mankelow. Evaluating earthquake-triggered landslide hazard at the basin scale through GIS in the upper sele river valley. Surveys in Geophysics 23: 595-625, 2002.
    Ertan Yesilnacar and Gary J. Hunter. Application of Neural Networks for Landslide susceptibility Mapping in Turkey. Kluwer Academic: London, pp. 3-18.
    Evans N. C., Natural terrain landslide study: preliminary assessment of the influence of rainfall on natural terrain landslide initiation. Geotechnical Engineering Office, Hong Kong, 1997, Discussion note DN 1/97, 28p.
    Foumelis M., Lekkas E., Parchafidis I. Landslide susceptibility mapping by GIS-based qualitative weighting procedure in Corinth area. Bulletin of the Geological Society of Greece vol. ⅩⅩⅩⅥ, 2004. 904-912.
    Fourie A. B. Predicting rainfall-induced slope instability. Geotechnical engineering. Institute of civil engineers. 1996. vol.119 pp: 211~218.
    Francesco Brardinoni, Michael Church. Representing the landslide magnitude-frequency relation: capilano river basin, British Columbia. Earth Surf. Process. Landforms 29, 115-124(2004)
    G. L. Sivakumar Babu, M. D. Mukesh. Risk analysis of landslides-A case study. Geotechnical and Geological Engineering 21: 113-127, 2003.
    H. B. Havenith, M. Vanini, D. Jongmans, E. Faccioli. Initiation of earthquake-induced slope failure: influence of topographical and other site specific amplification effects. Journal of Seismology. 7: 397-412, 2003.
    H. B. Havenith, M. Vanini, D. Jongmans etc. Initiation of earthquake-induced slope failure: influence of topographical and other site specific amplification effects. Journal of Seismology 7: 397-412, 2003.
    Hans-Balder Havenith, Alexander Strom, Fernando Caceres, Eric Pirard. Analysis of landslide susceptibility in the Suusamyr region, Tien Shan: statistical and geoteclmical approach. Landslides(2005) 00
    Hiroshi Fukuoka, Gonghui Wang, Kyoji Sassa etc. Earthquake-induced rapid long-traveling flow phenomenon: May 2003 Tsukidate landslide in Japan. Landslides(2004) 1: 151-155.
    H. X. Lan,, C. H. Zhou, L. J. Wang, H. Y. Zhang, R. H. Li. Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Engineering Geology. 76(2004) 109-128
    Jordi Corominas, Ramon Copons, Joan Manuel Vilaplana etc. Integrated landslide susceptibility analysis and hazard assessment in the Principality of Andorra. Natural Hazards 30: 421-435, 2003.
    Keefer D. V. and Wilson R. C., 1989, Predicting earthquake-induced landslides, with emphasis on arid semi-arid environments, in Sadler P. M. and Morton D. M., eds., Landslides in a semi-arid environment with emphasis on the inland Valleys of Southern California, Publications of the Inland Geological Society. vol.2, pp.118-149
    Keefer D. V., 2000, Statistical analysis of an earthquake-induced landslide distribution—the 1989 Loma Prieta California event, Engineering Geology, Special Issue, Vol.58 No.3-4
    Kenji Kashiwaya, Yoshikazu Tsuya and Takashi Okimura. Earthquake-related geomorphic environment and pond sediment information. Earth Surf. Process. Landforms 29, 785-793 (2004)
    Kyoji Sassa, Hiroshi Fukuoka, Fawu Wang. Gonghui Wang. Dynamic properties of earthquakeinduced large-scale rapid landslides within past landslide masses. Landslides(2005) 2: 125-134.
    Kyoji Sassa, Gonghui Wang, Hiroshi Fukuoka etc. Landslide risk evaluation and hazard zoning for rapid and long-travel landslides in urban development areas. Landslides(2004) 1: 221-235.
    K. T. Chau, J. E. Chan. Regional bias of landslide data in generating susceptibility maps using logistic regression: Case of Hong Kong Island. Landslides(2005) 2: 280-290
    Mario Floris, Milena Mari, Roberto W. Romeo, and Umberto Gori. Modelling of Landslide Triggering Factors-A Case Study in the Northern Apennines, Italy. Robert Hack, Rafig Azzam, and Robert Charlier(Eds.): LNES 104, pp. 745-753, 2004.
    Mehmet Lu"tfi Su"zen, Vedat Doyuran. A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environmental Geology(2004) 45: 665-679
    Mogenstern, N. R. and Price, V. E. The analysis of the stability of general slip surface, Geotechnique, 1965, 15, 387-395.
    Murat Ercanoglu, Candan Gokceoglu. Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental Geology (2002) 41: 720-730.
    Paolo Boncio, Giusy Lavecchia, Bruno Pace. Defining a model of 3D seismogenic sources for Seismic Hazard Assessment applications: The case of central Apennines(Italy). Journal of Seismology. 8: 407-425, 2004.
    P. D. Wasserman. Advanced Methods in Neural Computing. New York: Van Nostrand Reinhold, 1993. 35~55.
    Powell M J D. 1985. Radial basis functions for multivariate interpolation. New York: Springer. 143~167.
    Randall W. Jibson. Landslide Hazards at La Conchita, California U. S. Geological Survey Open-File Report 2005-1067
    Randall W. Jibson, Edwin L. Harp, John A. Michael. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps: An Example from the Los Angeles, California, Area. U. S. Geological Survey. Open-File Report 98-113.
    R. C. Wilson, D. K. Keefer. Predicting areal limits of earthquake-induced landsliding. In evaluating earthquake hazards in Los Angeles region. 1985. U. S. Geological Survey, professional paper 1360, pp: 317~345
    R. P. Gupta and B. C. Joshi, Landslide hazard Zoning using the GIS approach—a case study from the Ramgamga Catchment, Himalayas, 1990, 28, Engineering Geology. 119~131
    Rex L. Baum, Jeffery A. Coe, Jonathan W. Godt etc. Regional landslide-hazard assessment for Seattle, Washington, USA. Landslides(2005) 2: 266-279.
    Rex L. Baum, William Z. Savage, Jonathan W. Godt. TRIGRS—A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis. Open-file Report 02-424
    R. SIGBJORNSSON, N. N. AMBRASEYS. Uncertainty Analysis of Strong-Motion and Seismic Hazard. Bulletin of Earthquake Engineering. 1: 321-347, 2003.
    S. Debray, W. Z. Savage. A Preliminary Finite-Element Analysis of a Shallow Landslide in the Alki Area of Seattle, Washington U. S. Geological Survey. Open-File Report 01-0357. 2001.
    Saro Lee. Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Environmental Management Vol. 34, No. 2, pp. 223-232.
    Saro Lee, Joo-hyung Ryu, Kyungduck Min and Joong-sun Won. Landslide susceptibility analysis using GIS and artificial neural network. Earth Surf. Process. Landforms 28, 1361-1376(2003)
    Saro Lee, Nguyen Tu Dan. Probabllistic landslide susceptibility mapping in the Lai Chau province of Vietnam: focus on the relationship between tectonic fractures and landslides. Environ Geol (2005) 48: 778-787
    S Lee, Jasmi Abdul Talib. Probabilistic landslide susceptibility and factor effect analysis. Environ Gcol(2005) 47: 982-990.
    Technical Committee for earthquake geotechnical engineering, TC-4, ISSMFE. Manual for Zonation on seismic geotechnical hazards[M]. Tokyo: The Japanese society of soil mechanics and foundation engineering. 1993. 47~70.
    T. L. Saaty, M. M. Wang, Projective average family size in rural India by the analytic Hierarchy process[J]. Journal of Mathematical Socilogy, 1983, 9: 181~209.
    U. S. Army Corps of Engineers. Stability of slopes and foundations. Engineering Manual, Visckburg, Miss, 1967
    Wen, Baoping, Wang, Sijing, Wang, Enzhi etc., Characteristics of rapid giant landslides in China. Landslides(2004) 1: 247-261.
    William H. Schulz. Landslides mapped using LIDAR imagery, Seattle, Washington U. S. Geological Survey Open-File Report 2004-1396
    Yanjun Shang, Hyeong-Dong Park, Zhifa Yang, Jie Yang. Distribution of landslides adjacent to the northern side of the Yarlu Tsangpo Grand Canyon in Tibet, China. Environ Geol(2005) 48: 721-741.
    Ye, H., Chen, G. and Zhou, Q., 1995, Study on the intraplate potential seismic sources. In: Proc. Fifth International Conf. Seismic Zonation, 2, Nice, France, 1424~1430.
    Ye, H., Zhou, Y., Zhou, Q., Yang, W., Chen, G. and Hao, C., 1993, Study on potential seismic sources for seismic zonation and engineering seismic hazard analysis in continental areas. In: Continental Earthquakes, IASPEI Publication Series for the IDNDR 3, 473~478.
    ZHOU Ben-gang, Zhang Yu-ming. 1994. Some characteristics of earthquake-induced landslide in southwestern China[J]. Northwestern seismological journal. 16(1): 95~103
    Zhang Yun-peng, Zhu Ben-gao. Application of Fuzzy Mathematics on the Flood Forecast. Fuzzy Systems and Mathematics. 2002. 16(3): 74-81.
    Zheng G. L., Billings Steve A. Radial basis function network configuration using mutual information and the orthogonal least squares algorithm[J], Heural Networks, 1996, 9(9): 1619~1637.
    Zhou Ben-gang, Zhang Yu-ming, Some characteristics of earthquake-induced landslide in southwestern China[J], Horthwestern seismological journal, 1994, 3 vol. 16, Ho.1, 95~103
    艾买提.乃买提,1992年4月5日策勒5。9级地震烈度与震害,内陆地震,7(3),295~300,1993.
    柏美祥等,1993年10月2日若羌6.6级地震,内陆地震,8(4),1994
    蔡奕,王宝军,施斌,方海东.GIS环境下膨胀土胀缩等级的模糊数学评判.工程勘察.2002年第2期.1-4.
    陈重阳,蔡萍,施文康等.基于径向基函数概率神经网络的心律失常自动识别[J].上海交通大学学报.34(11):1475~1477.
    陈立德,赵维城等.1976年龙陵地震。1979。地震出版社.
    陈晓利,叶洪,程菊红.GIS技术在区域地震滑坡危险性预测中的应用——以龙陵地震为例.工程地质学报.2006.14(3):334-338.
    陈晓利,赵健,叶洪.应用径向基概率神经网络研究地震滑坡.2006.地震地质.28(3):430-440.
    地震综合大队地震地质队.云南省普洱县普义地震宏观考察报告.1981.9.29
    地质部云南省地质局第一区域地质调查大队,中华人民共和国区域地质调查报告,鹤庆幅(1∶20万),1966.
    丁彦慧,王余庆,孙进忠,唐蕴,2000,地震崩滑预测方法及其工程研究应用,工程地质学报,2000,8(4)475~480.
    甘卫军,黄雅虹,张培震,黄土斜坡最危险滑裂面的遗传算法确定及稳定性分析.工程地质学报,1999,Vol.7,No.2.
    顾功叙,林庭煌,时振梁等.中国地震目录(公元前1831年-1979年).1983.地震出版社.
    顾功叙主编.中国地震目录(公元1970年-公元1979年).地震出版社,1984
    国家地震局地质研究所,云南省地震局.滇西北地区活动断裂.地震出版社.1990.
    国家地震局震害防御司,中国历史强震目录(公元前23世纪——1911).1995.地震出版社。
    郭增建,马宗晋.中国特大地震(一).地震出版社.1986.
    韩新民,周瑞琦.丽江7.0级地震的烈度分布.地震研究.1997.20卷1期.35~45.
    胡广韬.滑坡动力学.北京,地质出版社,1995
    胡铁松,王尚庆.滑坡预测的改进前馈网络方法研究.自然灾害学报.1998.第7卷1期.54~58.
    湖南省水利水电勘测设计院.边坡工程地质.水利电力出版社.1982.
    滑坡文集委员会主编,滑坡文集(第五集),中国铁道出版社,1986.
    滑坡文集委员会主编,滑坡文集(第十集),中国铁道出版社,1993.
    兰雁 李日运 樊敬亮 李广哗.田湾核电站引水隧洞边坡稳定性综合评价.岩石力学与工程学报。第23卷第16期.2004年8月23(16):2703~2707
    李劲峰.灰色系统理论在岩崩、滑坡检测中的应用.自然灾害学报.1997.第6卷1期.31~35.
    李树德,任秀生,岳升阳等.地震滑坡研究.水土保持研究.2001年6月.8(2):24-25.
    李天池.地震与滑坡的关系及地震滑坡预测的探讨(节录).滑坡文集(二),1984.
    李天池,四川松播、平武地展区崩塌和滑坡的若干问题,见:铁道部科学研究院西北研究所主编滑坡文集(第2集),人民铁道出版社,197
    李医民,胡寿松,郝峰.复杂生态系统的模糊数学模型.模糊系统与数学。2004.18(2):89-99.
    李忠生.国内外地震滑坡灾害研究综述.灾害学.2003年12月.18(4):64-70.
    刘春凤,翟瑞彩.基于模糊数学的水质分析.2003.天津大学学报.2003.第36卷.第1期.87-91.
    刘传正,李铁锋,程凌鹏,等.区域地质灾害评价预警的递进分析理论与方法.水文地质工程地质.2004.31(4):1-9.
    刘传正,张明霞,刘艳辉.区域地质环境可持续利用评价体系初步研究.地学前缘.2006.13(1).242-246.
    刘景元、宋立军、戴晓敏,1998年3月19日阿图什6.0级地震震害特征,内陆地震,13(1),44~48,1999.
    刘为付,旷红伟.利用模糊数学综合评价火山岩储层.油气地质与采收率.2003.10(2):9-11.
    蒋溥,戴丽思.工程地震学概论.1993.地震出版社。
    科技部国家计委国家经贸委灾害综合研究组主编,中国重大自然灾害与社会图集,广东科技出版社,2004.
    倪长健,王顺久,丁晶.边坡稳定性评价的投影寻踪聚类模型.岩石力学与工程学报.2004年8月.23(16):2687~2689.
    聂洪峰,祁生文,孙进忠,刁淑娟.2002.重庆市区域稳定性层次分析模糊综合评价.工程地质学报.10(04).339~345.
    宁夏回族自治区地震局资料室,海原5.7级地震总结(打印件),1982.7
    祁生文.边坡动力响应分析及应用研究.博士论文.中国科学院研究生院.2002.
    祁生文,伍法权,刘春玲,丁彦慧。地震边坡稳定性的工程地质分析。岩石力学与工程学报.第23卷第16期,2004年8月:2792~2797
    祁生文,伍法权.边坡动力响应规律研究.中国科学,E辑,技术科学.2003,33(增刊):28~40.
    乔建平,蒲晓红.川滇地震滑坡分布规律探讨.地震研究.1992.15(4):411~417.
    乔建平,陈永波.滑坡灾害快速反应系统.自然灾害学报.2004.13(1):133~136.
    四川省地理研究所.1976年5月29日龙陵地震滑坡调查报告.1976.
    四川省地理研究所.1973年2月6日炉霍地震滑坡调查报告.
    四川省地理研究所.一九七四年五月十一日大关-永善地震区山崩、滑坡、泥石流考察报告.1974.8
    四川省地震局.一九八一年道孚地震.1986.地震出版社.
    四川地震局编.一九七六年松潘地震.1979.地震出版社.
    四川省地质矿产局区域地质调查队四分队,中华人民共和国区域地质调查报告,新龙幅(1∶20万),1984.
    四川省地质矿产局区域地质调查队一分队,中华人民共和国区域地质调查报告,炉霍幅(1∶20万),1984.
    四川省革委会地震办公室,国家地震局成都地震大队,1973年2月6日炉霍地震宏观考察报告。
    四川省革委会地震办公室,国家地震局成都地震大队、炉霍地震考察队.一九七三年二月六日炉霍地震宏观考察报告.1973.4.
    四川省革命委员会地震办公室、国家地震局成都地震大队黄龙地震调查组,黄龙6.1级地震宏观调查报告(打印件),1973.8.26
    山田刚二,渡正亮等.滑坡和斜坡崩塌及防治.1980.科学出版社。
    单新建.1999.遥感技术和地理信息系统在地质环境评价中的集成应用[D].北京:中国地震局地质研究所.
    单新建,叶洪.地质学中遥感数据的利用及融合方法.1999年.地震地质。第四期。
    尚岳全,孙红月,巴金福.滑坡动态变形过程的综合研究方法.2001.自然灾害学报.10卷4期.84~87.
    邵龙潭,唐洪祥,孔宪京,韩国城.随机地震作用下土石坝边坡的稳定性分析.水利学报.1999年11月.第11期.66~71.
    沈清,汤霖.模式识别导论.1991.国防科技大学出版社。
    宋立军、王克元等,1996年3月13日阿勒泰6.1级地震,内陆地震,11(1),50~56,1997
    孙崇绍,蔡红卫.1997.我国历史地震时滑坡崩塌的发育及分布特征[J].自然灾害学报.6(1):25~30.
    孙玉科,李建国.岩质边坡稳定的工程地质研究,1965,地质科学,4.
    孙玉科,牟会宠,姚宝魁.边坡岩体稳定性分析.北京,科学出版社,1988.
    唐川,黄楚兴,万晔,1997,云南省丽江大地震及其诱发得崩塌滑坡灾害,自然灾害学报,6卷3期,1997年8月,76~84.
    铁道部科学研究院西北研究所主编.滑坡文集.1976.人民铁道出版社.
    铁道部科学研究院西北研究所主编.滑坡文集(第二集).1979.人民铁道出版社.
    王余庆,辛鸿博,高艳平,周根寿,2001,预测岩土边坡地震崩滑的综合指标法研究,岩土工程学报,2001,vol23.No.3.311~314.
    邬伦,任伏虎,谢昆青等.地理信息系统教程.1994.北京大学出版社.
    夏元友.滑坡灰色系统预测模型及应用.自然灾害学报.1995.4(1):74~78.
    夏元友.系统加权聚类法及其在滑坡稳定性预测中的应用.自然灾害学报.1997.6(3):85~91.
    夏元友,朱瑞庚.不稳定边坡治理方案的多层次模糊综合群决策.自然灾害学报.1998.7(1).61~65.
    夏元友,李梅.边坡稳定性评价方法研究及发展趋势.岩石力学与工程学报.2002.21(7):1087~1091.
    夏元友,熊海丰.边坡稳定性影响因素敏感性人工神经网络分析.岩石力学与工程学报.2004.23(16):2703~2707.
    谢全敏,夏元友.岩体边坡稳定性的可拓聚类预测方法研究.岩石力学与工程学报,2003,22(3):438~441.
    辛鸿博,王余庆.岩土边坡地震崩滑及其初判准则.岩土工程学报.1999.21(5):591-594.
    新疆维吾尔族自治区地震局.一九七八年四月二十二日库尔勒5.8级地震总结.1978.12.2.
    新疆维吾尔自治区地震局,1999年3月15日库车5.6级地震考察报告,1998
    新疆维吾尔族自治区地震局,1983年新疆和静阿拉沟5.4级地震宏观考察小结,1983.12
    新疆地震局,1980年11月6日玛纳斯5.8级地震宏观考察报告,1981.2
    新疆维吾尔族自治区地震局,1983年2月13日乌恰县托云公社6.8级地震宏观烈度考察报告,1983.5
    许建东.活断层资料的模糊综合评判在确定潜在震源区中的应用[D].国家地震局地质研究所.1988.
    许康,张劲军,陈俊等.预测模型可靠性的模糊数学评价方法.石油大学学报(自然科学版).2004.28(4):102-104.
    王坚,寇大兵,戴晓敏.1998年5月29日皮山县6。2级地震烈度分布特征及损失评估,内陆地震,13(1),50~57,1999.
    王兰民,袁中夏,石玉成等.黄土地震灾害区划指标与方法研究.自然灾害学报.1999.18(3).87~92.
    王兰民等.黄土动力学.2003.地震出版社。
    王亚强,王兰民,张小曳.GIS支持下的黄土高原地震滑坡区划研究.地理科学.第24卷第2期.2004年04月.170~176
    王余庆,辛鸿博,高艳平,等.2001.预测岩土边坡地震崩滑的综合指标法研究[J].岩土工程学报.23(3):311~314.
    魏一鸣.万庆.周成虎.基于神经网络的自然灾害灾情评估模型研究.自然灾害学报.1997.6(2).1~6.
    闻新,周露,王丹力,等.2000.MATLAB神经网络应用设计[M].北京:科学出版社.244~246.
    《盐源-宁蒗地震》编辑组.一九七六年盐源-宁蒗地震.1988.地震出版社.
    晏枫桐等,1993年普洱6.3级地震的预报、类型判定及现场考察报告(打印稿),云南省地震局普洱地震现场工作组,1993
    杨纪林,胡伟华,1998年7月28日拜城5.4级地震发震构造及其选择性破坏,内陆地震,113(1),58~62,1999.
    尹光华,1993年2月3日和静5。4级地震震害评估与地震构造,内陆地震,4(4)358~367:1994.
    殷坤龙,晏同珍.滑坡预测及相关模型.岩石力学与工程学报.1996.第15卷第1期.1~8.
    云南省地震局,滇西地震预报实验场.1996年丽江地震.地震出版社.1998.
    云南省地震局,宁蒗6.2级地震灾害损失评估报告,1998.11.27.
    云南省地震局,关于金平5.6级地震震害损失评估结果的报告,1995
    云南省地质局区域地质调查队,中华人民共和国区域地质调查报告,永宁幅(1∶20万),1980.
    云南省地质局第一区域地质调查大队,中华人民共和国区域地质调查报告,丽江幅(1∶20万),1977.
    张跃等,模糊数学方法及其应用[M].北京:煤炭工业出版社,
    张铮,杨文平,石博强等.Matlab程序设计及实例应用.中国铁道出版社.2003.
    张志劲,孙才新,蒋兴良等.层次分析法在输电线路综合防雷措施评估中的应用.电网技术.2005年7月.29(14):68-72.
    赵健.2005.华南沿海潜在震源区划分[D].北京:北京大学.
    赵瑞斌,张勇,1993年12月1日疏附6.0级地震烈度与发震构造,内陆地震,8(3),262~266,1994.
    赵宜,蒲云,尹传忠.应用模糊数学及AHP分析法优化铁路物流结构.中国铁道科学.2005.26(3):119~123.
    周光权,张建国,周瑞琦等.丽江7.0级地震的地震地质构造背景分析.地震研究.1997.20卷1期.92~100.
    周开利,康耀红.神经网络模型及Matlab仿真程序设计.清华大学出版社.2004.
    周庆.2000.人工智能技术在确定潜在震源区中的应用[D].北京:中国地震局地质研究所.85~89.
    中国震害防御司编.中国近代地震目录(1912-1990M>=4.7).中国科学技术出版社.1999.
    中央地震工作小组云南地震队.云南省通海地震宏观、地震地质调查报告.1970.2.
    邹谨敞,邵顺妹,蒋荣发.古浪地震滑坡的分布规律和构造意义.中国地震.1994.10(2):168—174.
    邹谨敞,邵顺妹.古浪地震滑坡及其与断裂带的关系.西北地震学报.1994.16(3):60-65.66-71.
    邹谨敞,邵顺妹,屈健鹏等.北祁连东段及其邻区地震滑坡的基本特征和危险区预测.高原地震.1996,Vol.8,No.2
    朱大勇,李焯芬,黄茂松等.对3种著名边坡稳定性计算方法的改进.岩石力学与工程学报.2005.24(2):183—194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700