DTI和fMRI在前部缺血性视神经病变中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:
     缺血性视神经病变是中老年人较常见的眼科疾病,可造成病人视力明显下降,甚至失明。该病临床诊断困难,临床症状和体征缺乏特异性,CT成像不能显示缺血视神经的形态异常,常规MRI仅能在极少数病例发现异常。因此缺血性视神经病变仍是临床诊断较为困难的疾病之一。弥散张量成像(diffusion tansor imaging, DTI)可早期发现神经纤维的轴突和髓鞘损害,因而在中枢神经系统白质病变的诊断方面显露出广阔的应用前景;基于血氧水平依赖(blood oxygenation level dependent, BOLD)原理的功能磁共振成像(functional magnetic resonance imaging, fMRI)可以反映出脑皮层的功能定位,并可定量分析脑功能区的激活程度和激活范围。故本研究探索应用DTI和fMRI方法研究缺血性视神经病变,旨在发现和评估DTI和fMRI在缺血性视神经病变中的应用价值。
     材料和方法:
     研究对象为2008.7-2009.10期间怀疑缺血性视神经病变,共28例,去除实验过程中图像质量不合格的2例,共26例进入实验组,其中男14例,女12例;年龄28~70岁;另选择20例健康成人做对照组。所有研究对象均用SIEMENS Trio Tim 3.0T超导磁共振扫描仪行常规颅脑MRI检查,排除颅内病变后行视神经MRI、DTI、fMRI检查。DTI检查采用单次激发自旋回波平面成像(SE-EPI)序列;后处理在syngo MR B15工作站上进行NEURO 3D后处理,得到视神经各DTI参数值,包括FA、ADC、λ∥、λ⊥、RA、VR值。所有研究对象均行图形视觉诱发电位检查,得到视觉诱发电位潜伏期、振幅的参数值。采用SPSS13.0软件包进行统计分析。视神经DTI和图形视觉诱发电位参数均以x±s表示。用两相关样本的非参数检验对病侧和对侧视神经DTI和图形视觉诱发电位参数进行统计分析。用两独立样本秩和检验对病侧、对侧与对照组视神经DTI和图形视觉诱发电位参数进行统计分析。用spearman相关分析对视觉诱发电位P100、振幅与FA、ADC、λ∥、λ⊥、RA、VR参数进行相关性分析。按α=0.05水准,P<0.05为差异有统计学意义。
     fMRI数据在MATLAB平台上应用SPM2软件进行数据预处理、统计及结果显示。分析内容包括①对正常对照组左眼、右眼分别进行组分析,获得平均激活图;②对病变组左、右眼分别进行组分析,获得平均激活图;③对病变组与正常对照组左、右眼分别进行组间分析,获得组间比较激活图。
     结果:
     一.DTI结果
     1.病侧视神经FA值和RA值下降,ADC值、λ⊥值、VR值升高,与健侧及对照组视神经DTI各参数值,除λ∥外,组间比较均有统计学差异(P<0.05)。
     2.病变组健侧与对照组视神经DTI各参数值,组间比较均无统计学差异(P>0.05)。
     3.患侧ADC值与P-VEP振幅呈明显负相关(rs=-0.63,P<0.05)。λ⊥值与P-VEP振幅呈中等负相关(rs=-0.47,P<0.05)。FA和P-VEP的P100潜伏期呈明显负相关(rs=-0.71,P<0.05)。FA和P-VEP振幅呈弱正相关(rs=0.37,P<0.05)。
     二、fMRI结果
     1.正常对照组单眼正常激活最明显的区域为距状沟两侧的初级视皮层区,即Brodmann17区(纹状皮层区),此外舌回、梭状回、楔叶、枕上回、枕中回、枕下回也出现激活,即Brodmann18区和19区(纹旁和纹周区)。另外脑干被盖、上丘,颞上回、颞中回也会出现少量激活。6人外侧膝状体也出现激活。
     2.左眼缺血性视神经病变组刺激左眼激活图与正常对照组比较:双侧视觉皮层激活区明显减小,右侧视皮层的激活减小的更明显。双侧楔前叶、双侧丘脑、小脑蚓部、左扣带回、胼胝体、左侧海马旁回,脑干中心异常激活。右侧角回、双侧楔叶、双侧颞上回、颞中回激活面积加大。
     3.右眼缺血性视神经病变组刺激右眼激活图与正常对照组比较:双侧视觉皮层激■活区明显减小,右侧视皮层的激活减小的更明显。右丘脑、右海马旁回、小脑蚓部异常激活,双侧楔叶、双侧颞上回、颞中回激活面积增大。
     结论:
     1、DTI可以敏感的检测出缺血性视神经的弥散障碍,为缺血性视神经病变的诊断提供影像学依据。
     2、DTI参数和视觉诱发电位参数有良好的相关性,两种方法在诊断缺血性视神经病变时可以互补,提高诊断正确率
     3、正常人视皮层fMRI成像,正常人视觉皮层存在不对称性,多表现为右侧优势,评价视皮层功能活动应注意此种差异。
     4、刺激患眼,初级视皮层的激活范围及激活程度均明显下降。大脑皮层其它脑区表现出异常激活,说明视皮层存在适应性代偿。
Background and purpose Ischemic optic neuropathy is very common optic neuropathy in the middle-aged and old patients, which can cause patients'visual significant decrease, even lose sight. The disease is difficult in clinical diagnosis because clinical symptoms and signs of patients lack specificity. CT imaging has no ability to demenstrate structural changes of ischemic optic neuropathy and conventional MRI examination could only found small part of these cases. Thus ischemic optic neuropathy is also difficult diagnosis according to conventional imaging methods. Diffusion tensor imaging (DTI) could discover earlier injuries of the axon and myelin, so DTI has revealed broad application in the central nervous system disorders. Blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI) could reflect the the brain cortex functional status, and can could quantitatively analysis degree and activative scope of brain cortex's activety. Therefore this research applied DTI and fMRI to study ischemic optic neuropathy in order to discover the application value of DTI and fMRI in anterior ischemic optic neuropathy.
     Materials and methods
     The subjects were 20 normal persons in control group and 28 patients diagnosed as unilateral anterior ischemic optic neuropathy from July,2008 to October,2009. Two patients were removed because of bad images. Finally, twenty-six patients were in experimental group(14 males,12 females). All subjects were examined with routine brain MRI in order to exclude intracranial diseases using SIEMENS Trio Tim 3.0T superconducting magnetic resonance scanner. Then Then they were underwent with examinations of MRI, DTI and BOLD for optic nerves. DTI examination uses single-shot spin echo planar imaging (SE-EPI) sequence. NEURO 3D post-processing was carried on at Syngo MR B15 workstation and optic nerve's DTI parameters including the value of the FA, ADC,λ∥,λ⊥, RA, VR were obtained. All subjects underwent pattern reversal visual evoked potentioals (P-VEP) tests and the parameter value (latency and amplitude) of visual evoked potential were obtained. Using the SPSS13.0 software package for statistical analysis, the parameter value of the optic nerve DTI and pattern reversal visual evoked potentioals were recorded as mean±standard deviation. Wilcoxon signed ranks test and Wilcoxon test were used for the group analysis Analysis of correlation was by Spearman's rank correlation. By a= 0.05 level, P<0.05 has statistics significance.
     Data preprocessing, statistics, results of the fMRI data were made in the MATLAB platform using SPM2 software. Analysis includes:①To left eye, right eye and of the normal control group employed group analysis respectively and average activation maps were obtained, respectively.②To left eye and right eye of the patients group employed group analysis and the average activation maps were obtained, respectively.③To left eye and right eye of the patients group and normal group respectively used the group analysis and the differences between activation maps of the two groups were obtained.
     Results
     DTI Results
     1. Diseased optic nerve's FA value and RA value decreased, ADC value,λ⊥value,VR value increased. DTI parameter values butλ∥between the optic nerve's diseased side and the healthy side in patient group.
     2. There were not statistically significant differences (P>0.05) in all of DTI parameter values of optic nerves between the patient group heathy side and the control group.
     3. The dseased optic nerve ADC correlated with P-VEP amplitude (rs=-0.63, P <0.05). The dseased optic nerveλ⊥correlated with P-VEP amplitude (rs=-0.47, P <0.05).). The dseased optic nerve FA correlated with both P-VEP whole-field latency (rs=-0.71, P<0.05) and P-VEP whole-field amplitude (rs=0.37, P<0.05).
     fMRI relults
     1. In the normal group, the most obvious activation areas of the single eye and bilateral eyes are both sides's primary visual cortex of the calcarine sulcus, that is Brodmann17 area (striate cortex), as well as lingual gyrus, fusiform gyrus, cuneate lobe, superior occipital gyrus, middle occipital gyrus, inferior occipital gyrus presented the activation, which is at Brodmann18 area and 19 (besides and around of striate cortex). Moreover the brain stem tegmentum, anterior colliculi, superior temporal gyrus and middle temporal gyrus (Brodmann22) also presented few activation areas. Some patients's lateral geniculate also appeared activated.
     2. Compared stimulating the left eye's activation maps of ischemic optic neuropathy group and the normal control group showed bilateral visual cortex activated area decreased significantly, the right side visual cortex activation area reduced more obviously. Bilateral precuneus, bilateral cerebral ganglion, cerebellar vermis, left cingulate gyrus, corpus callosum, left Subiculum hippocampi and brain sterm center appeared abnormal activation. The activation area became large in the right angular gyrus, bilateral cuneate lobe, bilateral superior temporal gyrus, middle temporal gyrus.
     3. Comparing stimulating the right eye's activation maps of ischemic optic neuropathy group and the normal control group showed bilateral visual cortex activated areas decreased significantly, the right side visual cortex activation area reduced more obviously; the right cerebral ganglion, right subiculum hippocampi and cerebellar vermis appeared abnormal activation;the activation area became large in the bilateral cuneate lobe, bilateral superior temporal gyrus and middle temporal gyrus.
     Conclusion
     1. DTI can sensitively detect the diffusion disorder of ischemic optic nerves. It may provide imaging evidences for ischemic optic nerves.
     2. DTI parameters and visual evoked potential parameters have favourable correlation. The two methods can complement when diagnosing ischemic optic neuropathy.
     3. Normal person's visual cortex exists asymmetry, the right side has obvious superiority.
     4. Stimulating the ischemic side, the activation area and activation degree of visual cortex significantly decreased. The other cerebral cortexs was abnormally activated
     that may explain the visual cortex's adaptability reconstitution.
引文
1. Vaphiades M. Perioperative posterior ischemic optic neuropathy[J]. Surv Opthalmol, 2005,50(5),496
    2.杨景存,曹木荣,彭广华,等.视神经病学.郑州:河南科技出版社,1996.84-85
    3. Hayreh SS. Anterior iscemic optic neuropathy[J]. Br J Ophthalmol,1974,58(12):955-989
    4. Shimo-Oku M, Miyazaki S. Acute anterior and posterior ischemic optic neuropathy[J]. Jpn J Ophthamol,1984,289(2):159-170
    5.李学晶,童绎.后部缺血性视神经病变.国际眼科纵览.2006,30(2):113-116
    6.魏世辉,周必业。关注神经眼科疾病诊断中的几个热点问题.眼科,2006,15(6):366-368]
    7.李文华,王滨,王振常,等.眼科影像学.北京:人民卫生出版社,2004:119-125
    8. Assaf Y, Pasternak O. Diffusion Tensor Imaging (DTI)-based white matter mapping in brain research:a review[J]. J Mol Neurosci.2008,34(1):51-61
    9. Le Bihan D, Mangin JF, Poupon C, et al. Diffusion tentor imaging:concepts and applica-taions[J]. J Magn Reson Imaging.2001,13(4):534-546
    10. Huppi PS, Dubois J. Diffusion tentor imaging of brain development[J]. Semin Fetal Neonatal Med.2006,11(6):489-497
    11. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research[J]. Neuron,2006,51(5):527-539
    12.宛四海,肖新兰,尹建华,等。健康成人视神经MR扩散张量成像研究.放射学实践,2008,23(8):862-864
    13. Chabert S, Molko N, Cointepas Y, et al. Diffusion tensor imaging of the human optic nerve using a non-CPMG fast spin echo sequence[J]. J Magn Reson Imaging,2005,22(2):307-310
    14. Taylor WD, Hsu E, Krishnan KR, et al. Diffusion tenor imaging:background, potential, and utility in psychiatric research. Biol Psychiatry.2004 55(3):201-207
    15. Vaphiades MS. Optic nerve enchancement in hypotensive ischemic optic neuropathy[J]. J Neuroophthalmol,2004,24:235-236
    16. Lee AG, Eggenberger ER, Kaufman DI, et al. Optic nerve enchantment on magnetic resonance imaging in arteritic ischemic optic neuropathy[J]. J Neuroophalmol, 1999,19(4):235-237
    17. Michael S, Vaphiades, DO. Optic nerve enhancement in hypotensive ischemic optic neuropathy[J]. Potho Essay,2004,24(3):235-236
    18. Rizzo JF 3rd, Andreoli CM, Rabinov JD. Use of magnetic resonance imaging to differentiate optic neuritis and nonarteritic anterior ischemic optic neuropathy[J]. Ophthalmology, 2002,109(9):1679-1684
    19. Basser PJ, Mattiello J, Turner R, et al. Duffusion tensor echo -planar imaging of human brain[J]. In Proceeding of the SMRM,1993:584.
    20. Basser PJ, Mattiello J, Le Bihan D. Estimation of the effective self-diffusion tensor from the NRM spin echo[J]. J Magn Reson B,1994,103(3):247-254
    21. Basser PJ, Mattiello J, Le Bihan D. Diffusion tensor spectroscopy and imaging[J]. Biophys J, 1994,66(1):259-267
    22.龚洪翰.磁共振成像原理与临床应用.江苏:江西科学技术出版.2006,440-441
    23.宛四海.视觉通路的磁共振扩散张量成像及其临床应用研究[D].[博士学位论文].南京:第一军医大学.2007
    24.邹立秋,张芳,曲辉,等.不同数量梯度磁场方向对正常脑白质纤维束扩散张量成像的比较定量研究[J].临床放射学杂志,2005,24(10):906-909
    25. Le Roux P. Non-CPMG Fast Spin Echo with full ignal[J]. J Magn Reson.2002; 155(2):278-292
    26. Wheeler-Kingshott CA, Trip SA, Symms MR, et al. In vivo diffusion tensor imaging of the human optic nerve:Pilot study in normal controls[J]. J Magn Reson Med,2006,56(2): 446-451
    27. Xu J, Sun SW, Naismith RT, et al. Assessing-optic nerve pathology with diffuion MRI:from mouse to human[J]. NMR Biomed,2008,21:928-940
    28. Song SK, Sun SW, Ju WK, et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse mptic nerve after retinal ischemia[J]. Neuroimaging, 2003,20(3):1714-1722
    29. Sun SW, Liang HF, Le TQ, et al. Differential sensitiity of in vivo and ex vivo diffusion tensor imaging to evoling optic nerve injury in mice with retinal ischemia[J]. Neuroimaging, 2006,32(3):1195-1204.
    30. Singer MB, Chong J, LU D, et al. Diffusion weighted MRI in acute subcortical infarction[J]. Stroke,1998,29(1):133-136
    31. Sorensen AG, Wu 0, Copen WA, et al. Human acute cerebral ischemia:detection of changes in water diffusion anistropy by using MR imaging[J].Radiology 1999,212(3):785-792
    32. Widauer S, Detlmann E, Krakow K, et al. Diffusion-weighted MRI of spinal cordinfarction: description of two cases and review of the literature[J]. Nerenarzt,2002,73:999-1003.
    33. AI-Shafai LS, Mikulis DJ. Diffusion MR Imaging in a case of acute ischemic[J]. AJNR Am J Neuroradiol,2006,27(2):255-257
    34. Weidauer S, Detlmann E, Krakow K, et al. Diffusion-weighted MRI of spinal cord infarction: Description of two cases and review of the literature[J]. Nerenarzt 2002,73(10):999-1003
    35. Mathur S, Karimi A, Mafee ME Acute optic nerve infarction demontrated by diffusion-weighted imaging in a case of rhinocerebral mucormycosis[J]. AJNR Am J Neuroradiology,2007,28(10):489-490
    36.吴乐正,吴德正.临床视觉电生理学.北京:科学出版社,1999:337-409
    37.张芳霞,杨巧玲,曹宏亮.糖尿病视网膜病变前期视网膜电图和视觉诱发电位分析.国际眼科杂志,2009,9(1):78-79
    38.王秀敏,孙大山.早期视觉诱发电位对眼外伤性视神经病变视神经创伤的诊断价值.蚌埠医学院学报,2008,33(1)
    39. Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proc Natl Acad Sci USA,1990,87(24);9868-9872
    40. Polson AM, Subtenlny JD, Meither SW,et al. Long-term periodontal status after orthoolontic treatment[J].Am J Orthod Dentofacial Orthop,1988,93(1),51-58
    41.刘家琦,李风鸣.实用眼科学.北京:人民卫生出版社,1984:710-711
    42. Thomas CG, Menon RS. Amplitude response and stimulus presentation frequency response of human primary visual cortex using BOLD EPI at 4 T[J]. Magn Reson Med,1998, 40(2):203-209.
    43.周扬,王健.视皮层分区及其fMRI研究进展.现代生物医学进展[J],2006,6(9):79-81
    44.王敏君,王俊,毛志永,等.人脑视皮层定位、定量脑功能成像研究[J].临床放射学杂志,2007,26(6):543-547
    45. Gareau PJ, Gati JS, Menon RS, et al.Reduced visual evoked responses in multiple sclerosis patients with optic neuritis:comparison of functional magnetic resonance imaging and visual evoked potentials [J]. Mult Scler,1999,5(3):161-164
    46. Werring DJ, Bullmore ET, Toosy AT, et al.Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visul stimulation:a functional magnetic resonance imaging study[J]. J Neurol Neurosurg Psychiatry,2000,68(4):441-449
    47. Langkilde AR, Frederiksen JL, Rostrup E, et al. Functional MRI of the visual cortex and visual testing in patients with previous optic neuritis.Eur J Neurol,2001,101(6):601-604
    48. Mesulam MM. From sensation to cognition[J]. Brain 1998,121(Pt):1013-1052
    49.刘虎、赵堪兴.功能磁共振成像在视觉研究中的应用[J].国外医学眼科学分册,2003,27(5):261-265.
    50. Bartels A, Zeki S. The chronoarchitecture of the human bran-natural viewing conditions reveal a time-based anatomy of the brain[J]. Neuroimaging,2004,22(1):419-433.
    51. Huppi PS, Dubois J. Diffusion tentor imaging of brain development[J]. Semin Fetal Neonatal Med.2006,11(6):489-497
    52. Tsumoto T, Suda K, Effects of stimulation of the dorsocaudal claustrum on activities of striate cortex neurons in the cat[J]. Brain Res1982,240(2):345-359.
    53. Mesulam MM, Mufson EJ. In:Jones EG, Peters A, eds. The insula of Reil in man and monkey:architectonics, connectivityand function. New York:Plenum Press,1986.
    1.朱文珍,漆剑频,王承缘.磁共振成像新视角-《神经损伤与功能重建》[J].2007,2(1):36-38
    2. Miller NR.Diffusion tensor imagig of the visual sensory pathway:are we there yet? [J].Am J Ophthalmol,2005,140(5):896-897
    3. Basser PJ, Mattiello J, Le Bihan. MR diffusion tensor spectroscopy and imaging[J].Biophys J,1994,66(1):259-267
    4. Basser PJ, Mattiello J, Le Bihan. Estimation of the effective self-diffusion tensor from the NRM spin echo[J]. J Magn Reson B,1994,103(3):247-254
    5. Le Brain D, Mangin JF, Poupon C, et al. Diffuion tensor imaging:concepts and applications[J]. J Man Reson Imaging.2001,13(4):534-546
    6. Huppi PS, Dubois J. Diffusion tensor imaging of brain development[J].Semin Fetal Neonatal Med,2006;11(6):489-497
    7. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research[J]. Neuron,.2006,51(5):527-539
    8. Xu J, Sun SW, Naismith RT, et al. Assessing optic nerve pathology with diffusion MRI:from mouse to human[J]. NMR Biomed.2008,21(9):928-940.
    9. Taylor WD, Hsu E, Krishnan KR, et al. Diffusion tensor imaging:background, potential, and utility in psychiatric research[J]. Biol Psychiatry.2004 55(3):201-207
    10.龚洪翰.磁共振成像原理与临床应用.江西科学技术出版,2006,440-441
    11. Jones DK, Lythgoe D, Horsfield MA, et al. Characterization of white matterdamage in ischemic leukoaraiosis with diffuion tensor MRI[J].Stroke.1999,30(2):393-397
    12. Le Bilan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging:concepts and applications[J].J Magn Reson Imaging,2001,13(4):534-546
    13.梁迎春.张量磁共振在脑梗死中的临床应用[D].[硕士学位论文].昆明:昆明医学院,2006
    14.宛四海,张雪林,肖新兰.磁共振扩散张量成像在视觉通路成像中的研究进展[J].放射学实践,2008,23(3):335-337
    15. Koch MA, Glauche V, Finsterbusch J, et al. Distortion-free diffusion tensor imaging of cranial nerves and of inferior temporal and orbitofrontal white matter[J] Neuroimage,2002,17(1):497-506
    16. Iwasawa T, Matoba H, Ogi A, et al. Diffusion-Weighted imaging of the human optic nerve:a new approach to evaluate optic neuritis in multiple sclerosis[J].Magn Reson Med, 1997,38(3):484-491
    17. Chabert S, Molko N, Cointepas Y, et al. Diffusion imaging of the human optic nerve using a non-CPMG fast spin echo sequence[J].J Magn Reson imaging,2005,22:307-310
    18. Wheeler-Kingshott CA, Trip SA, Symms MR, et al. In vivo diffusion tensor imaging of the human optic nerve:Pilot Study in normal controls[J]. Magn Reson Med,56(2):446-451
    19. Pfefferbaum A, Sullivan EV, Hedehus M, et al. Age-related decline in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor imaging[J]. Magn Reson Med,2000,44(2):259-268
    20. Lee DA, Mulvihill D, Cheng KQ, et al.Diffusion tensor imaging of the living human optic nerve from the neonatal period to the adult[J]. Invest Ophthalmol Vis Sci,2006,47:735
    21. Song SK, Sun SW, Ju WK, et al. Diffusion tensor imaging and differentiates axon and myelin degeneration in Mouse optic nerve after retinal ischemia[J]. Neuroimaging,2003,20 (3):1714-1722
    22. Hickman SJ, Wheeler KA, Jones SJ, et al. Optic nerve diffuion measurement from diffusion-weighted imaging in optic neuritis[J]. AJNR Am J Neuroradiol, 2005,26(4):951-956
    23. Trip SA, Wheeler-Kingshott C, Jones SJ, et al. Optic nerve diffusion tensor imaging in optic neuritis[J]. Neuroimaging,2006,30(2):498-505
    24. Yamamoto T, Yamada K, Nishimura T, et al. Prognostic value of diffusion tensor imaging in acute optic neuritis[J]. Invest Ophthalmol Vis Sci,2005,46:E-Abatract 638
    25. Sun SW, Liang HF, Le TQ, et al. Differential sensitiity of in Vivo and ex Vivo diffusion tensor imaging to evoling optic nerve injury in mice with retinal ischemia[J].Neuroimaging,2006,32(3):1195-1204
    26. AL-Shafai LS, Mikulis DJ. Diffusion MR imaging in a case of acute ischemic optic neuropathy[J]. AJNR Am J Neuroradol,2006,27(2):255-257
    27. Hui ES, Fu QL, So KF, et al. Diffusion tensor MR study of optic nerve degeneration in glaucima[J]. Conf Proc IEEE Eng Med Biol Soc,2007,2007,4312-4315
    28. Gupta N, Ang LC, Noel de Tilly L, et al. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex[J]. Br J Ophthalmol, 2006,90 (6); 674-678
    29. Gupta N, Yucel YH. Glaucoma as a neurodegenerative disease[J]. Curr Opin Ophthalmol, 2007.18(2):110-114
    30. Gupta N, Yucel YH. Glaucoma and the brain[J]. J Glaucoma,2001,10(5 Suppl 1):S28~S29
    31. Garaci FG, Bolacchi F, Cerulli A, et al. Optic nerve and optic radiation neurodegeneration in patients with glaucoma:in vivo analysis with 3-T diffusion-tensor MR Imaging[J]. Radiology,2009,252(2):496-501
    32. Tao XF, Wang ZQ, Gong WQ, et al. A new study on diffuion tensor imaging of the whole visual pathway fiber hundle and clinical application[J].Chin Med J (Engl),2009,122(2):178-182
    33. Orrison WW, Lewine JD, Sanders JA, et al. Function brain imaging[M]. America:Mosby-Year Book Inc,1995.80
    34. Magistretti PJ, Pellerin L, Rothman DL,et al. Energy on demand[J]. Science, 1999,283(5401):496-497
    35.龚洪翰.磁共振成像原理与临床应用.江西科学技术出版社,2006,440-441
    36. Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proc natl Acad Sci USA,1990,87(24);9868-9872.
    37. Kruger G, Kastrup A, Glover GH. Neuroimaging at 1.5 T and 3.0 T:comparison of oxygenation—sensitive magnetic resonance imaging[J]. Magn Reson Med,2001,45(4):595 —604
    38. Polonara G, Fabri M, Manzoni T, et al. Localization of the first and second somatosensory areas in the human cerebral cortex with functional MR imaging[J]. AJNR Am J Neuroradiol, 1999,20(2):199-205
    39.刘虎、张权、张云亭等BOLD-fMRI在视觉研究中的应用[J].国外医学临床放射学分册,2004,27(4):209-212
    40. Miki A, Nakajima T, Hasebe H, et al. Functional magnetic reonance
    41. Werring DJ, Bullmore ET, Toosy AT, et al. Recovery from optic neuritis is associated with a chang in the distribution of cerebral response to visual stimulation:a functional magnetic resonance imaging study[J]. J Neurol Neurosurg Psychiatry,2000,68(4):441-449
    42. Langkilde AR, Federiksen JL, Rostrup E, et al. Functional MRI of the viual cortex and visual testing in patients with previous optic neuritis[J]. Eur J Neurol,2002,9(3):277-286
    43. Gareau PJ, Gati JS, Menon RS, et al. Reduced visual evoked responses in multiple sclerosis patients with optic neuritis:comparison of functional magnetic resonance imaging and visual evoked potentials[J]. Mult Scler,1999,5(3):161-164
    44. Rombouts SA, Lazeron RH, Scheltens P, et al. Visual activation patterns with optic neuritis: an fMRI pilot study[J]. Neurology,1998,50(6):1896-1899
    45. Toosy AT, Werring DJ, Bullmore ET, et al. Functional magnetic resonance imaging of cortex response to photic stimulation in humans following optic neuritis recovery[J]. Neurosci Lett, 2002,330:255-259
    46 Toosy AT, Hickman SJ, Miszkiel KA, et al. Adaptive cortical plasticity in higher visual areas after acute optic neuritis[J].Ann Neurol,2005,57(5):622-633
    47. Levin N, Orlov T, Dotan S, et al. Normal and abnormal fMRI activation patterns in the visual cortex after recovery from optic neuritis[J]. Neuroimaging,2006,33(4):1161-1168.
    48. Korsholm K, Madsen KH, Frederiksen JL, et al. Recovery from optic neuritis:an ROI-BASED analysis of LGN and visual cortical areas[J]. Brain,2007,130(Pt 5):1244-1253
    49.徐亮.青光眼视神经损害的三要素及其盘沿丢失的识别[J].中华眼科杂志.2006;42(3):196-198
    50. Weber AJ, Chen H, Hubbard WC, et al. Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus[J].Invest Ophthalmol Vis Sci,2000,41(6):1370-1379
    51. Yucel YH, Zhang Q, Weinreb RN, et al. Effects of retinal ganglion cell loss on magno-,parvo-,koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res,2003,22(4),465-481
    52. Yucel YH, Zhang Q, GuptaN, et al. Loss of nuerons in magnocellular and parvocellularlayers of the lateral geniculate nucleus in glaucoma[J].Arch. Ophthalmol 2000,118(3):378-384
    53. Yucel YH, Zhang Q, Weinreb RN, et al. Atrophy of relay neurons in magno- and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma [J]. Invest Ophthalmol vis Sci 2001,42(13):3216-3222
    54. Gupta N, Ang LC, Noel de Tilly L, et al. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex [J]. Br J Ophthalmol 2006,90(6); 674-678
    55. Gupta N, Yucel YH. Glaucoma as a neurodegenerative disease [J]. Curr Ophthalmol 2007; 18(2):110-114.
    56. Gupta N, Yucel YH. Brain changes in glaucoma [J]. Eur J Ophthalmol 2003,13(Suppl 3):S32-S35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700