基于MATLAB快速控制原型的磁悬浮控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域具有广泛的应用背景。
     控制器是磁悬浮系统中的重要环节,其性能与系统的稳定性及各项技术指标有着密切关系。控制器应如何设计才能使系统稳定地工作并达到预期的性能指标是研究磁悬浮系统必须解决的问题。而控制器的核心是控制算法及其实现。对单自由度磁悬浮系统进行研究是研究主动磁悬浮技术的一个有效方法,它是多自由度磁悬浮装置的简化与去耦,在研究各种控制器算法,运用新技术方面具有重要的作用,可以为较复杂系统的设计与调试提供硬件和软件的准备。为了研究一种磁悬浮控制系统快速开发方法和设计一个方便研究复杂控制算法的平台,本文基于MATLAB的快速控制原型开发方法设计了单自由度磁悬浮球系统。
     本文对单自由度磁悬浮球系统进行分析后,建立其数学模型,确定控制器方案并设计了PID控制器。以快速控制原型技术为基础,提出了基于MATLAB/RTW的快速控制原型开发平台,并在此平台上搭建磁悬浮球实时控制系统,完成了磁悬浮球快速控制原型开发。
     进而在快速控制原型上尝试了变参数PID和滑模变结构复杂控制器算法仿真及实现。经实验仿真分析发现,变参数PID控制器不论是上升时间和超调量,还是调节时间都明显优于传统PID控制器;变结构控制器与控制对象的参数及外界扰动无关,具有快速响应、抗干扰等优点使系统具有较好的动态性和很强的鲁棒性。
     本文验证了基于MATLAB的快速控制原型开发方法能有效应用在磁悬浮控制系统开发上,并且设计出的单自由度磁悬浮控制系统能为磁悬浮控制算法的分析和研究提供很好的平台。
Magnetic suspension technology,which has a series of advantages such as contact-free,no friction,no wear,no need of lubrication and long life expectancy,is widely concerned and adopted in high-tech areas such as energy,transportation, aerospace,industrial machinery and life science.
     The controller is one of key parts in the magnetic suspension system.And its performance has close relations with the system stability and other various technical indicators.How to design the controller to enable the system to work stably with good anticipated performance indicators is a kind of vital problems on studying magnetic suspension system.The core of controller is the control algorithm and its realization.Conducting research of single degree-of-freedom magnetic suspension system is an effective method of studying active magnetic suspension technology, and it is a kind of simplification and the decoupling of multi-degree-of-freedom magnetic suspension installment.It has a vital role of doing research on each kind of controller algorithm and utilizing new technique.And it would provide the hardware and software's preparation for the complicated system's design and the debugging.In order to study a kind of fast method of exploiting magnetic suspension control system and to design a platform for debugging complex control algorithm,a rapid control prototype of single degree-of-freedom magnetic suspension ball was provided and designed based on MATLAB.
     After the analysis of single degree-of-freedom magnetic suspension ball system, its system mathematical model was established,and its PID controller was designed. With the base of rapid control prototyping technology,rapid control prototyping exploring platform was proposed based on MATLAB/RTW.After building magnetic suspension ball Real-Time control system,the rapid control prototype of magnetic suspension ball system was completed.
     Then variable parameters PID algorithm and sliding mode variable structure algorithm were attempted and realized in the rapid control prototype.Via simulation analysis and Real-Time experimental verification,it was found that the control effect of the variable parameters PID controller was better than that of the conventional PID controllers;and it was showed that the sliding mode variable structure controller was robust against external disturbances and the dynamic properties of the system were upstanding and robust.
     It was confirmed that the exploitation method of rapid control prototyping based on MATLAB was applied effectively in the magnetic suspension control system's development,and this control system platform was good for the algorithm analysis and research of magnetic suspension control system.
引文
[1]胡业发,周祖德,江征风.磁力轴承的基础理论与应用[M].北京:机械工业出版社,2006.46-72
    [2]施韦策,布鲁勒,特拉克斯勒.主动磁轴承基础、性能及应用(虞烈,袁崇军译).北京:新时代出版社,1997.24-72
    [3]韩邦成,李也凡等.电磁轴承控制系统研究综述.机床与液压,2004,14:1-3
    [4]吴伟光,马履中.永磁电磁混合悬浮隔振主动控制装置.农业机械学报,2007,38(7):183-185
    [5]蒋启龙,连级三.电磁轴承及其应用研究综述.重庆大学学报,2004.27(7):146-131
    [6]毛保华,黄荣,贾顺平.磁悬浮技术在中国的应用前景分析.交通运输系统工程与信息,2008.1:29-39
    [7]曾学明.磁轴承电控系统研究.[博士学位论文].南京:南京航空航天大学,2002
    [8]王亮.磁悬浮控制理论的研究和扩展.[硕士学位论文].北京:北京交通大学,2004
    [9]李群明,杨锋力,陆新江.磁悬浮球的H∞控制研究.仪器仪表学报,2006,27(7):683-688
    [10]P.K.Sinha,A.N.Pechev.Model Reference Adaptive Control of a Maglev System with Stable Maximum Descent Criterion.Automatics.1999,35:1457-1465
    [11]Sun Jun Joo,J.H Seo.Design and Analysis of the Nonlinear Feedback Lineafizing Control for an Electromagnetic Suspension System.IEEE Transactions on Control systems Technology,1996,5(1):135-144
    [12]李慧敏,汪希萱.磁悬浮轴承的研究现状和发展趋势.轴承,2003,(06):50-52
    [13]王洁琼,房建成,刘刚.高精度磁悬浮反作用飞轮自适应神经网络控制.系统仿真学报,2008,1(20):85-88
    [14]汤洁,李训铭.单自由度磁悬浮系统的状态反馈控制.计算机测量与控制,2005,13(9):472-490
    [15]任双艳,边春元,刘杰.基于DSP的磁悬浮轴承数字控制系统.东北大学学报(自然科学版),2007,7(28):1025-1028
    [16]曹学余,汤炳新.磁悬浮球系统的变结构控制,控制理论与应用,2005,24(2):4-6
    [17]徐昕.MATLAB工具箱应用指南——控制工程篇.北京:电子工业出版社,2000
    [18]刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社,2003
    [19]Alexander Lanzon,Panagiotis Tsiotras.A combined application of H∞ loop-shaping and μ-synthesis to control high speed flywheels.IEEE Transactions on Magnetics.Vol.13,No.3,2003.766-777
    [20]Sung-Kyung Hong,Reza Langari.Robust Fuzzy Control of a Magnetic Bearing System Subject to Harmonic Disturbances IEEE Transactions on Control Systems Technology,Vol.8,No.2,March 2000.366-371
    [21]Bleuler.H,Gahler.C,Herzog.R,Larsonneur.R,Mizuno.T,Siegwart.R,Woo.S.J.Application of Digital Signal Processors for Industrial Magnetic Beatings,IEEE Trans.Control System Technology,1994.280-289
    [22]管文华,肖爱武.快速原型技术现状与发展趋势研究,现代机械,2005
    [23]沈悦明,陈启军.dSPACE快速控制原型在机器人控制中的应用.机器人ROBOT.2002(6):545-549
    [24]路静,李亚伟.利用Matlab实现对硬件的实时处理和仿真.现代电子技术.2003.3
    [25]张旺林,熊诗波.实验室基于实时工作间的快速原型仿真系统的研究.科技情报开发与经济2003.4第13卷第4期
    [26]吴剑,孙秀霞.采用MATLAB中的xPC Target对硬件进行操作.现代电子技术.2002.4
    [27]樊晓丹,孙应飞,常衍达.一种基于Matlab的实时控制系统快速开发方法.清华大学学报.2003.7
    [28]苏奎峰等.基于Matlab的快速原型仿真系统,系统仿真学报,2004
    [29]石琦文,孙晓民.基于MATLAB的车用快速控制原型软件平台的研究与实现,计算机程与应用,2005
    [30]江震晔.快速原型技术在软件无线电系统开发中的应用研究.[硕士学位论文].南京:南京航空航天大学,2002
    [31]SIMULINK User's Guide.The Math Works Inc.September 2000.
    [32]Grega W.Kolek K.Simulation and real-time control:from SIMULINK to industrial applications.Computer Aided Control System Design.2002,Proceeding
    [33]Edmonds S L,Pieper J K,Discrete sliding mode control of magnetic bearings,IEEE conference on control Applications proceedings,2000,18(5):658-663
    [34]刘金棍.滑模变结构控制MATLAB仿真,北京,清华大学出版社,2005:93-104
    [35]陆新江,段吉安,李群明.自调整PID控制算法及其在磁悬浮平台中的应用.工业仪 表与自动化装置,2005(3):29-32
    [36]朱建公.变参数PID控制器设计.西北大学学报,2003,33(4):397-400
    [37]刘迎澍.磁悬浮轴承的变结构控制研究.[博士学位论文].天津:天津大学,1999
    [38]W.P.,Milam,A distributed computing approach to rapid prototyping for embedded controllers,Proceedings of the 36th Midwest Symposium on Circuits and Systems,1993
    [39]Zhang Shangying,Han Junwei,Zhao Hui,RCP and RT Control of 6-DOF Parallel Robot,Proceedings of the Fourth International Workshop on Robot Motion and Control,2004
    [40]Konrad Kowalczyk,Nans-Jurgen Karkosch,Peter M.Marienfeld,Ferdinand Svaricek,Rapid Control Prototyping of Active Vibration Control Systems in Automotive Applications,Proceedings of the 2006 IEEE Conference on Computer Aided Control Systems Design,2006
    [41]Mural YILMAZ,R.Nejat TUNCAY,A Wavelet Study of Sensorless Control of Brushless DC Motor through Rapid Prototyping Approach,2004
    [42]Ahmed Rubaai,Abdul Ofoli,Marcel Castro,dSPACE DSP-Based Rapid Prototyping of Fuzzy PID Controls for High Performance Brushless Servo Drives,Industry Applications Conference 2006
    [43]Chwan-Hsen Chert,Hsu~Lun Tsai,Jun-Chiao Tu,Robot control system implementation with rapid control prototyping technique,2004 IEEE International Symposium on Computer Aided Control Systems Design,2004
    [44]Spitzer,M.Kuhl,K.D.Muller-Glaser,A Methodology for Architecture-Oriented Rapid Prototyping,Proc.ofthe 12th IEEE International Workshop on Rapid System Protoyping,2001
    [45]Roberto Bucher,Lorenzo Dozio Paolo Mantegazza,Rapid Control Prototyping with Scilab/Scicos and Linux RTAI Scilab Conference,2004
    [46]Burst,M.Wolff,M.Kiihl,K.Miiller,Scheduling Strategies and Estimations for Concept-Oriented Rapid Prototyping,Rapid System Prototyping,1999
    [47]E.Hartavi,ozgur ustun,R.N.Tuncay,A Comparative Approach on PD and Fuzzy Control of AMB Using RCP,Electric Machines and Drives Conference,2003
    [48]LEE J H,Allaire P E,TAO Get al,Integral sliding-mode control of magnetically suspended balance beam:analysis,simulation and experiment,IEEE/ASME Transactions on mechatronics,2001,6(2):338-346

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700