扩散张量成像在椎管内占位性疾病的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     观察正常成人脊髓良恶性肿瘤及其他一些椎管内占位性疾病的扩散张量(diffusion tensor imaging,DTI)成像的影像表现,探讨DTI在椎管内良恶性肿瘤及占位性疾病诊断中的应用价值。
     方法
     应用Siemens Magnetom Trio Tim 3.0T磁共振扫描装置,
     1、对20例健康志愿者行常规T1WI、T2WI、液体衰减反转恢复(FLAIR)、扩散张量成像(DTI)序列,分析扫描所得到的正常人群脊髓的FA (Fractional anisotropy)图,定量测量其相应椎体平面脊髓的FA值,提供正常脊髓神经传导束形态图及FA值图。
     2、对25例椎管内占位的病人进行常规的T1WI、T2WI、及增强扫描,FLIAR、DTI序列及MPRAGE序列扫描,观察所得病变部位的神经传导束形态,分析病变部位FA值的变化,研究DTI在椎管内占位性疾病区分髓内、外及良、恶性肿瘤的优势,为临床提供直观的手术依据。
     结果
     1、正常成人脊髓DTI技术清楚显示健康志愿者的颈、胸段经图像处理后脊髓呈上下走行的蓝色神经传导束,于两侧可见左右红色走行的神经根,测量每个脊髓椎体相应水平的神经传导束平均值。
     2、硬膜下占位:神经纤维瘤,神经鞘瘤多见其次是脊膜瘤,DTI扫描得出脊髓内占位均造成神经传导束受压变形,其周边测量FA值较正常脊髓相同位置FA值无明显差别。
     3、髓内肿瘤:包括血管瘤、皮样囊肿、上皮样囊肿、畸胎瘤造成脊髓束形态改变,明显受压时由于纤维排列更加紧密外,FA值无差别,星形细胞瘤及室管膜瘤除破坏脊髓内神经传导束正常走行外,其周边FA值较正常人群有明显下降。
     结论
     扩散张量成像反映神经传导束解剖形态学变化的常规MR成像。DTI技术是一种非侵袭性、无放射性、简单易得神经传导束MR成像序列,现DTI技术广泛应用在颅内,但本组数据显示,DTI技术在脊髓占位中能利用FA值的改变,快速的反应出椎管内、外,及脊髓神经传导束受肿瘤破坏的情况,可用于良恶性肿瘤的诊断、神经走向、肿瘤与周边正常组织及神经系统的评估,为外科手术提供教直观的手术依据。
Objective:
     To observe the diffusion tensor imageing (DTI) appearance in the normal adult’s and the spinal cord space-occupying lesion (including benign tumor, malignant tumor) and other’s vertebral canal space-occupying lesion, to investigate the application value of the DTI in the diagnosis the inside of vertebral canal benign or malignant space-occupying lesion.
     Methods:
     Study were performde on Siemens Magnetom Trio Tim 3.0T MR scanner syste:
     1. 20 healthy volunteer were scanned by routine T1WI,T2WI,fluid attenuated inversion recovery (FLAIR), diffusion tensor imaging (DTI) sequence, the FA vaule of health adult crowd myeloid were obtained and analysed , and were quantitively measured the FA of correspond centrum ,the common spinal cord nerve conduction tract picture and FA value picture were provided.
     2. patient with the intravertebral canal space-occupying lesion were scanned by routine T1WI, T2WI, contrast enhancement scanning, FLIAR、DTI and MPRAGE sequence, the nerve conduction tract of diseased region were observed, FA value of diseased region were also analyed. The experiment research the dominance of DTI that were discriminated the benign tumor or malignant tumor, the inside or outside of spinal cord space-occupying lesion.
     Results:
     1. The cervicum cord, thoracic cord segments ,above conus medullaris of healthy volunteer were showed clearly by DTI technique. After image processing, the portait nerve conduction tract were taken on blue,and the transversal nerve root were taken on red, the FA mean value of each correspond centrum’s nerve conduction tract were measured .
     2. The extra-spinal cord epidural space-occupying lesion: In the cold abscess of tubercle , the nerve conduction tract were compressed and distorted by DTI scanning, there was no difference in the FA value among the perimeter and normal spinal cord identical position.
     3. The intra-spinal cord tumor (including hemangioma, dermoid cyst, epithelial cyst, teratoma), resulted in the distortion of the spinal cord beam, the FA value were lightly upgrade when it was compressed obviously, because of the fiber compactly arrayed. The malignant tumor (neurospongioma and ependymoma) destroyed the normal nerve conduction tract, the FA value of corticospinal tract were significantly lower than the healthy volunteer.
     Results:
     Diffusion tensor imaging (DTI) was used as a routine MR imaging, which reflected the change of nerve conduction tract’s anatomic pattern.. DTI technique was a Non-Invasive, non-radiated, easy gained nerve conduction tract MR imaging technique. At present DTI technique were applied widespread on intracranial lesion, but the group’s data displayed ,that DTI technique could detect the change of FA value to diagnose the spinal cord epidural space-occupying lesion, and volantly response the destroy of nerve conduction tract, which could use in the diagnosis of the benign tumor, malignant tumor, nerves morphous,the evaluation between the tumor and normal tissue , nervous system. DTI technique could provide the visualized operation guide for neurosurgery.
引文
[1] Jellison BJ, Field AS, Medow J, et al. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR, 2004, 25(3): 356-369
    [2] Valsasina P, Rocca MA, Agosta F, Benedetti B, Horsfield MA, Gallo A, Rovaris M, Comi G, Filippi M: Mean diffusivity and fractional anisotropy histogram analysis of the cervical cord in MS patients. Neuroimage 2005;26:822-828.
    [3] Hickman SJ, Wheeler-Kingshott CA, Jones SJ, Miszkiel KA, Barker GJ, Plant GT, Miller DH: Optic nerve diffusion measurement from diffusion-weighted imaging in optic neuritis. AJNR Am J Neuroradiol 2005;26:951-956.
    [4] Agosta F, Benedetti B, Rocca MA, Valsasina P, Rovaris M, Comi G, Filippi M: Quantification of cervical cord pathology in primary progressive MS using diffusion tensor MRI. Neurology 2005;64: 631-635.
    [5] Hesseltine SM, Law M, Babb J, Rad M, Lopez S, Ge Y, Johnson G, Grossman RI: Diffusion tensor imaging in multiple sclerosis: assessment of regional differences in the axial plane within normal-appearing cervical spinal cord. AJNR Am J Neuroradiol 2006;27:1189-1193.
    [6] Miles KA. Measurement of tissue perfusion by dynamic computed tomography[J]. Br J Radiol, 1991, 64: 409-412.
    [7] Klotz E, Konig M. Perfusion measurements of the brain:using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke[J]. Eur JRadiol, 1999, 30: 170-184.
    [8] Cenic A, Nabavi DG, Craen RA, et al. A CT method to measure hemodynamics in brain tumors:validation and application of cerebral blood flow maps[J]. AJNR Am J Neuroradiol, 2000 Mar; 21(3): 462-470.
    [9] Sotak CH. The role of diffusion tensor imaging in the evaluation of ischemic brain injury - a review. J NMR Biomed, 2002, 15: 561-569.
    [10] Sakatani K, Murata Y, Fujiwara N, et al. Comparison of blood-oxygen- level-dependent functional magnetic resonance imaging and near-infrared spectroscopy recording during functional brain activation in patients with stroke and brain tumors[J]. Biomed Opt, 2007 Nov - Dec; 12(6): 062110. Review.
    [11] Jissendi TP, Balériaux D. Brain (1)H-MR spectroscopy in clinical neuroimaging at 3T[J]. Neuroradiol, 2009 Mar; 6(1): 24-40.
    [12] Lu S, Ahn D, Johnson G, et a1. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. AJNR, 2003, 24(5): 937-941
    [13] Lu S, Ahn D, Johnson G, et a1. Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology, 2004, 232(1): 221-228
    [14] Pierpaoli, C., et al., Diffusion tensor MR imgaging of the human. Radiology,1996. 201(3): p. 637-48.
    [15] Chepuri, N.B., et al., Diffusion anisotropy in the corpus callosum. AJNR Am J Neuroradiol, 2002. 23(5): p. 803-8.
    [16] Shimony, J.S., et al., Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. Radiology, 1999. 212(3): p. 770-84.
    [17] Le Bihan, D., et al., Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 1988. 168(2): p. 497-505.
    [18] Le Bihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging, 2001, 13(4): 534-546
    [19] Inoue T, Ogasawara K, Beppu T, et al. Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg, 2005, 107(3): 174-180
    [20] Pruessmann, K.P., et al., SENSE: sensitivity encoding for fast MRI. Magn Reson Med, 1999. 42(5): p. 952-62.
    [21] Pipe, J.G., V.G. Farthing, and K.P. Forbes, Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med, 2002. 47(1): p. 42-52.
    [22] Basser, P.J., Relationships between diffusion tensor and q-space MRI. Magn Reson Med, 2002. 47(2): p. 392-7.
    [23] Field AS, Alexander AL. Diffusion tensor imaging in cerebral tumor diagnosis and therapy. Top Magn Reson Imaging, 2004, 15(5): 315-324
    [24] Lin CP , Tseng WY, Cheng HC , et al. Validation of diffusion tensor magnetic resonace axonal fibel imaging with registered manganese-enhanced optictracts [J ] . Neuroimage , 2001 , 14(5) :1 035-1 047.
    [25] Facon D , Ozanne A , Fillard P , et al. MR Diffusion Tensor Imaging and Fiber Tracking in Spinal Cord Compression[J ] .AJNR Am J Neuroradiol , 2005 , 26(6) :1 587-1 594.
    [26] Holder CA , Muthupillai R , Mukundan S , et al. Diffusion weighted MR Imaging of the Normal Human Spinal Cord in Vivo[J ] . AJNR , 2000 , 21(10) :1 799-1 806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700