甘蓝型油菜抗(耐)菌核病PolCMS恢复系的选育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上最大的油菜生产国,2000年以来种植面积已突破7,337,000公顷,面积和总产均占世界的三分之一,长江流域是世界油菜最大的产区,面积约占世界四分之一。油菜既是高油分作物,又是高蛋白作物,在世界范围如加拿大、西欧、北欧、澳大利亚、印度等都有着广泛的种植面积,是世界上食用植物油和植物蛋白的主要来源之一。油菜菌核病是制约我国油菜生长的重要病害,影响产量很大。尤其是长江中下游油菜主产区,生育后期遭遇高温多雨天气,菌核病发生严重。因此,选育抗菌核病油菜品种及资源是当务之急。
     本研究以小孢子培养和分子标记辅助选择两种途径来选育抗病的恢复系。一方面,以抗菌核病的恢复系中双4号R DH和不抗病的恢复系5148 DH、不育系109A为基础材料,利用小孢子培养,获得抗感分离的DH植株,通过田间抗病鉴定,得到抗病的新恢复系。另一方面,我们利用分子标记辅助选择,对优良材料的抗性进行改良,选择遗传背景与轮回亲本一致同时在抗病鉴定中又表现抗病的植株,获得抗病的新恢复系。主要研究结果如下:
     1.通过对(5148 DH×中双4号R DH)的F_1和(109 A×中双4号R DH)的F_1代做小孢子培养,分别获得438和172个DH株系。
     2.在对两个DH群体做苗期抗病鉴定时,DH-1和DH-2两个群体分别获得69个和39个抗病的株系。
     3.对两个DH群体做成株期抗病鉴定,分别获得38个和17个抗病个株系;同时发现3d和5d、5d和7d、3d和7d的病斑长度的相关性较高,在两个群体中均未发现抗侵入和抗扩展的株系。
     4.在两个DH群体中共获得9株苗期和成株期均表现抗性的单株,苗期和成株期的抗病性相关性不高。
     5.利用分子标记辅助选择,通过两次回交和背景选择,获得遗传背景与5148DH一致,同时又表现抗病性的单株4株,可以作为新的恢复系种质资源。
China is the largest nation for Brassica napus production in the world. The area of the planting has exceeded 7,337,000 hm~2 and both the area and the total amount are one third of the entire production of the world. The drainage area of the Yangtze River provides the largest yield area of Brassica napus all over the world, which almost occupies one fourth of the whole earth. Brassica napus contains both high oil and high protein and it is widely cultivated in Canada, West Europe, North Europe, Australia, India and so on. Brassica napus is also one of the main resource of edible oil and plant protein in the world.
     Sclerotinia sclerotiorum, which is one kind of serious diseases that confines development of Brassica napus and causes significant production reduction. Particularly, it is during the period of high temperature and rainy days that the Brassica napus come on disease more seriously on its later growth phase in center down main yield areas of Yangtze River. Thus, it is exigent and desirable to select disease-resistant new varieties and germplasm resources.
     This study focus on selection of disease-resistant restorer lines through two approaches of microspore culture and marker assisted selection. On the one hand, we derives disease-resistant novel restorers on the basis of disease-resistant restorer ZHONG SHUANG 4 RDH and non-resistant restorer 5148 DHL sterility 109A, using microspore culture of Brassica napus to obtain doubled haploid (DH) lines of separation population between resistant and sensitive disease plants and through identification of disease-resistant in the field. On the other hand, in order to derive novel disease-resistant restorer lines, we use marker assisted selection to improve resistance property of smart materials and select materials both having genetic background consistent with recurrent parent and display disease-resistance in identification of disease-resistant experiment. The results are as follows:
     1. Through microspore culture for F_1 generation of (5148 DH×ZHONGSHUANG 4 RDH) and (109A×ZHONGSHUANG 4 RDH), we derived 438 and 171 different genotype DH single plants respectively.
     2. When identification of disease-resistant for 2 DH populations in the seedling stage, we obtained 69 and 39 different genotype disease-resistant single plants respectively.
     3. When identification of disease-resistant for 2 DH populations in the adult plant stage, we derived respectively 38 and 17 different genotype disease-resistant single plants; Simultaneously there were quite correlation on length of disease spot between 3d and5d, 5d and 7d,3d and 7d. but we could not find any single plant of immunity and resistant enlargement for Sclerotinia sclerotiorum.
     4. There were 9 single plants, which showed resistance property both on seedling stage and adult plant stage. And there was no significant correlation on disease-resistance between seedling stage and adult plant stage.
     5. There were 4 single plants, which both had the same genetic background with 5148 DH using marker assisted selection and through backcross twice and selfing once and displayed disease-resistance. These single plants might be as novel restorer lines germplasm resources.
引文
1.陈爱武.对甘蓝型油菜抗(耐)菌核病材料的初步研究.[硕士学位论文].武汉:华中农业大学,1997
    2.陈军,陈正华,刘澄清,姚渝光,张丽华,官月兰.甘蓝型油菜游离小孢子培养的胚胎发生.遗传学报,1995,22(24):307-315
    3.陈升.应用分子标记辅助选择培育广谱、高抗白叶枯病的杂交水稻恢复系.[博士学位论文].武汉:华中农业大学图书馆,1999
    4.陈志伟.分子标记辅助选择技术在水稻抗病育种中的应用.[博士学位论文].福州:福建农林大学图书馆,2004
    5.方淑桂,陈文辉,曹小玲.结球甘蓝游离小孢子培养及植株再生.园艺学报,2006,33(1):158-160
    6.方淑桂,陈文辉,曹小玲.大白菜游离小孢子培养若干因素探讨.福建农业学报,2004,19(4):243-246
    7.傅廷栋,杨小牛,杨光圣.甘蓝型油菜波里马细胞质雄性不育的选育与研究.华中农业大学学报,1989,8(3):201-207
    8.傅廷栋.杂交油菜的育种与利用.武汉:湖北科学技术出版社,1995
    9.高辉.油菜与生菜的组织培养.[硕士学位论文].武汉:华中农业大学图书馆,2003
    10.顾宏辉,胡林军,周伟军.小孢子培养技术在芸苔属作物育种上的应用研究进展.农业生物技术学报,2004,12(2):219-223
    11.官春云.油菜小孢子培养和双单倍体研究Ⅰ.供体植株和小孢子密度对小孢子培养的影响.作物学报,1995,21(16):665-670
    12.官春云.油菜遗传育种研究进展.中国科学基金,1995,9(3):31-37
    13.广东植物研究所遗传研究室.从油菜花药培养出花粉植株的研究.植物学报,1975,17(2):167.
    14.郭世星,牛应泽,余学杰,刘玉贞.活性炭对甘蓝型油菜(Brassica napus)小孢子胚胎发生的影响.种子,2005,24(7):37-39
    15.韩阳,许艳辉,冯辉等.白菜游离小孢子培养研究进展.沈阳农业大学学报,2002,33(3):228-231
    16.韩阳,叶雪凌,冯辉.提高大白菜小孢子植株获得率的研究.园艺学报,2005,32(6):1092-1094
    17.何昆燕.利用DH(Double Haploid)群体对甘蓝型油菜菌核病抗性基因的QTL 定位和分析.[硕士学位论文].武汉:华中农业大学图书馆,2003
    18.胡宝成,朱洪涛.油菜菌核病抗(耐)、避病遗传育种研究进展.安徽农业大学学报,1995,22(增):55-58
    19.黄永菊,陈军.甘蓝型油菜菌核病抗(耐)性的遗传研究:Ⅰ.抗性遗传属性与配合力分析.中国油料作物学报,2000,22(4):1-5
    20.李浩杰.分子标记辅助选择改良G46米质的研究.[硕士学位论文].成都:四川农业大学图书馆,2003
    21.李栒,官春云.油菜小孢子培养和双单倍体育种.作物学报,1994,8(3):1-3
    22.刘创社,董振升,景军胜.甘蓝型油菜优质恢复系的改良方法研究.西北农业学报,1998,7(1):38-40
    23.刘凡,李岩,姚磊.培养基水分状况对大白菜小孢子胚成苗的影响.农业生物技术学报,1997,5(2):131-136
    24.刘后利主编.作物育种研究与进展(第一集).北京:农业出版社,1993
    25.刘胜毅,周必文,潘家荣.油菜对毒素草酸的吸收代谢与抗性机理.植物病理学报,1998,28(1):33-37
    26.刘雪平,刘志文,涂金星,陈宝元,傅廷栋.甘蓝型油菜小孢子培养技术的几项改进.遗传,2003,25(4):433-436
    27.刘勇.核盘菌单孢菌条间致病性研究.西南农业大学学报,1996,,18(6):536-538
    28.刘泽.甘蓝型油菜离体小孢子胚胎发生能力的遗传分析.作物学报,2000,26(1):12
    29.牛应泽,刘玉贞,郭世兴.提高甘蓝型油菜游离小孢子产胚率的研究.西南农业学报,2002,15(1):24-27
    30.牛应泽,刘玉贞,汪良中.人工合成甘蓝型油菜游离小孢子培养及其植株再生研究初报.四川农业大学学报,1999,17(2):167-171
    31.祁永琼,林良斌,董娜,马占强.甘蓝型油菜小孢子再生体系的优化研究.云南农业大学学报,2005,20(1):7-10
    32.祁永琼,林良斌,肖关丽,朱秋会.油菜小孢子再生体系的研究进展.云南农 业大学报,2003,18(2):208-211
    33.申书兴,梁会芬,张成合.提高大白菜小孢子胚胎发生及植株获得率的几个因素研究.河北农业大学学报,1999,22(4):65-68
    34.石淑稳,李再云,刘后利.甘蓝型油菜与诸葛菜杂种小孢子的胚胎发生和小苗的形态特征.中国油料,1994,16(1):63-64
    35.石淑稳,刘后利.甘蓝型油菜及其种间和属间杂种小孢子胚状体的诱导.华中农业大学学报,1993,12(6):544-550
    36.石淑稳,魏泽兰,刘后利.油菜试管苗大田直接移栽法.中国农学通报,1994,10(2):46-49
    37.石淑稳,周永明,吴江生,刘后利.甘蓝型油菜小孢子培养、染色体加倍、试管苗继越夏和田间移栽配套技术的研究及其在油菜育种中的应用.中国农学通报,2001,17(2):57-59
    38.石淑稳,周永明,吴江生.油菜单倍体苗染色体加倍技术的研究.中国植物生理学会第七次全国会议学术论文集,武汉,1996,191
    39.双桑,阮颖,彭冬平,刘春林.油菜菌核病及抗病育种研究进展.作物研究,2006,5:552-556
    40.田保明.油菜单倍体培养研究进展.中国农学通报,1994,10(5):45
    41.王俊霞.甘蓝型油菜Pol CMS育性恢复基因图谱定位及抗菌核病恢复系的分子标记辅助选择.[博士学位论文].武汉:华中农业大学图书馆,2000
    42.夏军红.玉米恢复系的分子标记辅助回交选育与效应分析.[硕士学位论文].武汉:华中农业大学图书馆,2001
    43.熊秋芳,刘胜毅,李合生.抗感菌核病油菜品种几种酶活性对草酸处理的响应.华中农业大学学报,1998,17(1):10-13
    44.杨光圣,傅廷栋,马朝芝,杨小牛.甘蓝型油菜波里马细胞质雄性不育恢复系轮回选择群体的建立.华中农业大学学报,1996,15(4):316-321
    45.杨立勇,范志雄,杨光圣.甘蓝型油菜小孢子培养中几项技术改进.中国油料作物学报,2005,27(1):14-18
    46.余凤群,刘后利.甘蓝型油菜成熟小孢子培养体系的研究.[博士学位论文].武汉:华中农业大学图书馆,1994
    47.张凤兰,高田义.甘蓝型油菜小孢子培养胚发生能力的遗传分析.华北农学报, 2001,16(1):27-32
    48.张洁夫,傅寿仲,盖钧镒,戚存扣,浦惠明.配子鉴定法及其在油菜优良恢复系选育中的应用.中国油料作物学报,2002,24(1):15-18
    49.朱彦涛,李殿荣,胡新强.甘蓝型油菜小孢子植株加倍方法及对植株农艺性状的影响研究.陕西农业科学,1998,2:1-3
    50.Keller W A,Fan z,Pechan P,Long N,Grainger J.An efficient method for culture of isolated microspores of Brassica napus.Proc 7th In Rapeseed Cong,1987,211
    51.Kott L S,Polsoni L,BeversdorfW D.Cytological aspects of isolated microspore culture of Brassica napus.Can J Bot,1988,66:1658-1664
    52.Kuginuki Y,Nakamura K,Hida K,et al.Varietal differences in embryogemc and regenerative ability in microspore culture ot Chinese Cabbage(Brassica rapa L.ssp,Pekinensis).Breed Sci,1997,47:341-346
    53.Lichter R.Efficient yield of embryoids by culture of isolated microspores of different Brassicaceae Species.Plant Breeding,1989,103:119-123
    54.Lichter R.Introduction of haploid plants from isolated pollen of Brassica napus.Z Pflanzenphysiol,1982,105:427-434
    55.Lionneton E,Beuret W,Delaitre C,Ochatt S,Rancillac M.Improved microspore culture and doubled-haploid plant regeneration in the brown condiment mustard (Brassica juncea).Plant Cell Reports,2001,20:126-130
    56.Lombard V,Delourme R A.Consensus linkage map for rapeseed(Brassica napus L.)construction and integration of three individual maps from DH population.Theor Appl Genet,2001,103:491-507
    57.Nidhi,Chanana P,Vibha Dhawan,Sant,Bhojwani S.Morphogenesis in isolated microspore cultures of Brassica juncea.Plant Cell,Tissue and Organ Culture,2005,83:169-177
    58.Nobuya Koizuka,Ritsuko Imai,Hideya Fujimoto,Takahiko Hayakawa,Yusuke Kimura,Junko Kohno-Murase.Genetic characterization of a pentatricopeptide repeat protein gene,orf687,that restores fertility in the cytoplasmic male-sterile Kosena radish.The Plant Journal,2003,34:407-415
    59.Pathania A,S.R.Bhat.Cytoplasmic male sterility in alloplasmic Brassica juncea carrying Diplotaxis catholica cytoplasm: molecular characterization and genetics of fertility restoration. TheorAppl Genet, 2003, 107: 455-461
    60. Qing Yang, Jean E, Chauvin, Yves Herve. Study of factors effecting anther culture of cauliflomer (Brassica oleracea var.botrytis). Plant Cell Tissues and Organ Culture, 1992,28: 189-196
    61. Regine Mathias, Robbelen G. Effective diploidization of microspore-derived haploids of raoe(Brassica oleracea var.botrytis) by in vitro colchicines treatment. Plant breeding, 1991, 106: 82-84
    62. Seiji Murayama,Toshiyuki Habuchi, Hiroshi Yamagishi Toru Terachi. Identification of a sequence-tagged site (STS) marker linked to a restorer gene for Ogura cytoplasmic male sterility in radish (Raphanus sativus L.) by non-radioactive AFLP analysis. Euphytica, 2002, 129: 61-68
    63. Baillie A M R, Epp D J, Hutcheson D, Keller W A. In vito culture of isolated m icrospores and regeneration of plants in Brassica campestris. Plant Cell Reports, 1992,11:234-237
    64. Cao M Q, Li Y, Liu F, et al. Application of anther culture and isolated microspore culture to vegetable crop improvement. Acta Horticulturae, 1995, 392: 27-38
    65. Chen Z Z, Snyder S, Fan Z G, Loh W H. Efficient production of doubled haploid plant through chromosome doubling of isolated microspores in Brassica napus. Plant Breeding, 1994, 113: 217-221
    66. Chuong P V, Deslauriers C, Kott L S, et al. Effects of donor genotype and bud sampling on microspore culture of Brassica napus. Canadian Journal of Botany, 1988,66: 1653-1657
    67. Chuong P V, Pauls K P, Beversdorf W D. High frequency embryogenesis in male sterile plants of Brassia napus through microspore culture. Can J Bot, 1988, 66: 1676-1680
    68. Feng-Ian Zhang, Satoru Aoki, Yoshihito, Akahata T. RAPD markers linked to microspore embryogenic ability in Brassica crops. Euphytica , 2003, 131: 207-213
    69. Ferreira M E, Williams P H, Osborn T C. RFLP mapping of Brassica napus using doubled-haploid line. Theor Appl Genet, 1994, 89: 615-621
    70. Gregory G, Brown, Natas A, Formanova. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. The Plant Journal, 2003, 35: 262-272
    71. Gu H H, Hagberg P, Zhou W J. Cold pretreatment enhances microspore embryogenesis in oilseed rape(Brassica napus ). Plant Growth Regulation, 2004, 42: 137-143
    72. Imai R. Delimitation of the fertility restorer locus Rfk1 to a 43-kb contig in Kosena radish (Raphanus sativus L.). Mol Gen Genomics, 2003,269: 388-394
    73. Iqbal M C M, Mollers C, Robbelen G. Increased embryogenesis after colchicine treatment of microspore cultures of B. napus. Plant Physiol, 1994, 143: 222-226
    74. Janeja H S, Banga S S, Lakshmikumaran M.. Identification of AFLP markers linked to fertility restorer genes for tournefortii cytoplasmic male-sterility system in Brassica napus. Theor Appl Genet, 2003, 107: 148-154
    75. Erampalli P, kohn L M. Comparison of pestic zymograms produced by different clones of Sclerotinia sclerotiorum in culture. Phytopathology, 1995,9:92-298
    76. Favaron F. Polygalacturonase isoenzymes and oxalic acid produced by Sclerotinia sclerotiorum in soybean hypocotyls as elicitors of glyceollin. Physiol. Molec. Plant Pathol. 1988, 33: 385-395
    77. Ferreira M E, Williams P H and Osborn T C. Mapping of a locus controlling resistance to Albugo Candida in Brassica napus using molecular marker. Phytopathology. 1995b, 85: 218-220
    78. Ferreira M E, Rimmer S R, Williams P H, Osborn T C. Mapping loci controlling Brassica napus resistance to leptosphaeria maculans under different screening conditions. Phyopathology, 1995a,33:213-217
    79. Gai J, Wang J, Identification and estimation of a QTL model and its effects. Theor Appl Genet.1998, 97(7): 1162-1168
    80. Wang H Z, Zheng Y B, Yang Q. Application of microspore culture technology in the breeding of rapeseed hybrids(B napus L.). Proceedings of the 10th international rapeseed congress, Canberra, Australia, 1999, http://www.regional.org.au/au/gcirc 4/300.htm
    81. Xie J H. The effect of cool-pre-treatment on the isolated microspore culture and the free amino acid change of anthers in Japonica rice (Oryza sativa L. ). Plant Physiol, 1997,151:79-82
    82. Yang Dang Guo, Sepp Pulli. High frequency embryogenesis in Brassica campestris microspore culture. Plant Cell Tissue and Organ Culture, 1996(46): 219-225
    83. Yolsoni L . Large-scale microspore culture technique for nutuation-selection studying in Brassica napus. Can J Bot, 1988,66(8): 1681-1685
    84. Zhang F L, Takahata Y. Inheritance of microspore embryogenic ability in Brassica crops. TheorAppl Genet, 2001(103): 254-258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700