高密度脂蛋白对炎性脂肪细胞功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     动脉粥样硬化是严重危害人类健康的主要疾病,被称为“沉默的杀手”。动脉粥样硬化是一种炎症性疾病这一观点已得到公认。肥胖是冠心病独立的危险因素,脂肪细胞在与肥胖相关的心脏疾病以及动脉粥样硬化的形成过程中起着重要的作用。此外,脂肪组织不仅参与机体的能量稳态,而且是重要的内分泌器官,能够分泌与动脉粥样硬化相关的多种炎症因子如TNF-α、IL-6、脂联素、瘦素等。已知脂肪细胞在炎症刺激物脂多糖(Lipopolysaccharide,LPS)的作用下TNF-α、IL-6的分泌增多,因此,这种炎症状态下的脂肪细胞又称为炎性脂肪细胞。
     白介素-8(Interleukin-8,IL-8)是趋化因子超家族中的成员,已知内皮细胞、外周血单核细胞、平滑肌细胞以及脂肪细胞等均可以分泌IL-8,临床研究认为循环中白介素-8的浓度可能与动脉粥样硬化密切相关,但是在炎症状态下,脂肪细胞白介素-8的分泌有何改变目前知之甚少。
     脂肪细胞在机体胆固醇代谢中也发挥重要作用。本实验室前期研究已经证实脂肪细胞具有摄取氧化低密度脂蛋白(ox-LDL)的能力,在此过程中,过氧化物酶增殖体激活型受体γ(Peroxisome proliferator activated receptorγ,PPARγ)和CD36通路发挥着重要的作用,脂肪组织可能是体内清除ox-LDL的重要器官。胆固醇流出对脂肪细胞胆固醇代谢平衡的维持具有重大意义。B族Ⅰ型清道夫受体(SR-BI)能够介导细胞内游离胆固醇流出至高密度脂蛋白(High-density lipoprotein,HDL)。HDL具有抗炎、胆固醇逆转运等一系列抗动脉粥样硬化的作用,SR-BI在脂肪细胞高度表达,但炎症状态下脂肪细胞对ox-LDL的摄取及降解以及胆固醇流出的变化目前还不清楚,而HDL对上述环节的影响也有待于深入的研究。
     高密度脂蛋白(HDL)是一种脂质和蛋白含量大致均等的异质性脂蛋白,HDL的抗动脉粥样硬化作用是近年来的研究热点之一,其主要的作用机制包括逆向转运胆固醇、抗炎作用、抗氧化作用、抗血栓形成的效应以及内皮保护作用。HDL对炎性脂肪细胞分泌IL-8、炎性脂肪细胞胆固醇流出以及炎性脂肪细胞ox-LDL的摄取及降解等环节是否有直接的作用目前尚无实验证实。由于动脉粥样硬化是多因素引起的病理生理过程,因此进一步认知相关的有害因子和寻求最佳的抗动脉粥样硬化的药物将极大的改善心血管疾病诊断与治疗的现状。
     目的
     用脂多糖(Lipopolysaccharide,LPS)刺激脂肪细胞,在体外模拟脂肪细胞的炎症状态,观察炎症状态下脂肪细胞分泌IL-8的情况;探讨HDL对脂肪细胞分泌IL-8的影响及其可能的机制;观察HDL对炎症状态下脂肪细胞SR-BI表达及胆固醇流出的影响;观察HDL对炎症脂肪细胞摄取及降解ox-LDL的影响及可能的机制,进一步阐明炎症、脂肪细胞、动脉粥样硬化疾病的关系,加深对HDL抗动脉粥样硬化的了解,为临床治疗与肥胖相关的代谢性疾病提供新的治疗思路。
     方法
     培养3T3-L1脂肪细胞,至促分化成熟,用含0.2%BSA的无血清培养液饥饿疗法24小时,分别用不同浓度HDL(0μg/ml、10μg/ml、50μg/ml、100μg/ml)干预细胞,16小时后,再加入100ng/ml的LPS共同孵育6小时。收取培养上清液及细胞—70℃冻存备用。用酶联免疫吸附法(ELISA)检测各组脂肪细胞培养液中的IL-8水平;半定量逆转录多聚酶链式反应(RT-PCR)测定脂肪细胞CD36mRNA、PPARγmRNA、SR-BI mRNA的表达;液体闪烁计数器检测各组脂肪细胞氚标记胆固醇(~3H-Cholesterol)的流出率。放射配基法测定各组脂肪细胞对ox-LDL的摄取和降解。
     结果
     1.LPS刺激脂肪细胞分泌IL-8,并且下调PPARγmRNA的表达;HDL呈剂量依赖性的降低炎性脂肪细胞分泌IL-8的浓度,并增加PPARγmRNA的表达。
     2.LPS刺激脂肪细胞使得胆固醇的流出减少,而HDL呈剂量依赖性促进炎性脂肪细胞胆固醇的流出;炎症状态下,脂肪细胞SR-BI mRNA表达下降。HDL呈浓度依赖性增加炎性脂肪细胞SR-BI mRNA表达。
     3.脂肪细胞可以摄取和降解~(125)I-ox-LDL,LPS刺激脂肪细胞使得~(125)I-ox-LDL的摄取和降解明显减少,其机制与PPARγmRNA和CD36mRNA的表达相关;HDL干预后炎性脂肪细胞PPARγmRNA和CD36mRNA的表达增加,对~(125)-ox-LDL的摄取量与降解增加。
     结论
     1.LPS可以诱发脂肪细胞的炎症反应,刺激脂肪细胞分泌IL-8,HDL通过上调PPARγmRNA的表达来抑制炎性脂肪细胞分泌IL-8,这可能是HDL具有抗炎作用的机制之一。
     2.炎症状态下脂肪细胞的胆固醇流出减少,而HDL通过SR-BI途径能改善炎性脂肪细胞的胆固醇流出,抑制脂肪细胞内胆固醇的蓄积。
     3.炎症可以损伤脂肪细胞摄取和降解ox-LDL的能力,而HDL能够增强炎性脂肪细胞对ox-LDL的摄取,可能与上调了PPARγ-CD36的表达有关。
Background
     Atherosclerosis (AS), the so called "silent killer", is the leading disease challenging human health and responsible for the morbidity and mortality of population in developed and even partly developing countries. It is well acknowledged that AS presents an inflammatory disease. Obesity, which is associated with increased systemic inflammation, is demonstrated as an independent risk factor for coronary heart disease (CHD). Adipose. tissue has direct connection between obesity and systemic inflammation. Adiposities' function is of vital importance in the development of obesity-associated diseases and the process of vascular injury. Adipoeytes are, at the present, regarded as the crossroads of energy homeostasis, inflammation, and atherosclerosis. Therefore, the studies regarding adiposities' function is accordingly highly interested by people.
     Adipose tissue, the largest energy reservoir in the body, can preserve redundant energy in the form as triglyceride. However, it has been shown that adipose tissue is not only an energy-regulating organ, but also an important endocrine organ in that it can secret various adipokines and chemokines, many of which might play significant roles in atherogenesis. There is an increase of metabolic diseases during the dysfunction of adipocytes, including obesity, diabetes, hypertension and dyslipidemia and so on, the majority of which can then lead to an increase of AS risk. Interleukin-8 (IL-8) is the most important cytokines produced by different cellular types in response to various stimuli. It is known as one of the super family of chemotatic factors, secreted by a serial of proatherogenic cells such as endothelial cells, peripheral blood mononuclear cells, smooth muscle cells and adipocytes. It is clinically observed that the levels of IL-8 in circulation may be relative with AS. However, it still remains to be researched about the secretion of IL-8 by adipocytes in the state of inflammation.
     Adipocytes also display an important role in cholesterol metabolism in the body. Because adipose tissue is found as the largest pool of free cholesterol in vivo and has a buffer action for circulatory cholesterol metabolism. Moreover, cholesterol effiux has been proven crucial for the balance of cholesterol metabolism in adipocytes.
     Scavenger receptor class B type I. (SR-BI), a high density lipoprotein (HDL) receptor, can induce the effiux of free cholesterol from peripherical cells to HDL. Interestingly, SR-BI has been observed highly expressed in adipocytes. But it is still unclear about the function of SR-BI on cholesterol effiux in inflammatory adipocytes.
     It has been well known about the important role of oxidized low density lipoprotein (ox-LDL) in the development and progress of AS. It is regarded as one of important regulatory pathway for ox-LDL entering monocytes that peroxisome proliferators- activated receptorγ(PPARγ) induces the expression of CD36 at transcriptional level. Our pretrial work has substantiated that adipocytes have the potency to intake ox-LDL, considerably involving PPARγ-CD36 pathway, which shows adipose tissue is possibly an important organ removing ox-LDL in vivo. Therefore, it is very necessary for us to further implore the uptake and degradation of ox-LDL by adipocytes in inflammation since inflammation is regarded as a key factor in the development of AS.
     High density lipoprotein (HDL) is a heterogeneous protein with the almost moiety of lipid and protein and it is a hot issue on the atheroprotective role of HDL. The .related mechanisms underlying anti-AS by HDL includes cholesterol reverse transport, anti-inflammation, anti-oxidation, anti-thrombosis as well as endothelial protection. It is still unproven that there is a directed effect of HDL on the processes, including the secretion of IL-8, cholesterol effiux and the uptake and degradation of ox-LDL related inflammatory adipocytes, or not. There, it is believed to markedly improve the diagnosis and therapy of cardiovascular disease to recognize related risk factors and more efficient drug of AS, since AS is taken as a disease involving multifactor.
     Objective
     We will illustrate the relationship inflammation, adipocytes and AS for further comprehension of anti-AS by HDL, which maybe help to determine a novel therapeutic target in treatment of obesity-related metabolic diseases, via observing the secretion of IL-8 by adipocytes in inflammation, exploring the effect of HDL on the secretion of IL-8 by adipocytes and its possible mechanism, detecting the effect of HDL on the expression of SR-BI and the cholesterol effiux in adipocytes in inflammation, as well as investigating the effect of HDL on and the uptake and degradation of ox-LDL by inflammatory adipocytes and its involved mechanism.
     Methods
     3T3-L1 adipocytes were cultured and induced to differentiation and maturation. After cells were starved for 24 hours with serum-free medium containing 0.2% BSA, HDL in various concentrations (0μg/ml, 10μg/ml, 50μg/ml and 100μg/ml) were added and 6 hours later, 100 ng/ml LPS were added for co-incubation for 6 hours. Then, supernatant and cells were gathered respectively, stored in -70~C for future application. After then, IL-8 in supernatant was detected with ELISA, the mRNA expression of CD36, PPARy and SR-BI in cells was determined via RT-PCR, the effiux rates of 3H-cholesterol in cells were detected by means of liquid scintillation counter, and the uptake and degradation of ox-LDL by adipocytes in individual groups were measured by radioligand assay.
     Results
     1. LPS stimulated the secretion of IL-8 and reduced the mRNA expression of PPARγin adipocytes. HDL decreased the levels of IL-8 from inflammatory adipocytes dose-dependently and accordingly up-regulated the mRNA expression of PPARγin these cells.
     2. LPS decreased cholesterol effiux in stimulating adipocytes while HDL promoted the cholesterol effiux from inflammatory adipocytes in a dose-dependent manner. The mRNA expression of SR-BI declined in adipocytes with stimulated by LPS while HDL up-regulated the mRNA expression of SR-BI.
     3. ~(125)I-ox-LDL was uptaked by adipocytes and its uptake considerably declined with the stimulation of LPS, which was relative to the mRNA expression of PPAR~/and CD36. In contrast, HDL increased the uptake of~(125)I-ox-LDL by inflammatory adipocytes via the pathway of PPARγ-CD36.
     Conclusions
     1. LPS can induce the inflammatory response of adipocytes via increasing the secretion of IL-8 from adipocytes while HDL can inhibit IL-8 secretion in inflammatory adipocytes through the up-regulation of PPARγrnRNA expression, which maybe one of anti-inflammatory mechanisms by HDL.
     2. Inflammation can decrease the cholesterol efflux of adipocytes while HDL can promote the cholesterol efflux of inflammatory adipocytes via SR-BI pathway.
     3. Inflammation can impair the ability of adipocytes' uptaking ox-LDL while HDL can enhance ox-LDL uptake by inflammatory adipocytes through PPARγ-CD36 pathway.
引文
[1] Rodolfo Paoletti, Antonio M, Gotto J, et al. Inflammation in Atherosclerosis and Implications for Therapy. [J]. Circulation. 2004; 109: 20-26.
    [2] Gerszten RE, Garcia-Zepeda EA, Lim YC, et al. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. [J]. Nature. 1999; 398: 718-723.
    [3] S. Matthijs Boekholdt, Ron J. G. Peters C, et al. IL-8 Plasma Concentrations and the Risk of Future Coronary Artery Disease in Apparently Healthy Men and Women The EPIC-Norfolk Prospective Population Study. [J]. Arterioscler Thromb Vase Biol. 2004; 24: 1503-1508.
    [4] Christian Weber. Platelets and Chemokines in Atherosclerosis Partners in Crime. [J]. Circ Res. 2005; 96: 612-616.
    [5] Anders H. Berg, Philipp E. Scherer. Adipose Tissue, Inflammation, and Cardiovascular Disease. [J]. Circ Res. 2005; 96: 939-949.
    [6] Michale W, Rajala, Philip E, et al. Minireview: The Adipocyte—At the Crossroads of Energy Homeostasis, Inflammation, and Atherosclerosis.[J]. Endocrinology, 2003, 144: 3765-3773
    [7] Zhao SP, Zhang DQ. Atorvastatin reduces interleukin-6 plasma concentration and adipocyte secretion of hypercholesterolemic rabbits. [J]. Clin Chim Acta. 2003; 336: 03-8。
    [8] EUROASPIRE. A European Society of Cardiology survey of secondary prevention of coronary heart disease: principal results. EUROASPIRE Study Group. Europe an Action on Secondary Prevention through Intervention to Reduce Events. [J]. Euro Heart J, 1997, 18: 1569-1582.
    [9] Barter PJ, Nicholls S, Rye KA et al. Antiinflammatory properties of HDL. [J]. Circ Res. 2004; 95: 764-72.
    [10] Ross R. Atherosclerosis: an inflammatory disease. [J]. N Engl J Med. 1999; 340: 115-126
    [11] James T, Willerson, MD, Paul M, et al.. Inflammation as a Cardiovascular Risk Factor. [J]. Circulation. 2004; 109 [supply Ⅱ]: Ⅱ-2-Ⅱ-10
    [12] Libby P, Ridker PM. Theory Versus Practice. Novel Inflammatory Markers of Coronary Risk. [J]. Circulation.1999; 100: 1148-1150.
    [13] Boekholdt SM, Peters RJ, Hack CE et al. IL-8 Plasma Concentrations and the Risk of Future Coronary Artery Disease in Apparently Healthy Men and Women: The EPIC-Norfolk Prospective Population Study. [J]. Arterioscler Thromb Vasc Biol. 2004,24:1503-1508.
    
    [14] T Yoshimura, K Matsushima, S Tanaka, et al. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. [J]. Proc Natl Acad Sci U S A. 1987, 84: 9233-9237.
    
    [15] M Baggiolini, A Walz, and S L Kunkel. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. [J]. J Clin Invest. 1989;84:1045-1049.
    
    [16] Ben-Baruch A, Michiel DF, Oppenheim JJ. Signals and receptors involved in recruitment of inflammatory cells. [J]. J Biol Chem. 1995; 270: 11703-11706c
    
    [17] Ettore Porreca, Rita Sergi, Giovanna Baccante, et al, Peripheral blood mononuclear cell production of interleukin-8 and IL-8-dependent neutrophil function in hypercholesterolemic patients. [J]. Atherosclerosis. 1999; 146: 345-350
    
    [18] Jens M Bruun, Camilla Verdichl, S(?)ren Toubrol, et al. Association between measures of insulin sensitivity and circulating levels of interleukin-8, nterleukin-6 and tumor necrosis factor-a. Effect of weight loss in obese men. [J]. European Journal of Endocrinology. 2003;148: 535-542
    
    [19] S. Matthijs Boekholdt, Ron J.G. Peters, C. Erik Hack, et al. IL-8 Plasma Concentrations and the Risk of Future Coronary Artery Disease in Apparently Healthy Men and Women The EPIC-Norfolk Prospective Population Study. [J]. Arterioscler Thromb Vasc Biol. 2004; 24:1503-1508.
    
    [20] Satwat Hashmi and Qiu Tang Zeng. Role of interleukin-17 and interleukin-17-induced cytokines interleukin-6 and interleukin-8 in unstable coronary artery disease. [J]. Coronary Artery Disease 2006, 17:699-706。
    
    [21] Romuk E, Skrzep-Poloczek B, Wojciechowska C, et al. Selectin-P and IL-8 plasma levels in coronary heart disease patients. [J]. Eur J Clin Invest. 2002; 32:657-661.
    
    [22] Bruun JM, Pedersen SB, Richelsen B. Regulation of Interleukin-8 Production and Gene Expression in Human Adipose Tissue in Vitro [J]. J Clin Endocrinol Metab, 2001, 86: 1267-73.
    
    [23] Fain JN, Madan AK, Hiler ML, et al. Comparison of the release of adipokines by adilpose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. [J]. Endocrinology. 2004; 145: 2273-82.
    [24] Anders H. Berg, Philipp E. Scherer. Adipose Tissue, Inflammation, and Cardiovascular Disease.[J]. Circ Res. 2005; 96: 939-949.
    [25] Ikonomidis I, Andreotti F, Economou E, et al. Increased p roinflammatory cytokines in patientswith chronic stable angina and their reduction by asp irin [J]. Circulation, 1999, 100(8): 793-798.
    [26] Chew DP, Bhatt DL, RobbinsMA, et al. Effect of clopidogrel added to aspirin before percutaneous coronary intervention on the risk associated with C-reactive protein [J]. Am J Cardiol, 2001, 88: 672-674.
    [27] Stefanadis C, Toutouzas K, Vavuranakis M, et al. Statin treatment is associated with reduced thermal heterogeneity in human atherosclerotic plaques. [J]. Eur Heart J. 2002; 23: 1664-1669
    [28] Philip J. Barter, Stephen Nicholls, Kerry-Anne Rye, G. M. Anantharamaiah, Mohamad Navab, Alan M. Fogelman. Antiinflammatory Properties of HDL. [J]. Circ Res. 2004; 95: 764-772
    [29] Marx N, Math F, Sauty A, et al. Peroxisome proliferator-activated receptor-gamma activators inhibit IFN-gamma-induced expression of the T cell-active CXC chemokines IP-10, Mig, and I -TAC in human endothelial cells. [J]. J Immunol, 2000; 164: 6503-6508
    [30] Pasceri V, Wu HD, Willerson JT, Yeh ET. Modulation of vascular inflammationinvitroandinvivobyperoxisomeproliferator-activated receptor-gamma activators. [J]. Circulation, 2000; 101: 235-238
    [31] ZhaoSP,ZhangDQ.Atorvastatinreducesinterleukin-6plasma concentration and adipocyte secretion of hypercholesterolemic rabbits. [J]. Clin Chim Acta. 2003; 336: 103-108
    [32] Navab M, Van Lenten BJ, Reddy ST, Fogelman AM. High-density lipoprotein and the dynamics of atherosclerotic lesions. [J]. Circulation. 2001; 104: 2386-2387
    [1] Le Lay S, Ferre P, and Dugail I. Adipocyte cholesterol balance in obesity. [J]. Biochem Soc Trans 2004; 32:103-106
    
    [2] Le Lay S, Robichon C, Le Liepvre X, et al. Regulation of ABCA1 expression and cholesterol efflux during adipose differentiation of 3T3-L1 cells. [J]. J Lipid Res 2003; 44:1499-1507
    
    [3] Acton SL, Scherer PE, Lodish HF, et al. Expression cloning of SR-BI, a CD36 - related class B scavenger receptor. [J]. J Biol Chem. 1994; 269: 21003-21009.
    
    [4] Zhao SP, Wu ZH, Wu J, Hong SC et al. Effect of atorvastatin on SR-BI expression and HDL-induced cholesterol efflux in adipocytes of hypercholesterolemic rabbits. [J]. Clin Chim Acta 2006; 365: 119-24
    
    [5] Barter PJ, Nicholls S, Rye KA et al. Antiinflammatory properties of HDL [J]. Circ Res. 2004, 95: 764-772
    
    [6] Brown MS, Goldstein JL. The SR-BI pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. [J]. Cell. 1997; 89:331-340
    
    [7] Dugail I, Le Lay S, Varret M, Le Liepvre X, Dagher G, Ferre P. New insights into how adipocytes sense their triglyceride stores. Is cholesterol a signal? [J]. Horm Metab Res. 2003; 35: 204-210
    
    [8] [8] Le Lay S, Krief S, Farnier C, et al. Cholesterol, a cell size-dependent signal that regulates glucose metabolism and gene expression in adipocytes. [J]. J Biol Chem.2001; 276:16904-16910
    
    [9] Webb, N. R., De Beer, M. C, Asztalos, B. F., et al. Remodeling of HDL remnants generated by scavenger receptor class B type I. [J]. J Lipid Res. 2004; 45, 1666-1673
    
    [10]Yancey, P. G, Bortnick, A. E., Kellner-Weibel, G, et al. Importance of different pathways of cellular cholesterol efflux. [J]. Arterioscler Thromb Vasc Biol. 2003; 23, 712-719
    
    [11] Kielar D, Dietmaier W, Langmann T, et al. Rapid quantification of human ABCA1 mRNA in various cell types and tissues by real-time reverse transcription-PCR. [J]. Clin Chem. 2001; 47: 2089-2097
    
    [12]Yokoyama S. Release of cellular cholesterol: molecular mechanism for cholesterol homeostasis in cells and in the body. [J]. Biochim Biophys Acta 2000; 1529: 231-244
    [13] Prattes S, Hod G, Hammer A, et al. Intracellular distribution and mobilization of unesterified cholesterol in adipocytes: triglyceride droplets are surrounded by cholesterol-rich ER-like surface layer structures. [J]. J Cell Sci 2000; 113: 2977-2989
    [14] Von Eckardstein A, Castro G, Wybranska I, et al. Interaction of reconstituted high density lipoprotein discs containing human apolipoprotein A-Ⅰ (ApoA-Ⅰ) variants with murine adipocytes and macrophages. Evidence for reduced cholesterol efflux promotion by apoA-Ⅰ. [J]. J Biol Chem. 1993; 268: 2616-2622
    [15] Laura Calabresi, Monica Gomaraschi, Giuseppe Rossoni, et al. Synthetic high density lipoproteins for the treatment of myocardial ischemia/reperfusion injury. [J]. Pharmacology & Therapeutics 2006; 111: 836-854
    [1] Stocker R, Keaney JF Jr. Role of oxidative modifications in atherosclerosis. [J]. Physiol Rev 2004; 84: 1381-1478
    [2] Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. [J]. J Biol Chem 1997; 72: 20963-66
    [3] Toshima, S., Hasegawa, A., Kurabayashi, M., Itabe, H., Takano, T., Sugano, J., Shimamura, K., Kimura, J., Michishita, I., Suzuki, T. and Nagai, R. Circulating oxidized low density lipoprotein levels. A biochemical risk marker for coronary heart disease. [J]. Arterioscler. Thromb. Vasc. Biol. 2000; 20, 2243-2247
    [4] Kopprasch, S., Pietzsch, J., Kuhlisch, E., Fuecker, K., Temelkova-Kurutschiev, T., Hanefeld, M., Kuhne, H., Julius, U. and Graessler, J. In vivo evidence for increased oxidation of circulating LDL in impaired glucose tolerance. [J]. Diabetes. 2002; 51, 3102-3106
    [5] Ho, R. C., Davy, K., Davy, B. and Melby, C. L. Wholebody insulin sensitivity, low-density lipoprotein (LDL) particle size, and oxidised LDL in overweight, nondiabetic men. [J]. Metabolism. 2002; 51, 1478-1483
    [6] Holvoet, P, Kritchevsky, S. B., Tracy, R. P, Mertens, A., Rubin, S. M., Butler, J., Goodpaster, B. and Harris, T. B. The metabolic syndrome, circulating oxidized LDL, and risk of myocardial infarction in well-functioning elderly people in the health, aging, and body composition cohort. [J]. Diabetes 2004; 53, 1068-1073
    [7] Febbraio M, Abumrad NA, Hajjar DP, et al. A null mutation in murine CD36 reveals animportant role in fatty acid and lipoprotein metabolism. [J]. J Biol Chem, 1999, 274: 19055-19062
    [8] Aitman TJ, Glazier AM, Wallace CA, et al. Identification of CD36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. [J]. Nat Genet 1999; 21:76-83
    
    [9] Tontonoz P, Nagy L, Alvarez JGA, et al. PPARy promotes moncyte macrophage diferentiation and uptake of oxidized LDL. [J].Cell 1998; 93:241-252
    
    [10] EndemannqStantonL W, M addenK S, et al .CD36 is a receptor for oxidized low density lipoprotein. [J]. J Biol Chem.1993; 268:221-236
    
    [11] Abumrad NA, el-Maghrabi MR, Amri EZ, et al. cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is included during preadipocyte diferentiation homology with human CD36. [J]. J Biol Chem.1993; 268:17665-17668
    
    [12] Zhao SP, Wu J, Zhang DQ, et al. Fenofibrate enhances CD36 mediated endocytic uptake and degradation of oxidized low density lipoprotein in adipocytes from hypercholesterolemia rabbit. [J]. Atherosclerosis 2004; 177:255-262
    
    [13] Kuniyasu A, Hayashi S, Nakayama H. Adipocytes recognize and degrade oxidized low density lipoprotein through CD36. [J]. Biochem Biophys Res Commun 2002; 295:319-323
    
    [14]Chui PC, Guan HP, Lehrke M, et al. PPARgamma regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1. [J]. J Clin Invest 2005; 115:2244-2256
    
    [15] Mohamed AV, Goodrick S, Rawesh A, et al. Subcutaneous adipose tissue releases interleukin-6, but not turner necrosis factor-α, in vivo. [J]. J Clin Endocrionl Metab, 1997; 8 2:4 196-200
    
    [16] Mavri A, Stegnar M, Krebs M, et a]. Impact of adipose tissue on plasma plasminogen activator inhibitor-I in dieting obese women. [J]. Arteroscler Thromb Vase Biol, 1999,19:1582-1587.
    
    [17] Zhao SP. Wu J, Zhang DQ, et al. Fenofibrate enhances CD36 mediated endocytic uptake and degradation of oxidized low density lipoprotein in adipocytes from hypercholesterolemia rabbit. [J]. Atherosclerosis 2004; 177:255-262
    [18] SalacinskiP R, M cleanC, S ykesJ E, et al. Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 3, 4, 6-tetrachloro-3 alpha, 6 alpha-diphenyl glycoluril(Iodogen). [J]. J. Anal. Biochem. 1981, 117: 136-146
    [19] Vries HE, Buchner B, van Berkei TIC, et al. Specific interaction of oxidized low-density lipoprotein with macrophage-derived form cells isolated from rabbit atheroscleroticle sions. [J]. ArteroscierT hrombV aseB iol, 1999; 19(3): 638-645
    [20] Ohgami N, Nagai R, Ikemoto M, et al. CD36, a member of the c ass B Scavenger receptor family as a receptor for advanced glycationend products. [J]. J Biol Chem. 2001; 276: 3195-3202
    [21] Van Berkel, De Rijke YB, Kruijt J K. Diferentfatein vivo of oxdatively modified low density lipoprotein and LDL in rats recognition by various scavenger receptorsonKupferandendotheliallivercells.JBiolChem.[J]. 1991: 266: 2282-2289.
    [22] 吕宝璋,受体学.合肥:安徽科学技术出版社,2000.299-320
    [23] Lefebvre AM, L avilleM, Vega N, et al. Depot-specificd iferencesin adipose tissue gene expression in lean and obese subjects. [J]. Diabetes, 1998; 47: 98-103
    [24] Tan NS, Shaw NS, Vinckenbosch N, et al. Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. [J]. Mol Cell Biol, 2002, 22: 5114-5127
    [25] LeungL L, Li WX, Mc GregorJ L, et al. CD36 peptides enhance or inhibit CD36-thrombospondin binding. A two-step process of ligand-receptor interaction. [J]. J Biol Chem. 1992; 267: 18244-18250
    [26] Janabi M, Yamashita S, Hirano K, et al. Oxidized LDL- induced NF-kappaB activation and subsequent expression of proinflammatory genes are defective in monocyte-derived macrophages from CD36-deficient patients. [J]. Arterioscler Thromb Vase Biol. 2000, 20: 1958-1960
    [27] Ehara S, UedaM, Naruko T, et al. Elevated levels of oxidized low densityl ipoproteins how apositive relationship with the severity of acute coronary syndromes. [J]. Circulation. 2001, 103 :1955-1960
    
    [28] Holvoet P, Mertens A, Verhamme P, et al. Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. [J]. Arterioscler.Thromb.Vasc.Biol. 2001,21: 844-848
    
    [29] Fajas L, Schoonjans K, Gelman L, et al. Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. [J]. Mol Cell Biol. 1999; 19 : 5495-5503
    
    [30] Tsuruoka H, Khovidhunkit W, Brown BE, et al. Scavenger receptor class B type I is expressed in cultured keratinocytes and epidermis regulation in response to changes in cholesterol homeostasis and barrier requirements. [J]. J Biol Chem. 2002; 277: 2916-2922
    
    [31] Zhang Y, Zanotti I, Reilly MP, et al. Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo. [J]. Circulation. 2003; 108: 661-663
    
    [32] Shah PK, Yano J, Reyes O, et al. High-dose recombinant apolipoproteins A-I Milano mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein E-deficient mice: potential implications for acute plaque stabilization. [J]. Circulation. 2001;103:3047-3050
    
    [33] Barter P, Kastelein J, Nunn A, et al. High density lipoproteins (HDLs) and atherosclerosis: the unanswered questions. [J]. Atherosclerosis. 2003; 168: 195-211
    
    [34] Navab M, Ananthramaiah GM, Reddy ST, et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. [J]. J Lipid Res. 2004; 45: 993-1007
    [1] von Eckardstein A, Nofer JR, Assmann G. High density lipoproteins and arteriosclerosis: role of cholesterol efflux and reverse cholesterol transport. [J]. Arterioscler Thromb Vase Biol. 2001; 21: 13-27
    [2] von Eckardstein A, Nofer JR, Assmann G. Acceleration of reverse cholesterol transport. [J]. Curr Opin Cardiol. 2000; 15: 348-354
    [3] Karlsson H, Leanderson P, Tagesson C, et al, Lipoproteomics Ⅱ: Mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry. [J]. Proteomics. 2005, 5(5): 1431-1445
    [4] Wang X, Paigen B., Genetics of variation in HDL cholesterol in humans and mice. [J]. Circ Res. 2005 7; 96(1): 27-42.
    [5] Brousseau ME. Common variation in genes involved in HDL metabolism influences coronary heart disease risk at the population level. [J]. Rev Endocr Metab Disord. 2004; 5(4): 343-9.
    [6] Brooks-Wilson A, Marcil M, Clee SM, et al. Mutations in ABC1 in Tangier diseaseandfamilialhigh-densitylipoproteindeficiency.[J].NatGenet. 1999; 22: 336-345.
    [7]. Bodzioch M, Orso E, Klucken J, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. [J]. Nat Genet. 1999; 22: 347-351.
    [8]. Rust S, Rosier M, Funke H, et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. [J]. Nat Genet. 1999; 22: 352-355
    [9]. Bungert S, Molday LL, Molday RS. Membrane topology of the ATP binding cassette transporter ABCR and its relationship to ABC1 and related ABCA transporters: identification of N-linked glycosylation sites. [J]. J Biol Chem. 2001; 276: 23539-23546
    [10] Wang N, Silver DL, Thiele C, et al. ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. [J]. J Biol Chem. 2001;276:23742-23747
    
    [11] Chambenoit O, Hamon Y, Marguet D, et al. Specific docking of apolipoprotein A-I at the cell surface requires a functional ABCA1 transporter. [J]. J Biol Chem. 2001; 276:9955-9960
    
    [12] Drobnik W, Borsukova H, Bottcher A, et al. Apo AI/ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct cholesterol- based microdomains. [J]. Traffic. 2002;3:268-278
    
    [13] Neufeld EB, Remaley AT, Demosky SJ, et al. Cellular localization and trafficking of the human ABCA1 transporter. [J]. J Biol Chem. 2001; 276: 27584-27590
    
    [14] Lin G. Insights of high-density lipoprotein apolipoprotein-mediated lipid efflux from cells. [J]. Biochem Biophys Res Commun. 2002; 291:727-773
    
    [15] Assmann G, Gotto AM Jr. HDL cholesterol and protective factors in atherosclerosis. [J]. Circulation. 2004; 109:1118-14
    
    [16] . Zhang Y, Zanotti I, Reilly MP, et al. Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo. [J]. Circulation. 2003;108: 661-663
    
    [17] Shah PK, Yano J, Reyes O, et al. High-dose recombinant apolipoproteins A-IMilano mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein E-deficient mice: potential implications for acute plaque stabilization. [J]. Circulation. 2001;103:3047-3050
    
    [18] Barter P, Kastelein J, Nunn A, et al. High density lipoproteins (HDLs) and atherosclerosis: the unanswered questions. [J]. Atherosclerosis. 2003; 168:195-211
    
    [19] Navab M, Ananthramaiah GM, Reddy ST, et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. [J]. J Lipid Res. 2004; 45:993-1007
    
    [20] Navab M, Hama SY, Cooke CJ, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1. [J]. J Lipid Res. 2000; 41: 1481-1494
    
    [21] Navab M, Hama SY, Anantharamaiah GM, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized LDL: Steps 2 & 3. [J]. J Lipid Res. 2000; 41:1495-1508
    
    [22]. Tward A, Xia YR, Wang XP, et al. Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. [J]. Circulation. 2002; 106: 484-490
    
    [23] Reddy ST, Wadleigh DJ, Grijalva V, et al. Human paraoxonase-3 is an HDL-associated enzyme with biological activity similar to paraoxonase-1 protein but is not regulated by oxidized lipids. [J]. Arterioscler Thromb Vasc Biol. 2001; 21:542-547
    
    [24] Navab M, Berliner JA, Subbanagounder G, et al. HDL and the inflammatory response induced by LDL-derived oxidized phospholipids. [J]. Arterioscler Thromb Vasc Biol. 2001; 21: 481-488
    
    [25] Forte TM, Subbanagounder G, Berliner JA, et al. Altered activities of antiatherogenic enzymes LCAT, paraoxonase, and platelet-activating factor acetylhydrolase in atherosclerosis-susceptible mice. [J]. J Lipid Res. 2002; 43:477-485
    
    [26] Van Lenten BJ, Wagner AC, Nayak DP, et al. High-density lipoprotein loses its anti-inflammatory properties during acute influenza A infection. [J]. Circulation. 2001; 103:2283-2288
    
    [27] Van Lenten BJ, Wagner AC, Anantharamaiah GM, et al. Influenza infection promotes macrophage traffic into arteries of mice that is prevented by D-4F, an apolipoprotein A-I mimetic peptide. [J]. Circulation. 2002; 106:1127-1132
    
    [28] Burger D, Dayer J-M. High-density lipoprotein-associated apolipoprotein A-I: the missing link between infection and chronic inflammation? [J]. Autoimmunity Rev 2002; 1:111-117
    
    [29] Van Lenten BJ, Wagner AC, Navab M, et al.. D-4F, an ApoA-I Mimetic Peptide, Inhibits the Inflammatory Response Induced by Influenza A Infection of Human Type II Pneumocytes. [J]. Circulation. 2004; 110:3252-3258
    
    [30] Ridker PM. On evolutionary biology, inflammation, infection, and the causes of atherosclerosis. [J]. Circulation. 2002;105:2-4
    
    [31]. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. [J]. Circulation. 2002;105:1135-1143
    
    [32]. Libby P, Ridker PM. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. [J]. Am J Med. 2004; 116: 9S-16S
    
    [33] Ansell BJ, Navab M, Hama S, et al. Inflammatory/ Antiinflammatory Properties of High-Density Lipoprotein Distinguish Patients From Control Subjects Better Than High-Density Lipoprotein Cholesterol Levels and Are Favorably Affected by Simvastatin Treatment. [J]. Circulation. 2003; 108: 2751-2756
    [34] Park SH, Park JH, Kang JS, et al. Involvement of transcription factors in plasma HDL protection against TNF-alpha-induced vascular cell adhesion molecule-1 expression. [J]. Int J Biochem Cell Biol. 2003; 35: 168-182
    [35] Stannard AK, Khan S, Graham A, et al. Inability of plasma high-density lipoproteins to irdtibit cell adhesion molecule expression in human coronary artery endothelial cells. [J]. Atherosclerosis. 2001; 154: 31-38
    [36]. Zhang WJ, Stocker R, McCall MR, et al. Lack of inhibitory effect of HDL on TNFalpha-induced adhesion molecule expression in human aortic endothelial cells. [J]. Atherosclerosis. 2002; 165: 241-249
    [37] Ridker PM. On evolutionary biology, inflammation, infection, and the causes of atherosclerosis. [J]. Circulation. 2002; 105: 2-4
    [38] Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. [J]. Circulation. 2002; 105: 1135-1143
    [39] Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. [J]. Circulation. 2002; 106: 1439-1441
    [40]. Wadham C, Albanese N, Roberts J, Wang L, Bagley CJ, Gamble JR, Rye KA, Barter PJ, Vadas MA, Xia P. High-density lipoproteins neutralize C-reactive protein inflammatory activity. [J]. Circulation. 2004; 109: 2116-2122
    [41] Garner B, Witting PK, Waldeck AR, Christison JK, Raftery M, Stocker R. Oxidation of high density lipoproteins. I. Formation of methionine sulfoxide in apolipoproteins AⅠ and AⅡ is an early event that accompanies lipid peroxidation and can be enhanced by alpha-tocopherol. [J]. J Biol Chem. 1998; 273: 6080-6087
    [42] Garner B, Waldeck AR, Witting PK, Rye KA, Stocker R. Oxidation of high density lipoproteins. Ⅱ. Evidence for direct reduction of lipid hydroperoxides by methionine residures of apolipoproteins AⅠ and AⅡ. [J]. J Biol Chem. 1998; 273: 6088-6095
    [43] 116. Dimayuga P, Zhu J, Oguchi S, Chyu KY, Xu XO, Yano J, Shah PK, Nilsson J, Cercek B. Reconstituted HDL containing human apolipoprotein A-1 reduces VCAM-1 expression and neointima formation following periadventitial cuff-induced carotid injury in apoE null mice. [J]. Biochem Biophys Res Commun. 1999; 264: 465-468
    [44] Cockerill GW, Huehns TY, Weerasinghe A, Stocker C, Lerch PG Miller NE, Haskard DO. Elevation of plasma high-density lipoprotein concentration reduces interleukin-1-induced expression of E-selectin in an in vivo model of acute inflammation. [J]. Circulation. 2001; 103: 108-112
    
    [45] Bisoendial RJ, Hovingh GK, Levels JH, Lerch PG, Andresen I, Hayden MR, Kastelein JJ, Stroes ES. Restoration of endothelial function by increasing high-density lipoprotein in subjects with isolated low highdensity lipoprotein. [J]. Circulation. 2003;107:2944-2948
    
    [46] Navab M, Anantharamaiah GM, Hama S, Garber DW, Chaddha M, Hough G, Lallone R, Fogelman AM. Oral administration of an apoA-I mimetic peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. [J]. Circulation. 2002; 105:290-292
    
    [47]. Navab M, Anantharamaiah GM, Reddy ST, Hama S, Hough G, Grijalva VR, Wagner AC, Frank JS, Datta G, Garber D, Fogelman AM. Oral D-4F causes formation of pre-high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoproteinE-null mice. [J]. Ciruclation. 2004; 109:120-125
    
    [48] Calabresi L, Gomaraschi M, Villa B, Omoboni L, Dmitrieff C, Franceschini G. Elevated cellular adhesion molecules in subjects with low HDL-cholesterol. [J]. Arterioscler Thromb Vasc Biol. 2002; 22:656-661
    
    [49] Levkau B, Hermann S, Theilmeier G, van der Giet M, Chun J, Schober O, Schafers M. High-density lipoprotein stimulates myocardial perfusion in vivo. [J]. Circulation. 2004; 110:3355-3359
    
    [50] Sirtori CR., ApoA-1 Milano and regression of atherosclerosis. JAMA. 2004 Mar 17;291(11):1319
    
    [51] Orekhov AN, Misharin AYu, Tertov VV, et al, Artificial HDL as an anti-atherosclerotic drug. [J]. Lancet. 1984 ;2 :1149-50
    
    [52] Li X, Chyu KY, Neto JR, et al. Differential effects of apolipoprotein A-I-mimetic peptide on evolving and established atherosclerosis in apolipoprotein E-null mice. [J]. Circulation. 2004; 110 :1701-1705
    
    [53] Navab M, Anantharamaiah GM, Hama S, Oral administration of an Apo A-I mimetic Peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. [J]. Circulation. 2002; 105 : 290-292
    
    [54] Toth PP. High-density lipoprotein and cardiovascular risk. [J]. Circulation. 2004; 109 :1809-1812
    [55] Hunninghake DB, McGovern ME, Koren M, et al.A dose-ranging study of a new, once-daily, dual-component drug product containing niacin extended-release and lovastatin.. [J]. Clin Cardiol. 2003; 26: 112-118
    [56] Gotto AM Jr, Brinton EA. Assessing low levels of high-density lipoprotein cholesterol as a risk factor in coronary heart disease: a working group report and update. [J]. J Am Coll Cardiol. 2004; 43: 717-724
    [57] Brousseau ME, Schaefer EJ, Wolfe ML, et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. [J]. N Engl J Med. 2004; 350: 1505-1515
    [58] Assmann G, Gotto AM Jr. HDL cholesterol and protective factors in atherosclerosis. [J]. Circulation. 2004; 109: Ⅲ8-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700