地衣芽孢杆菌(BL)抗菌蛋白对油菜菌核病菌的抑制与破坏作用及防病效果
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地衣芽孢杆菌(Bacillus licheniformis)W10培养菌液和滤液对油菜菌核病菌(Sclerotinia sclerotiorum)具有较强的拮抗能力。其培养滤液经硫酸铵沉淀和透析提取的抗菌蛋白处理病菌菌丝后,菌丝出现形态异常甚至断裂;细胞膜透性改变,电解质渗漏而电导率增加。该抗菌蛋白能强烈抑制病菌菌丝生长,当蛋白浓度为100μg/mL时,抑制率达90%以上;能显著抑制菌核形成,当蛋白浓度为100μg/mL时,菌核不能形成,且萌发推迟;能明显阻止子囊孢子萌发和芽管伸长,当蛋白浓度为200μg/mL时,孢子萌发和芽管伸长抑制率分别达46.0%和65.6%。
     对油菜菌核病菌进行室内药剂毒力测定。结果表明,腐霉利对病菌的EC50值为0.0126~0.5662μg/mL。根据32个野生菌株敏感性(EC50)频率分布,病菌对腐霉利的敏感基线为0.1981±0.022μg/mL(EC50)和1.1±0.1595μg/mL(MIC)。以5μg/mL为检测标准(MIC),油菜菌核病菌168个野生菌株中有15个抗多菌灵菌株,其中高抗(EC50>100μg/mL)菌株3个,其抗性频率为8.93%,但未检测到抗腐霉利菌株。经紫外线和药剂诱导获得抗药突变株YD38-6、YD38-8和YD21a,其中YD38-6、YD38-8菌株中抗腐霉利,EC50分别为41.33μg/mL和39.08μg/mL;YD21a菌株高抗腐霉利(EC50>100μg/mL)和多菌灵(EC50>100μg/mL)。
     试验指出,地衣芽孢杆菌抗菌蛋白对油菜菌核病菌的EC50值为20.94~33.83μg/mL,其毒力对抗、感多菌灵菌株和抗、感腐霉利菌株均无明显差异。抗菌蛋白与两种药剂复配后,大多数配比表现相加作用,但抗菌蛋白与腐霉利3 : 1配比对抗腐霉利菌株YD38-6则有明显的增效作用(SR=1.63)。
     盆栽试验显示,抗菌蛋白对油菜菌核病有较好的防治效果,当蛋白浓度为3000μg/mL时,防效达71.8%,与多菌灵和腐霉利1000μg/mL相当;抗菌蛋白与多菌灵或腐霉利3 : 1复配剂在1000μg/mL时,防效达67.9%~70.1%。因此,地衣芽孢杆菌W10抗菌蛋白作为一种新型生物农药可用于油菜菌核病的防治。
Isolate W10 of Bacillus licheniformis and its culture filtrate were strongly antagonistic to Sclerotinia sclerotiorum causing rape stem rot. After the culture filtrate was precipitated with 30% amonium sulfate and dialysed, the crude antifungal protein was obtained. The hyphae of the pathogen were deformed and cracked after being treated by the antifungal protein, leading to cytoplasm leakage and electrical conductivity increase. The antifungal protein could significantly inhibit the mycelial growth of the pathogen. The mycelial growth was decreased by over 90% when the protein concentration was 100μg/mL. The sclerotial formation and germination could be inhibited by the antifungal protein. No sclerotia would be produced on the media supplemented with the protein concentration of 100μg/mL. The antifungal protein with the concentration of 200μg/mL could obviously hinder the ascospore germination and the tube stretch, with the inhibition rate of 46.0% and 65.6%, respectively.
     The toxicity tests of carbendazim and procymidone to S. sclerotiorum were taken in vitro. EC50 values of procymidone ranged from 0.0126μg/ml to 0.5662μg/mL. According to the frequency distribution of EC50 values of 32 wild isolates, the sensitivity baseline of the pathogen to procymidone was 0.1981±0.022μg/mL (EC50) and 1.1±0.1595μg/mL (MIC). According to the discriminatory concentration in PSA amended with the fungicide of 5μg/mL (MIC), there were 15 isolates resistant to carbendazim among 168 wild isolates, with the mean resistance ratio of 8.93%, in which 3 isolates were highly resistant (EC50>100μg/mL). But no procymidone-resistant wild isolate was found. The mutants YD38-6, YD38-8 resistant moderately to procymidone, it’s EC50 is 41.33μg/mL and 39.08μg/mL, respectively. The mutant YD21a resistant highly to procymidone (EC50>100μg/mL) and carbendazim (EC50>100μg/mL) were obtained from sensitive isolates by the treatment of ultraviolet and procymidone, respectively.
     EC50 values of the antifungal protein ranged from 20.94μg/ml to 33.83μg/mL, which showed that there were no significant differences in the toxicity to carbendazim or procymidone resisitant and sensitive isolates. Most mixtures of the antifungal protein with the fungicides was found to be addition effects in the toxicity, but the mixture with the ratio 3:1 of the antifungal protein and procymidone could obviously increase the toxicity to procymidone-resistant isolate YD38-6, with the synergistic response (SR) of 1.63.
     The test indicated that the antifungal protein could well control rape stem rot, with the control effect of 71.8% at the concentration of 3000μg/mL, as carbendazim and procymidone did at the concentration of 1000μg/mL. The mixure (3:1) of the antifungal protein with carbendazim or procymidone at the concentration of 1000μg/mL had the control effect of 67.9%~70.1% on the disease. Therefore, the antifungal protein produced by B. licheniformis W10,as a new bio-fungicide,could be used to control rape stem rot.
引文
[1]刘后利.实用油菜栽培学[M].上海:上海科技出版社,1997.
    [2]中国农业科学院植物保护研究所.中国农作物病虫害(第二版)[M].北京:中国农业出版社,1995.
    [3]朱凤美.油菜两种病害的调查[J].昆虫与植病,1932.
    [4]王汉中.入世后的中国油菜产业[J].中国油料作物学报,2002,24(2):82~86.
    [5]杨新美.油菜菌核病(Sclertinia sclerotirum)在我国的寄主范围及生态特征的调查研究[J].植物病理学报,1957(2):111~122.
    [6]中国农业科学院油料所.油菜菌核病[M].北京:北京农业科技技术出版社,1979.
    [7] Stelfox D, Williams J R, Soehngen U, et al. Transport of Sclerotinia sclerotiorum ascospores by rapeseed pollen in Alberta [J]. Plant Disease Report,1978,62(7):576~579.
    [8]高同春,王振荣,胡宏云.昆虫传带油菜菌核病病菌的研究初报[J].安徽农业大学学报,1996,23(4):493~495.
    [9] Pascale Cotton, Rascle Christine, Fevre Michel. Characterization of PG2, an early endoPG produced by Sclerotinia sclerotiorum, expressed in yeast [J]. FEMS Microbiology Letters,2002(213):239~244.
    [10] Rugang Li, Roger Rimmer, Lone Buchwaldt, et al. Interaction of Sclerotinia sclerotiorum with Brassica napus: cloning and characterization of endo- and exo-polygalacturonases expressed during saprophytic and parasitic modes [J]. Fungal Genetics and Biology,2004(41):745~765.
    [11]李玉芳.油菜菌核病致病过程中酶活性以及草酸含量变化的研究[D].湖南农业大学硕士学位论文,2007.
    [12]吴纯仁,刘后利.油菜菌核病的致病机制Ⅲ.罹病组织内草酸毒素积累和分布的初步分析[J].植物病理学报,1991,21(2):135~140.
    [13]刘胜毅,周必文,潘家荣.油菜对毒素草酸的吸收代谢与抗性机理[J].植物病理学报,1998,28(1):33~37.
    [14] Sato M. Inhibition by oxalates of spinach chloroplast phenolase in unfrozen and frozen states [J]. Phytochemistry,1980(19):1613~1617.
    [15] Riou C, Freyssinet G, Feure M. Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum [J]. Applied and Eviromental Microbiology,1991,57(5):1478~1484.
    [16]李云昌,李英德,梅德圣,等.中油821接种菌核病菌丝体后的生化反应[J].中国油料作物学报,2001,23(3):63~65.
    [17]周仪.油菜多抗性的研究[J].中国油菜,1998(1):16~17.
    [18]于汉寿,张益民,陈永萱.油菜几丁质酶的纯化及其在抗菌核病中的作用[J].南京农业大学学报,1999,22(3):41~44.
    [19]张学昆,李加纳,唐章林,等.油菜几丁质酶的特点及其与抗菌核病的关系[J].西南农业大学学报,2001,23(3):208~215.
    [20] Grison R, Grezes B B, Schneider M, et al. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinases gene [J]. Nature Biotechnology,1996,14(5):643~646.
    [21]蓝海燕,王长海,张丽华.导入β-1,3-葡聚糖酶及几丁质酶基因的转基因可育油菜及其抗菌核病的研究[J].生物工程学报,2000,16(2):142~145.
    [22]张丽华,党本元,周奕华.抗菌核病转基因油菜植株的获得[J].高技术通讯,1999(12):41~46.
    [23]王新发.转几丁质酶基因和β-1,3-葡聚糖酶基因的甘蓝型油菜及其对菌核病抗性研究[D].中国农业科学院硕士学位论文,2003.
    [24]陆万香.根癌农杆菌介导几丁质酶基因和β-1,3-葡聚糖酶基因转入甘蓝型油菜[D].西南农业大学硕士学位论文,2001.
    [25] Donaldson P A, Anderson T, Lane B G, et al. Soybean plant expressing an active oligomeric oxalate from the wheat gf-28 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum [J]. Physiological and Molecular Plant Pathology,2001,59:297~307.
    [26]孙燕飞.草酸氧化酶基因转化甘蓝型油菜(Brassica napus L.)的研究[D].西北农林科技大学硕士学位论文,2005.
    [27]景岚.草酸氧化酶基因转化烟草和油菜的研究[D].西北农林科技大学硕士研究生论文,2004.
    [28]董祥柏.葡萄糖氧化酶基因和草酸氧化酶基因在甘蓝型油菜中的表达研究[D].中国农业科学院硕士学位论文,2004.
    [29]陈雁,饶勇强,孟金陵.转双价广谱抗病基因创造甘蓝型油菜抗菌核病新品种的研究[J].分子植物育种,2003,1(4):457~463.
    [30]徐光硕,饶勇强,孟金陵.以器官和发育特异性抗病双基因转化油菜[J].分子植物育种,2003,1(3):303~312.
    [31]郭学兰,王汉中,李均,等.玉米转座因子Ac转基因甘蓝型油菜的遗传变异[J].中国油料作物学报,2001,23(1):7~11.
    [32]赵善欢.植物化学保护(第三版)[M]. 1983,北京:中国农业出版社.
    [33] Davidse L C. Benzimidazole fungicides: mechanism of action and biological impact [J]. Ann Rev Phytopathol,1986(24):43~65.
    [34]周明国,叶钟音,刘经芬.杀菌剂抗性研究进展[J].南京农业大学学报,1994,17(3):33~41.
    [35]潘以楼,汪智渊,吴汉章.油菜菌核病菌对多菌灵的抗药性[J].中国油料,1997,19(3):67~71.
    [36]潘以楼,吴汉章,杨敬辉,等.油菜菌核病菌(Sclerotinia sclerotiorum)抗多菌灵菌株的检测方法及其在江苏的分布[J].江苏农业学报,1998,14(3):159~163.
    [37]李红霞,陆悦健,周明国,等.油菜菌核病菌β-微管蛋白基因与多菌灵抗药性相关突变的研究[J].中国油料作物学报,2003,25(2):56~60.
    [38]郑雯,郭永霞,辛惠普,等.春油菜菌核病药剂防治试验[J].农药,2000,39(10):29~30.
    [39]张洁夫,伍贻美,王永鹏.速杀菌对油菜菌核病的防治效果[J].江苏农业科学,2001(6):33~35.
    [40] Horst L. Modern selective fungicides Properties, Applications, Mechanisms of Action [M]. Jena:Gustev Fischer Verlag,1994.
    [41]刘福海. 25%咪鲜胺乳油防治油菜菌核病的效果[J].农药,2002,41(12):34~35.
    [42] Tiedemanna V K, Hedleund R M. Biologische Bek a mpfung der Sclerotinia-Weiβstangeligkeit [J]. Fachzeitschriftüber o l-und EiweiBpgglanzen,2001,32:15~19.
    [43]张新春,康振生,韩青梅,等.杀菌剂羟菌唑对油菜菌核病菌生长发育的影响[J].西北农林科技大学学报,2004,32(2):25~30.
    [44]桑芝萍,丁兰兰,姜海平.莱菌克防治油菜菌核病试验[J].农药,2001,40(11):32~33.
    [45]孙国才,季明东,陆长婴,等.多菌灵与三唑酮复配对油菜菌核病的协同作用[J].江苏农业科学,2000(6):42~45.
    [46]刘福海.快得净防治油菜菌核病试验[J].农药,2002,41(10):31~32.
    [47]刘葛山,赵祥祥.施用PL-2对油菜产量及主要性状的影响[J].中国油料作物学报,2004,26(2):56~60.
    [48] Cook R J. Making greater use of introduced microorganisms for biological control ofplant pathogens [J]. Ann Rev Phytopathol,1993,31:53~58.
    [49] Baker K F. Evolving concepts of biological control of plant pathogens [J]. Ann Rev Phytopathol,1987(26):67~86.
    [50]范青.果实采后病害生物防治及其机理研究[J].中国科学院植物研究所博士学位论文,2001.
    [51] Emmert E B, Handelsman J. Biocontrol of plant disease:a (gram-)positive perspective[J]. FEMS Microbiology Letters,1999(171):1~9.
    [52] Campbell W A. A new species of Coniothyrium parasitic on scelrotia [J]. Mycologia,1947,39:190~195.
    [53]师俊玲,堵国成,陈坚.盾壳霉在油菜菌核病菌生物防治中的应用[J].中国生物工程杂志,2003,23(4):27~31.
    [54] Whipps J M, Davies K G. Biocontrol of plant pathogens and nematodes by microorganisms [M]. Dordrecht:Kluwer Academic Publishers, 2000.
    [55] Bremer E, Huang Hung Chang, Secinger. Competence of Coniothyrium minitans in preventing infection of bean leaves by sclerotinia sclerotiorum [J]. Plant Pathology Bulletin,2000,9(2):69~74.
    [56] Singh S B, Sidhartha Paul. Biological control of stem rot of ajowan by Coniothyrium minitans [J]. Protection Science,2000,8(2):251~252.
    [57] Huang H C, Bremer E, Hynes R K, et al. Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum [J]. Biological Control,2000,18(3):270~276.
    [58] Hedke K, Tiedemann A V, Development of strategies for use of the antagonist Coniothyrium minitans against Sclertinia scleroliorum in commercial oilseed rape production [A]. In proceedings of 1998 International Sclerotinia Workshop,1998,9:9~12.
    [59] Vrije T, Antoine N, Buitelaar R M, et al. The fungal biocontrol agent Coniothyrium minitans:Production by solid-state fermentation, application and marketing [J]. Applied Microbiolgy and Biotechnology,2001(56):58~68.
    [60]高俊明,刘慧平,李新凤.盾壳霉对核盘菌的重寄生机制研究[J].山西农业大学学报,2005,22(3):21~24.
    [61]姜道宏,李国庆,易先宏.盾壳霉所产抗细菌物质的特性[J].植物病理学报,1998,28(1):29~32.
    [62] Mcquilken M P, Gemmell J, Hill R A, et al. Production of macrosphelide A by the mycoparasite Coniothyrium minitans [J]. FEMS Microbiology Letters,2003,219(1):27~31.
    [63] Machide K, Trifonov L S, Ayer W A, et al. 3 (2H) 2 Benzofuranones and chromanes from liquid cultures of the mycoparasitic fungus Coniothyrium minitans [J]. Phytochemistry,2001,58(1):173~177.
    [64] Fravel D R, Connick W J, Grimm C C, et al. Volatile compounds emitted by sclerotia of Sclerotinia minor, Sclerotinia sclerotiorum, and Sclerotium rolfsii [J]. Journal of Agriculture and Food Chemistry,2002,50(13):3761~3764.
    [65] Giczey G, Kerenyi Z, Fulop L, et al. Expression of cmg1, an exo-beta-1,3-glucanase gene from Coniothyrium minitans, increases during sclerotial parasitism [J]. Applied and Environmental Microbiology,2001,67(2):865~871.
    [66] Chet I. Trichoderma Application, Mode of Action, and Potential as Biocontrol Agent of Soilborne Plant Pathogenic Fungi [A]. In:Chet I. Innovative Approaches to Plant Disease Control [M]. New York:Jonh Wiley and Sons,1987, 137~160.
    [67]徐同.木霉分子生物学研究进展[J].真菌学报,1996,15(2):143~148.
    [68] Saikia M K, Rakesh K, Kalita M K. In vitro antagonism of Trichoderma and Gliocladium species against two important fungal pathogens [J]. Annals of Agri Bio Research,2000,5(2):159~162.
    [69] Luciana Zago Ethur, Cláudia Zago Cembranel, Antonio Carlos Ferreira Da Silva. Selection of Trichoderma spp. Seeking the control of Sclerotina sclerotiorum, in vitro [J]. Ciência Rural,2001,31(5):885~887.
    [70]陈碧云,周乐聪,陆致平.绿色木霉发酵配方与防治油菜菌核病的研究[J].中国生物防治,2001,17(2):67~70.
    [71]马炳田,文成敬.几种核盘菌菌核重寄生真菌生物防治潜能的研究[J].中国农学通报,2002,18(6):58~63.
    [72]曹翠玲,赵晋铭,路炳声. 4种木霉对核盘菌的抑制作用[J].仲恺农业技术学院学报,2005, 18(4):21~24.
    [73]陈利军,史洪中.油菜内生球毛壳菌抑菌作用初步测定[J].河南农业科学,2005,7:53~56.
    [74] Huang H C, Acharya S N, Ericksom R S. Etiology of alfalfa blossom blight caused by Sclerotinia Sclerotiorum and Botrytis cinerea [J]. Plant Pathology Bulletin,2000,9(1):11~16.
    [75]暴增海,马桂珍,杨文兰.寄生菌链孢粘帚霉菌株HL-1-1对核盘菌的抑菌作用及其发酵条件的研究[J].河南农业科学,2004,10:40~43.
    [76]周乐聪,唐文华.红蛋巢菌属生防菌的筛选及其对油菜菌核病的防治潜能[J].中国油料作物学报,2001,23(2):52~55.
    [77] Stierle D B, Stierle A, Ganser B K. Isolation of two highly methylated polyketide derivatives from a yew-associated Penicillum species [J]. Journal of Natural Products,1996,62(8):1147~1150.
    [78]陈中义,张杰,黄大昉.植物病害生防芽孢杆菌抗菌机制与遗传改良研究[J].植物病理学报,2003,33(2):97~103.
    [79] Fernando W G D, Pierson L S. The effect of increased phenazine antibiotic production on the inhibition of economically important soil-borne plant pathogens by Pseudomonas aurefaciens 30-84 [J]. Archives of Phytopathology and Plant Protection,1999,32:491~502.
    [80] Thomashow L S, Weller D M. Role of a phenazine antibiotic from Pseudomonas fluorescensin biological control of Gaeumannomyces graminis var. tritici [J]. J Bacteriology,1988,170(8):3499~3508.
    [81]陈红,李平,桂瑶.抑制多种植物病原菌的几丁质酶产生菌X2-23的鉴定[J].四川大学学报,2002,39(增刊):45~49.
    [82]顾真荣,马承铸,韩长安.产几丁质酶芽孢杆菌对病原真菌的抑菌作用[J]. 2001,17(4):88~92.
    [83]陈士云,杨宝玉,高梅影.一株抑制油菜核盘菌菌核形成的解淀粉芽孢杆菌[J].应用与环境生物学报,2005,11(3):373~376.
    [84]杨敬辉,朱桂梅,潘以楼.枯草芽孢杆菌K12发酵液对核盘菌的抑菌活性[J].江苏农业科学,2006(1):54~56.
    [85]廖晓兰,罗宽.油菜花上细菌的分离及其对菌核菌的拮抗作用[J].湖南农业大学学报,2000,26(4):296~298.
    [86]晏立英,周乐聪,谈宇俊.油菜菌核病拮抗细菌的筛选和高效菌株的鉴定[J].中国油料作物学报,2005,27(2):55~57.
    [87]李怀波,彭珺,包衍.拮抗油菜菌核病菌的荧光假单胞杆菌的分离与筛选[J].中国农学通报,2005,21(11):334~337.
    [88]王婷,吴健胜,王金生.草酸降解菌的筛选及其对油菜菌核病的生物防治作用[J].南京农业大学学报,2001,24(4):29~32.
    [89] Joyce E, Loper, Caryn Haack, et al. Population dynamics of soil Pseudomonads in the rhizosphere of potato (Solanum tuberosum L.) [J]. Appl Environ Microbiol,1985,49(2):416~422.
    [90]胡小加,刘胜毅,张建坤.油菜根际细菌的防病促生作用研究[J].中国农业科学,1999,32(增刊):103~106.
    [91]李志新,邢丹英,王晓玲. PGPR菌剂对油菜的促生作用和菌核病防治效果[J].中国油料作物学报,2005,27(2):51~54.
    [92] Thomashow L S, Biological control of plant root pathogens [J]. Enviromental Biotechnology,1996(7):343~347.
    [93] Gabriele B, Michaela Ditz, Annette K, et al. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi [J]. Microbiology Ecology,2005(51):215~229.
    [94] Fogliano V, Ballio A, Gallo M, et al. Pseudomonas Lipidesipeptides and fungal cell well-degrading enzymes act synergistically in biological control [J]. Molecular Plant-Micro Interaction,2002,15(4):323~333.
    [95] Milner J L, Silo-Suh L A, Lee J C, et al. Production of kanosamine by Bacillus cereus UW85 [J].Applied Environment and Microbiology,1996,62:3061~3065.
    [96]林璧润,谢双大,江学斌,等.抗生素2507对黄瓜疫病菌的抗生作用[J].植物保护学报,2001,28(2):113~117.
    [97]林璧润,谢双大,杨丽梅,等.抗生素2507对蔬菜卵菌病害的防治作用及稳定性研究[J].植物保护,2000,26(2):11~13.
    [98] Kudryashova E B, Vinokurova N G, Ariskina E V. Bacillus subtilis and phenotypically similar strains producing hexaene antibiotics [J]. Applied Biochemistry and Microbiology,2005,41(5):486~489.
    [99] Esikova T Z, Temirov Yu V, Sokolov S L, et al. Secondary antimicrobial metabolites produced by thermophilic Bacillus spp. strains VK2 and VK21 [J]. Applied Biochemistry and Microbiology,2002,38(3):226~231.
    [100] Kim Y, Cho J Y, Kuk J H, et al. Identifcation and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, Chungkook-Jang [J]. Current Microbiology,2004,48:312~317.
    [101] Cho S J, Lee S K, Cha B J, et al. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03 [J]. FEMS Microbiology Letters,2003,223(1):47~51.
    [102] Yu G Y, Sinclair J B, Hartman G L, et al. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani [J]. Soil Biology & Biochemistry,2002,34:955~963.
    [103] Yoshida S, Hiradate S T, Tsukamoto, et al. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves [J]. Phytopathology,2001,91(2):181~187.
    [104] Klich M A, Lax A R, Bland J M. Inhibition of some mycotoxigenic fungi by iturin A, a peptidolipid produced by Bacillus subtilis [J]. Mycopathologia,1991,116(2):77~80.
    [105] Akihiro Ohno, Takashi Ano, Makoto Shoda. Production of antifungal antibiotic, iturin in a solid state fermentation by Bacillus subtilis NB22 using wheat bran as a substrate [J]. Biotechnology Letters,1992,14(9):817~822.
    [106] Mizumoto S, Hirai M, Shoda M. Enhanced iturin A production by Bacillus subtilis and it's effect on suppression of the plant pathogen Rhizoctonia solani [J]. Appl Microbiol Biotechnol,2007,75:1267~1274.
    [107] Niran Roongsawang, Jiraporn Thaniyavarn, Suthep Thaniyavarn, et al. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides:bacillomycin L, plipastatin, and surfactin [J]. Extremophiles,2002,6:499~506.
    [108] Kenji Tsuge, Takashi Ano, Makoto Shoda. Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB8 [J]. Archives of Microbiology,1996,165(4):243~251.
    [109] Mohammad Shahedur Rahman, Takashi Anoa, Makoto Shoda. Biofilm fermentation of iturin A by a recombinant strain of Bacillus subtilis 168 [J]. Journal of Biotechnology,2007,127(3):503~507.
    [110] Yao Shiyi, Gao Xuewen, Norbert Fuchsbauer, et al. Cloning, sequencing, and characterization of the genetic region relevant to biosynthesis of the lipopeptides iturin A and surfactinin of Bacillus subtilis [J]. Current Microbiology,2003,47:272~277.
    [111] Lee S C, Kim S H, In-Hye Park, et al. Isolation and structural analysis of bamylocin A, novel lipopeptide from Bacillus amyloliquefaciens LP03 having antagonistic and crude oil-emulsifying activity [J]. Arch Microbiology,2007,188:307~312.
    [112] Nakayama S, Takahashi S, Hirai M, et al. Isolation of new variants of surfactin by a recombinant Bacillus subtilis [J]. Appl Microbiol Biotechnol,1997,48:80~82.
    [113] Diego Romero, Antonio De Vicente, Rivo H, et al. The iturin and fengycin families oflipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca [J]. Molecular Plant-Microbe Interactions,2007,20(4):430~440.
    [114] Wang J, Liu J, Chen H, et al. Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB [J]. Applied Microbiology and Biotechnology,2007,76(4):889~894.
    [115] Xingwei Hou, Susan M B, Myrtle Brkic, et al. Characterization of the anti-fungal activity of a Bacillus spp. associated with sclerotia from Sclerotinia sclerotiorum [J]. Appl Microbiol Biotechnol,2006(72):644~653.
    [116] Sun L j, Lu Z X, Bie X M, et al. Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi [J]. World J Microbiol Biotechnol,2006,22:1259~1266.
    [117]赵白鸽,孔建,王文夕,等.枯草芽孢杆菌的抑菌作用及其防治棉苗病害的研究[J].植物保护,1993,19(3):17~18.
    [118]高学文,姚仕义,Huong Pham,等.枯草芽孢杆菌B2菌株产生的抑菌活性物质分析[J].中国生物防治,2003,19(4):175~179.
    [119]范青,田世平,李永兴,等.枯草芽孢杆菌(Bacillus stubtilis)B-912对采后柑桔果实青、绿霉病的抑制效果[J].植物病理学报,2000,30(4):343~348.
    [120] Li H, Leiffert C. Development of resistance in Botrytotinia fucheliana(de Bary),Whetzel against the bioligical control agent Bacillus subtillis [J]. Plant Disease Protection,1994(101):414~418.
    [121] Stover a G, Driks A. Secretion localization, and antibacterial activity of Tas A, a Bacillus sublilis spore-associated protein [J]. Bacteriology,1999,181:1664~1672.
    [122]刘焕利,王金生,张学君,等.枯草杆菌B3抗植物病原真菌蛋白的纯化及其性质的研究[J].农业生物技术学报,1995(3):33~38.
    [123]裴炎,李先碧,彭红卫,等.抗真菌多肽APS-1的分离纯化与特性分析[J].微生物学报,1999,39:344~349.
    [124]陈卫良,龚鸿飞,林福呈,等.拮抗细菌Bacillus subtilis A30对水稻病原菌的抑制作用[J].浙江农业大学学报,1997,23(6):649~654
    [125]徐增富,邱国华,王金发,等.水稻白叶枯病菌的拮抗菌的筛选及其抗菌物质的研究[J].中山大学学报(自然科学版),1994,33(3):122~124.
    [126]彭好文,黎起秦,蒙姣荣,等.芽孢杆菌B11拮抗蛋白性质及其对西瓜枯萎病菌的作用机理[J].植物保护,2003,29(5):22~25
    [127]戴晓燕,关桂兰.两株对辣椒疫霉菌有拮抗作用的拮抗菌分泌蛋白的研究[J].中国生物防治,1999,15(2):81~84.
    [128]朱伟光,李德葆,葛起新.植物病原细菌拮抗菌及其拮抗物质测定Bacillus cereus G35的产素特性与质粒关系[J].浙江大学学报,1990,16(4): 345~350.
    [129]胡剑,赵永岐,王岳五.枯草杆菌BS-98分泌的抗真菌蛋白的分离纯化及其部分性质的研究[J].微生物学通报,1997,24(1):3~6.
    [130]纪兆林,唐丽娟,张清霞,等.地衣芽孢杆菌W10抗菌蛋白的分离纯化及其理化性质研究[J].植物病理学报,2007,37(3):260~264.
    [131]章建,任欣正.青枯假单胞菌细菌素的研究[J].南京农业大学学报,1993,16(4):63~67.
    [132]王金生.细菌素在植物细菌病害生防中的应用[J].生物防治通报,1985,1(2):36~48.
    [133]任欣正,申道林,谢贻格.番茄青枯病的生物防治[J].南京农业大学学报,1993(16):40~45.
    [134]郭坚华,潘登明,任欣正.抗青枯生防菌拮抗物性质的初步研究[J].南京农业大学学报,1994,18(2):59~62.
    [135]章健,任欣正.青枯假单胞菌细菌素的研究[J].南京农业大学学报,1993,16(3):63~67.
    [136] Kloepper J W, Leong J, Teinze M, et.al. Pseudomonas siderophores: A mechanism explaining disease-suppressive soil [J]. Curr Microbil,1980,4: 317~320.
    [137] Berr S V. Biological control of fireblight by Erwinia herbicola [J]. Plant Pathol Bacteria,1981:596~597.
    [138] Ciamp P L, Fuentes P R, Schoebitz T R. Biological control of Pseudomonas solanacearum, the bacterial wilt agent.I.Growth of Pseudomonas fluorescens strain BC8 [J]. Agro-Sur,1996(24):32~38.
    [139]童蕴慧,纪兆林,徐敬友,等.灰葡萄孢拮抗细菌在番茄植物体表的定殖[J].中国生物防治,2003,19(2):78~81.
    [140]杨海莲,孙晓璐,宋夫.植物根际促生细菌和内生细菌的诱导抗病性的研究进展[J].植物病理学报,2000,30(2):106~110.
    [141] Marc Ongena, Francéline Duby, Emmanuel Jourdan, et al. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistanceassociated with differential gene expression [J]. Applied Microbiology and Biotechnology,2005,67(5):692~698.
    [142] Fulton R W. Practices and precautions in the use of cross-protection for plant virus disease control [J]. Annu Rev Phytopathol,1986,24(1):67~81.
    [143]刘素萍,李开本,翁启勇,等.生防菌株BS_1、BS_2作用机制初探[J].江西农业大学学报,2000,22(1):82~85.
    [144] Maurhofer M, Keel C. Influence of plant species on disease supression by Pseudomonas fluorescens strain CHA0 with enhanced antibiotic production [J]. Plant pathology,1995(44):40~50.
    [145]童蕴慧,郭桂萍,徐敬友,等.拮抗细菌对番茄植株抗灰霉病的诱导[J].中国生物防治,2004,20(3):187~189.
    [146]童蕴慧,郭桂萍,徐敬友,等.拮抗细菌诱导番茄植株抗灰霉病机理研究[J].植物病理学报,2004,34(6):507~511.
    [147] Cayrol J C. Biological control of Meloidogyne by Arthrobotrys irregularis [J]. Revue de Nematologie,1983,6(2):265~273.
    [148]林茂松.植物线虫病害的生物防治[J].世界农业,1992(1):43~45.
    [149]马誉微.抗生素[M].北京:人民卫生出版社,1985.
    [150]孔建,赵白鸽,王文夕,等.枯草芽孢杆菌(Bacillus subtilis (Cohen))B-903菌株抗生物质对植物病原真菌的抑制作用[J].植物病理学报,1995,25(1):69~72.
    [151] Saleem Basha, Kandasamy Ulaganathan. Antagonism of Bacillus species (strain BC121) towards Curvularia lunata [J]. Current Science,2002,82(12):147~1463.
    [152] Sadfi N, Cherif M, Hajlaoui M R, et al. Isolation and partial purification of antifungal metabolites produced by Bacillus cereus [J]. Annals of microbiology,2002,52(3):323~337.
    [153] Pyoung II Kim, Ki-Chul Chung. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908 [J]. FEMS Microbiology Letters,2004,234(1):177~183
    [154] Ting Zhang, Zhi-Qi Shi, Liang-Bin Hu, et al. Antifungal compounds from Bacillus subtilis B-FS06 inhibiting the growth of Aspergillus flavus [J]. World J Microbiol Biotechnol,2008(24):783~788.
    [155] Lim J-H, Park S-C, Park Y, et al. Purification and characterization of an antifungal peptide from Bacillus subtilis [J]. Pept Sci,2003:219~222.
    [156] Shirokov A V, Loginov O N, Melent'ev A I, et al. Protein and peptide factors fromBacillus sp. 739 inhibit the growth of phytopathogenic fungi [J]. Applied Biochemistry and Microbiology,2002,38(2):139~144.
    [157] Shimei Wu, Shifang Jia, Dandan Sun, et al. Purification and characterization of two novel antimicrobial peptides subpeptin JM4-A and subpeptin JM4-B produced by Bacillus subtilis JM4 [J]. Current Microbiology,2005,51:292~296.
    [158] Saravanakumar Kavitha, Sivanesan Senthilkumar, Samuel Gnanamanickam, et al. Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16 [J]. Process Biochemistry,2005,40:3236~3243.
    [159]刘进元,刘纬,潘乃燧,等.拮抗菌A014的筛选及其分泌抗菌蛋白的条件[J].植物学报,1991,33:157~161.
    [160]陈志谊,许志刚,高泰东.水稻纹枯病拮抗细菌的评价与利用[J].中国水稻科学,2000(14):98~102.
    [161]陈志谊.拮抗细菌B-916防治水稻纹枯病作用机制的研究[D].南京:南京农业大学学位论文,1998.
    [162]李社增,鹿秀云,马平,等.棉花黄萎病生防细菌NCD-2抑菌物质提取初步研究[J].棉花学报,2004,16(1):62~63.
    [163]陈卫良,李德葆,葛起新.抗水稻白叶枯病菌两菌Bacillus subtilis B826和Enterobacter cloacae B8及其拮抗物的研究[J].浙江农业大学学报,1990,16(增2):61~67.
    [164]刘颖,徐庆,陈章良.抗真菌多肽LP-1的分离纯化与特性分析[J].微生物学报,1999,39:441~447.
    [165]辛玉成,秦淑莲,金静,等.苹果霉心病生防菌株抗菌蛋白的提纯与部分性质初报[J].莱阳农学院学报,1999,16(1):35~38
    [166]钟静萍,陈卫良,李德葆.枯草杆菌B034拮抗物质及其内源质粒的研究[J].植物病理学报,1995,25(3):247~251.
    [167]童有仁,马志超,陈卫良,等.枯草芽孢杆菌B034拮抗蛋白的分离纯化及特性分析[J].微生物学报,1999,39(4):339~342.
    [168]谢栋,彭憬,王津红,等.枯草芽孢杆菌蛋白X98Ⅲ的纯化与性质[J].微生物学报,1998,38(1):13~19.
    [169]林东,徐庆,刘忆舟,等.枯草芽孢杆菌SO113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化[J].农业生物技术学报,2001,9(1):77~80.
    [170]刘伊强,王雅平,潘乃燧,等.拮抗菌TG26的鉴定及其抗菌蛋白BI的纯化和部分特性[J].植物学报,1994,36(3):197~203.
    [171] Schreiber L R, Gregory G F, Krause C R, et al. Production,partial purification and antimicrobial activity of a novel antibiotic produced by a Bacillus subtilis isolate from Ulmus Americana [J]. Canadian Journal of Borany,1988(66):39~46.
    [172]刘焕利,潘小玫,张学君,等.产抗菌蛋白芽孢杆菌的筛选及抗菌蛋白的性质[J].中国生物防治,1995,11(4):160~164.
    [173]齐东梅,梁启美,惠明,等.棉花枯萎、黄萎病拮抗芽孢杆菌的抗菌蛋白特性[J].微生物学通报,2005,32(4):42~46.
    [174]郝变青,马利平,乔雄梧,等.拮抗细菌菌株BC98-Ⅰ对青椒枯萎病菌的抑制作用[J].农药学学报,2005,7(1):35~39.
    [175]易有金,刘如石,孙吉康,等.内生枯草芽孢杆菌B-001菌株抗菌肽纯化与性质[J].植物病理学报,2007,37(5):556~560.
    [176]张宁,潘乃穟,陈章良.细菌中一种抗菌蛋白的分离纯化及特性分析[J].植物学报,1993,35(5):342~348.
    [177]姚乌兰,王云山,韩继刚,等.水稻生防菌株多粘类芽孢杆菌WY110抗菌蛋白的纯化及其基因克隆[J].遗传学报,2004,31(9):878~887.
    [178]刘建国,丛威,欧阳藩,等.新型抗真菌多肽APS的抑菌性能研究[J].中国生物防治,1999,15(3):108~110.
    [179]唐丽娟.地衣芽孢杆菌对灰葡萄孢的抑制机理及其抗菌蛋白的研究[D].扬州大学硕士论文,2005.
    [180]朱凤.水稻内生细菌研究[D].扬州大学硕士学位论文, 2005.
    [181]朱凤,陈夕军,童蕴慧,等.水稻内生细菌的分离及其拮抗性与潜在致病性测定[J].中国生物防治,2007,23(1):68~72.
    [182] FAO. Recommended methods for the detection and measurement of resistance of agricultural pests to pestcides [J]. FAO Plant Protection Bulletin,1982(30):30~36.
    [183]曹坳程,张向才.关于农药混用评价标准的讨论[J].农药科学与管理,1999,20(4):31~33.
    [184]刘才南,陈茂林.油菜菌核病人工接种方法的改进和应用[J].上海农业科技,1994(5):27-28.
    [185]石志琦,周明国,叶钟音.油菜菌核病菌对多菌灵、菌核净抗药性菌株性质研究[J].中国油料作物学报,2000,22(4):54~57.
    [186]齐永霞,陈方新,丁克坚,等.安徽省油菜菌核病菌对菌核净的抗药性测定[J].农药,2006,45(8):567~570.
    [187] Fernando W G D, Nakkeeran S, Zhang Y, et al. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals[J]. Crop Protection,2007,26:100~107.
    [188] Li H, Leiffert C. Development of resistance in Botrytotinia fucheliana(de Bary),Whetzel against the bioligical control agent Bacillus subtillis [J]. Plant Disease Protection,1994(101):414~418.
    [189]江木兰,赵瑞,胡小加,等.油菜内生生防菌BY-2在油菜体内的定殖与对油菜菌核病的防治作用[J].植物病理学报,2007,37(2):192~196.
    [190]翟茹环,尚玉珂,刘峰,等.枯草芽孢杆菌G8抗菌蛋白的理化性质和抑菌作用[J].植物保护学报,2007,34(6):592~596.
    [191]唐丽娟,纪兆林,徐敬友,等.地衣芽孢杆菌W10对灰葡萄孢的抑制作用及其抗菌物质[J].中国生物防治,2005,21(3):203~205.
    [192]易有金,罗坤,罗宽,等.拮抗菌B-001抗菌蛋白产生的最佳发酵条件和特性及其室内防效[J].湖南农业大学学报,2007,33(1):79~82.
    [193]郑爱萍,闫敏,李平,等.黄瓜枯萎病新型抑制蛋白L37的研究[J].园艺学报,2005,32(6):1102~1104.
    [194]陆长婴,季明东,李沛元,等.抗菌蛋白“N1235”对小麦赤霉病菌抗生活性测定及药效试验[J].农业环境与发展,2000(1):23~24.
    [195]何红,蔡学清,关雄,等.内生菌BS-2菌株的抗菌蛋白及其防病作用[J].植物病理学报,2003,33(4):373~378.
    [196]刘晓妹.芽孢杆菌B1、B2抗菌物质产生条件、理化性质、抗菌机理及其防病研究[D].甘肃农业大学硕士学位论文,2001.
    [1]朱凤,陈夕军,童蕴慧,等.水稻内生细菌的分离及其拮抗性与潜在致病性测定[J].中国生物防治,2007,23(1):68~72.
    [2]李娟.水稻内生拮抗细菌抗菌蛋白的提取、抗生作用及理化特性[D].扬州大学硕士学位论文,2007.
    [3]童蕴慧,徐敬友,陈夕军,等.番茄灰霉病菌拮抗菌的筛选和应用[J].江苏农业研究,2001,22(4):25~28.
    [4]厉朝龙.生物化学与分子生物学实验技术[M].杭州:浙江大学出版社,2000.
    [5]沈黎明.基础生物化学[M].北京:中国林业出版社,1996.
    [6]李如亮.生物化学实验[M].武汉:武汉大学出版社,1998.
    [7] Dubios M, Gilles K A, Hamiltion J K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry,1956,28(3):350~356.
    [8]张德安.生物大分子实验手册[M].吉林:吉林大学出版社,1991.
    [9]徐秀兰.生物化学实验与指导[M].北京:中国医药科技出版社,1994.
    [10]李建武.生物化学实验原理和方法[M].北京:北京大学出版社,1994.
    [11]白玲.基础生物化学实验[M].上海:复旦大学出版社,2004.
    [12]梁送平.生物化学与分子生物学试验教程[M].北京:高等教育出版社, 2003.
    [13] Kavitha S, Senthilkumar S, Gnanamanickam S, et al. Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16 [J]. Process Biochemistry,2005,40:3236~3243.
    [14]辛玉成,秦淑莲,金静,等.苹果霉心病生防菌株抗菌蛋白的提纯与部分性质初报[J].莱阳农学院学报,1999,16(1):35~38.
    [15]胡剑,赵永岐,王岳五.枯草杆菌BS-98分泌的抗真菌蛋白的分离纯化及其部分性质的研究[J].微生物学通报,1997,24(1):3~6.
    [16]沈锦玉,尹文林,曹铮,等.枯草芽孢杆菌B115抗菌蛋白的分离纯化及部分性质[J].水生生物学报,2005,29(6):659~693.
    [17]齐爱勇.番茄灰霉生防菌B21分子鉴定及其抗菌蛋白的分离纯化[D].河北农业大学硕士学位论文,2004.
    [18]谢栋,彭憬,王津红,等.枯草芽孢杆菌蛋白X98Ⅲ的纯化与性质[J].微生物学报,1998,38(1):13~19.
    [19]姚乌兰,王云山,韩继刚,等.水稻生防菌株多粘类芽孢杆菌WY110抗菌蛋白的纯化及其基因克隆[J].遗传学报,2004,31(9):878~887.
    [20] Pyoung II Kim, Ki-Chul Chung. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908 [J]. FEMS Microbiology Letters,2004,234(1):177~183.
    [21] Zhang T, Shi Z Q, Hu L B, et al. Antifungal compounds from Bacillus subtilis B-FS06 inhibiting the growth of Aspergillus flavus [J]. World J Microbiol Biotechnol,2008(24):783~788.
    [22] Wu S, Jia S, Sun D, et al. Purification and characterization of two novel antimicrobial peptides subpeptin JM4-A and subpeptin JM4-B produced by Bacillus subtilis JM4 [J]. Current Microbiology,2005,51:292~296.
    [23]郑虹. Bacillus subtilis FB123所产细菌素的分离纯化及表征[D].福建师范大学硕士学位论文,2006.
    [24]唐丽娟,纪兆林,徐敬友,等.地衣芽孢杆菌W10对灰葡萄孢的抑制作用及其抗菌物质[J].中国生物防治,2005,21(3):203~205.
    [25] Peters S P, Coyle P, Coeffe C J, et al. Purification and properties of a heat-stable glucocerebrosidase activating factor from control and Gaucher Spleen [J]. The Journal of Biological Chemistry,1977,252(2):563~573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700