突触蛋白Homer1b/c介导病理性疼痛的脊髓和皮层机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疼痛是一种与组织损伤或潜在的损伤相关的,人类共有而个体差异很大的不愉快的主观感觉和情感体验。疼痛提供机体受到威胁的警报信号,同时也给患者带来痛苦。疼痛按时程可以分为急性疼痛和慢性疼痛。各种原因引起的慢性疼痛是导致劳动力丧失的重要原因。在过去的几十年中,从外周到中枢,对疼痛及其机制的研究取得了长足的进展,发现了一些新的药物作用靶点,并且开发了多种用于治疗的药物。但是,仍有大量病人时刻遭受着疼痛的折磨。
     前扣带皮层(anteior cingulate cortex,ACC)是边缘系统的重要组成部分。ACC接受来自皮层下多种信息的传入又可恒定地被外周伤害性刺激所激活,成为近年来疼痛研究的热点区域。研究表明ACC不仅参与痛情绪的形成,还对疼痛感觉有调节作用。但是,外周伤害性刺激的持续传入使ACC产生可塑性变化的分子机制,仍然知之甚少。
     研究认为,中枢突触功能的重塑是疼痛慢性化的重要机制。谷氨酸及其受体系统是介导伤害性信息传递和突触重塑最重要的递质/受体系统。突触后致密物(postsynaptic density,PSD)是新近在谷氨酸能突触后膜中发现的一种特殊结构。PSD中的多种蛋白质,能够在突触水平对谷氨酸受体进行募集整合。Homerlb/c是PSD家族的一员,最近研究发现Homerlb/c与慢性疼痛的发生有关,但未有进一步的研究报道。
     在慢性疼痛的研究中,完全弗氏佐剂(CFA)致大鼠慢性单关节炎模型(MA)和大鼠坐骨神经慢性缩窄(chronic constriction injury,CCI)模型是两种广泛应用的慢性痛模型,良好地模拟了人类慢性疼痛所表现的自发痛和刺激诱发痛等现象。本研究应用动物行为学、免疫组织化学、免疫沉淀和共沉淀、以及Western-Blot等方法,在大鼠关节炎和坐骨神经慢性缩窄模型上探讨了突触蛋白Homerlb/c在介导慢性疼痛发生发展中的可能作用及其机制,为研究慢性疼痛的发病机理及寻找有效的药物靶位,提供实验依据。
     本实验分为三个部分:
     1.在大鼠关节炎和坐骨神经慢性缩窄模型上,应用免疫组织化学、免疫沉淀和共沉淀等方法,检测了脊髓背角以及前扣带皮层(ACC)Homerlb/c的表达以及Homerlb/c与另一种突触蛋白PSD-95的相互作用;
     2.应用动物疼痛指标测定的方法,观察了鞘内注射Homerlb/c反义寡核苷酸对关节炎大鼠机械痛敏和热痛敏的影响;
     3.应用免疫组织化学染色,在大鼠鞘内注射Homerlb/c反义寡核苷酸后,观察Homerlb/c在脊髓背角Fos表达和cAMP反应元件结合蛋白(CREB)磷酸化中的作用。
     结果发现:
     1.Homerlb/c在脊髓背角的表达特征
     与其他PSD蛋白的表达方式相似,Homerlb/c阳性细胞主要集中在脊髓背角浅层,在其他层次只看到很浅的免疫反应阳性信号。在高倍镜下观察,Homerlb/c免疫反应阳性物位于细胞膜,细胞呈圆形或椭圆形。免疫印迹结果发现,Homerlb/c在大鼠脊髓背角有较高表达,而脊髓腹角未检测到信号。
     2.CFA致炎后,大鼠脊髓背角Homerlb/c的表达增加
     在CFA致炎后,大鼠脊髓背角Homerlb/c的表达呈单侧性增加,大鼠脊髓背角Homerlb/c和PSD-95的共沉淀增加。而PSD-95的表达未见增加。相反,在炎症的基础上,对大鼠踝关节施加强制曲伸的急性刺激(retrival)后,PSD-95的表达减少。
     3.在CFA致炎后,大鼠ACC Homerlb/c和PSD-95表达以及相互作用发生变化
     大鼠在CFA致炎后,对侧ACC Homerlb/c和PSD-95表达增加;对侧ACCHomerlb/c和PSD-95的共沉淀增加。该结果说明,在慢性疼痛状态下,突触后膜信号蛋白的相互作用加强。
     4.Homerlb/c参与神经病理性疼痛的维持
     与先前研究结果一致,大鼠坐骨神经慢性缩窄性损伤(CCI)后,损伤同侧脊髓背角Homerlb/c表达增加;我们同时发现,损伤对侧ACC部位Homerlb/c和PSD-95的共沉淀增加。说明Homerlb/c同样参与神经病理性疼痛的维持。
     5.抑制Homerlb/c的表达对MA大鼠的痛敏反应有减轻作用
     鞘内应用Homerlb/c反义寡核苷酸(10μg/10μl),每日1次,连续4天,抑制大鼠脊髓背角Homerlb/c的表达的同时,减轻了炎症痛大鼠对机械刺激和热刺激的痛敏反应。这种作用具有剂量依赖性。
     6.鞘内给予Homerlb/c反义寡核苷酸(ODN)对大鼠急性疼痛和运动功能无影响
     鞘内给予错义寡核苷酸(10μg/10μl)或反义寡核苷酸(10μg/10μl),连续4天,测定机械和热刺激反应阈值。结果发现,与给药前比较,反义寡核苷酸对正常动物的机械缩足反射阈值(PWT)和热缩足反射潜伏期(PWL)无显著影响。对大鼠后肢的回缩,抓握功能以及整体动物的翻正反射评分显示,鞘内给予Homerlb/c反义寡核苷酸(ODN)对大鼠运动功能无影响。
     7.Homerlb/c介导初级中枢伤害性感受
     免疫组化结果显示,鞘内应用Homerlb/c反义寡核苷酸,10μg/10μl,每日1次,连续4天,减轻了MA大鼠对伤害性刺激后,脊髓背角Fos蛋白的表达和CREB的磷酸化。该结果表明,Homerlb/c介导慢性疼痛时,初级中枢伤害性感受的信号转导,以及下游的突触功能的重塑。
     由以上结果得出如下结论:
     1.脊髓背角和前扣带皮层Homerlb/c参与了慢性炎症性疼痛和神经病理性疼痛的维持;
     2.慢性疼痛状态下,脊髓Homerlb/c介导初级中枢伤害性感受信号的转导和基因转录;
     3.前扣带皮层(ACC)PSD蛋白的变化可能是高级中枢参与慢性疼痛调制的分子机制。
Chronic pain still a problem that continues to plague us,even after more than a decade of aggressive efforts at improvement.Persuasive epidemiologic evidence, mainly drawn from developed nations,has proven that chronic pain is a widespread public health issue.Despite the heterogeneity of study methods,surveys find that 15%-25%of adults suffer from chronic pain at any given time,a figure that increases to 50%in those older than 65 yr.Chronic pain is linked with a constellation of maladaptive physical,psychologic,family,and social consequences,and can be regarded as a disease entity per se.Inadequately treated pain has major physiological, psychological,economic,and social ramifications for patients,their families,and society.
     The majority of research into neuropathic pain mechanisms has concentrated on changes in the peripheral nerve or spinal cord after peripheral nerve injury and, therefore,most available evidence relates to changes in these parts of the nervous system.Nevertheless,it is important to recognize that alterations in the brain have also been demonstrated following peripheral nerve injury,but much less is known about the significance of these changes.
     It is well known that the excitatory amino acid glutamate is the major excitatory neurotransmitter released at the central terminals of primary afferent nociceptive neurones after noxious stimulation.Whilst glutamate acts at a number of post-synaptic receptors.Previous studies have demonstrated that postsynaptic protein, Homer 1b/c,a molecular scaffolding protein that binds and clusters mGluR receptors at neuronal synapses,plays an important role in the signaling process of GluRs. Moreover,a large body of evidence suggests that the ionotropic NMDA sub-type is one of the most intimately involved in both inflammation and nerve injury-induced central sensitization.Previous studies have demonstrated that postsynaptic protein-95(PSD-95),that binds and clusters NMDA receptors,plays an crucial role in the signaling process.
     Chronic monoarthritis(MA),induced by intraarticular injection of complete Freund's adjuvant(CFA) into the tibiotarsal joint,provides a localized and stable form of unilateral inflammation with animals displaying hyperalgesia and allodynia and is very suitable for studies of persistent(nociceptive) arthritic pain.Chronic MA is one of the most used animal models to study neuronal plasticity and chronic pain.Besides monoarthritis,chronic constriction inury(CCI) of the sciatic nerve is another one of most used experimental mononeuropathy model in chronic pain research.
     The current study,utilizing animal behavioral test,immunohistochemistry and co-immunoprecipitation,investigated the possible involvement of Homer 1b/c and PSD-95 in the maintenance of inflammatory pain induced by complete Freund's adjuvant(CFA),and neuropathic pain induced by chronic constriction inury(CCI) of the sciatic nerve in rats.
     The results are as follows:
     1.Exclusive expression of Homer1b/c protein in the spinal cord.
     Immunohistochemistry found that Homer1b/c immunoreactivity was localized mainly in laminaeⅠ-Ⅱand outer laminaⅢ.Under high magnification,Homer1b/c immunoreactive neuronal cell bodies were observed in the dorsal horn.Western blot confirmed the high level of Homer1b/c expression in the dorsal hom,and the undetectable level in the ventral hom.
     2.Increased expression of Homer1b/c following inflammatory pain induced by CFA.
     Injection of CFA into the tibio-tarsal joint of the rat produced a stable monoarthritic model.Injected ankle joint showed redness and swelling at day 1 after CFA injection,and maintained for 14 days or longer.Unilateral intra-articulation of CFA induced significantly increased expression of Homer1b/c in the ipsilateral spinal dorsal hom.While expression of PSD-95 is not affected by CFA-induced inflammatory pain,moreover,pain retrival of the inflammatory ankle significantly decreased expression of PSD-95 in the ipsilateral spinal dorsal horn.
     3.Increased interaction of PSD protein-95 and Homer1b/c following chronic pain
     Co-immunoprecipitation of PSD protein-95 and Homer1b/c is increased significantly in the spinal dorsal horn and(anteior cingulate cortex,ACC) following CFA-induced inflammatory pain,but acute pain retrival of the inflammatory ankle significantly decreased co-immunoprecipitation of these two proteins in the ipsilateral spinal dorsal horn.
     4.Homer1b/c mediates neuropathic pain
     Unilateral CCI induced significantly increased expression of Homer1b/c in the Ipsilateral spinal dorsal horn,and co-immunoprecipitation of PSD protein-95 and Homer1b/c is increased significantly in the contralateral ACC following CCI-induced neuropathic pain.This result suggested that Homer1b/c,both in ACC and spinal dorsal hom,plays role in the maintance of neupathic pain induced by chronic constriction inury of the sciatic nerve.
     5.Homer1b/c ASODN attenuated paw withdrawal responses to mechanical Stimuli Intrathecal injection of the the highest doses(10μg/10μl) of Homer1b/c antisense oligonucleotide(ASODN) every 24 h for 4 days,reduced expression of Homer1b/c protein in the spinal cord.Meanwhile,Homer1b/c ASODN attenuated CFA-induced mechanical hyperalgesia at day 3,4,5 and 6 after ODN injection.The lowest dose(2.5μg/10μl) of Homer1b/c AS ODN and missense ODN(10μg/10μl) had no effect.
     6.Homer1b/c ASODN attenuated paw withdrawal responses to thermal stimuli
     Intrathecal injection of a higher dose(5μg and 10μg/10μl) of Homer1b/c AS ODN every 24 h for 4 days,reduced CFA-induced thermal hyperalgesia significantly at day 3,4 after ODN injection.The low dose(2.5μg/10μl) of Homer1b/c AS ODN and Missense ODN(10μg/10μl) had no effect on paw withdrawal responses to thermal stimuli.
     7.Homer1b/c ASODN has no effect on acute pain
     Following the intrathecal injection of antisense ODN(10μg/10μl) every 24 h for 4 days,no significant change of behavioral was found in paw-withdrawal threshold (PWT) to mechanical stimuli with von Frey filaments and paw-withdrawal latencies (PWL) to heat stimuli.Denotes knock down of Homer1b/c in the spinal has no effect on acute pain in intact animals.
     8.Homer1b/c mediates c-fos expression and CREB phosphorylation
     Expression of Fos protein and phosphorylated CREB(pCREB) in the spinal dorsal horn following retrival of inflammatory pain induced by CFA injection was reduced by intrathecal injection of Homer1b/c anti-sense ODN.This suggests expression of Fos protein and pCREB following retrival is,at least partly,mediated by Homer1b/c.
     In conclusion,the present study demonstrated that
     1.Homer1b/c in the spinal dorsal horn and ACC plays role in the maintance of CFA-induced inflammatory pain and neuropathic pain.
     2.Interaction of Homer1b/c and PSD-95 may be the possible mechanism underlying chronic pain.
     3.Homer1b/c mediates c-fos expression and CREB phosphorylation in the spinal dorsal horn following retrival of inflammatory nociception.
引文
1.赵志奇,疼痛及其脊髓机理.上海:上海科技教育出版社,2000:1-3.
    2.Merskey H,Bogduk N.Classification of Chronic Pain,2nd edn.Seattle:IASP Press,1994;394.
    3.Verhaak PF,Kerssens JJ,Dekker J,Sorbi MJ,Bensing JM.Prevalence of chronic benign pain disorder among adults:a review of the literature.Pain 1998;77:231-239.
    4.Blyth FM,March LM,Brnabic AJM,Jorm LR,Williamson M,Cousins MJ.Chronic pain in Australia:a prevalence study.Pain 2001;89:127-134.
    5.Crombie IK,Croft PR,Linton SJ,Le Resche L,Von Korff M,eds.Epidemiology of Pain.Seattle:IASP Press,1999.
    6.Won A,Lapane K,Gambassi G,Bernabei R,Mor V,Lipsitz LA.Correlates and management of non-malignant pain in the nursing home.J Am Geriatr Soc 1999;47:936-942.
    7.Harstall C,Ospina M.How prevalent is chronic pain? Pain:Clin Updates 2003;11:1-4.
    8.Bridges D,Thompson S,Ricel A.Mechanisms of neuropathic pain,B J Anaesthesia,2001;87:12-26.
    9.B.L.Kidd,L.A.Urban.Mechanisms of inflammatory pain.Br J Anaesth 2001;87:3-11
    10.Abbott FV,Melzack R.Analgesia produced by stimulation of limbic structures and its relation to epileptiform after-discharges.Exp Neurol.1978;62(3):720-734.
    11.Hutchison WD,Davis KD,Lozano AM,Tasker RR,Dostrovsky JO.Pain-related neurons in the human cingulate cortex.Nat Neurosci.1999;2(5):403-405.
    12.Koyama T,Tanaka YZ,Mikami A.Nociceptive neurons in the macaque anterior cingulate activate during anticipation of pain.Neuroreport.1998;9(11):2663-2667.
    13.Sikes RW,Vogt BA.Nociceptive neurons in area 24 of rabbit cingulate cortex.J Neurophysiol.1992;68(5):1720-1732.
    14.Yamamura H,Iwata K,Tsuboi Y,Toda K,Kitajima K,Shimizu N,Nomura H, Hibiya J, Fujita S, Sumino R.Morphological and electrophysiological properties of ACCx nociceptive neurons in rats.Brain Res. 1996;735(1):83-92.
    15. Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C, Buchel C.Painful stimuli evoke different stimulus-response functions in the amygdala,prefrontal, insula and somatosensory cortex: a single-trial fMRI study.Brain. 2002;125:1326-1336.
    16. Casey KL, Minoshima S, Berger KL, Koeppe RA, Morrow TJ, Frey KA. Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli. J Neurophysiol. 1994;71(2):802-807.
    17. Derbyshire SW, Jones AK.Cerebral responses to a continual tonic pain stimulus measured using positron emission tomography. Pain. 1998;76(1 -2): 127-35.
    18. Abbott FV, Guy ER. Effects of morphine, pentobarbital and amphetamine on formalin-induced behaviours in infant rats: sedation versus specific suppression of pain. Pain. 1995;62(3):303-312.
    19. Iadarola MJ, Berman KF, Zeffiro TA, Byas-Smith MG, Gracely RH, Max MB, Bennett GJ.Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain. 1998;121:931-947.
    20. Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, Rawlins JN. Dissociating pain from its anticipation in the human brain. Science. 1999; 284(5422): 1979-1981.
    21. Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC.Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997;277(5328):968-971.
    22. Rainville P, Carrier B, Hofbauer RK, Bushnell MC, Duncan GH. Dissociation of sensory and affective dimensions of pain using hypnotic modulation. Pain. 1999;82(2):159-171.
    23. Talbot JD, Marrett S, Evans AC, Meyer E, Bushnell MC, Duncan GH. Multiple representations of pain in human cerebral cortex. Science. 1991;251(4999):1355-1358.
    24. Tolle TR, Kaufmann T, Siessmeier T, Lautenbacher S, Berthele A, Munz F, Zieglgansberger W, Willoch F, Schwaiger M, Conrad B, Bartenstein P. Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann Neurol. 1999;45(1):40-47.
    25. Ostlund SB, Balleine BW. Lesions of medial prefrontal cortex disrupt the acquisition but not the expression of goal-directed learning. J Neurosci. 2005;25(34):7763-7770.
    26. Johansen JP, Fields HL, Manning BH. The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc Natl Acad Sci U S A. 2001;98(14):8077-8082.
    27. Johansen JP, Fields HL.Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal.Nat Neurosci. 2004;7(4):398-403.
    28. Kung JC, Su NM, Fan RJ, Chai SC, Shyu BC.Contribution of the anterior cingulate cortex to laser-pain conditioning in rats.Brain Res. 2003;970(l-2):58-72.
    29. Mantyh PW. Forebrain projections to the periaqueductal gray in the monkey, with observations in the cat and rat.J Comp Neurol. 1982;206(2):146-158.
    30. An X, Bandler R, Ongiir D, Price JL. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. J Comp Neurol. 1998;401(4):455-479.
    31. lsacson RL. The papez circuit. In the limlbic system. Plenum Press New York and London.l982;54-60.
    32. Vogt BA, Rosene DL, Pandya DN. Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. Science. 1979;204(4389):205-207.
    33. Deigado JMR. Depth stimulation of the brain. ln:Paterson MM and Kesnor RP (Eds). Electrica lstimulation research technique. New York, Academic Press, 1981;105-134.
    34. Baleydier C, Mauguiere F. The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis.Brain. 1980;103(3):525-554.
    35. Aanonsen LM, Wilcox GL.Nociceptive action of excitatory amino acids in the mouse: effects of spinally administered opioids, phencyclidine and sigma agonists.J Pharmacol Exp Ther. 1987;243(1):9-19.
    36. Aanonsen LM, Lei S, Wilcox GL.Excitatory amino acid receptors and nociceptive neurotransmission in rat spinal cord.Pain. 1990;41(3):309-321.
    37. Drew GM, Mitchell VA, Vaughan CW.Glutamate spillover modulates GABAergic synaptic transmission in the rat midbrainperiaqueductal grey via metabotropic glutamate receptors and endocannabinoidsignaling. J Neurosci. 2008;28(4):808-815.
    38. Goudet C, Chapuy E, Alloui A, Acher F, Pin JP, Eschalier A.Group III metabotropic glutamate receptors inhibit hyperalgesia in animal models of inflammation and neuropathic pain. Pain. 2007; 25; [Epub ahead of print]
    39. Marabese I, Rossi F, Palazzo E, de Novellis V, Starowicz K, Cristino L, Vita D, Gatta L, Guida F, Di Marzo V, Rossi F, Maione S.Periaqueductal gray metabotropic glutamate receptor subtype 7 and 8 mediate opposite effects on amino acid release, rostral ventromedial medulla cell activities, and thermal nociception. J Neurophysiol. 2007;98(1):43-53.
    40. Lee JS, Ro JY. Peripheral metabotropic glutamate receptor 5 mediates mechanical hypersensitivity in craniofacial muscle via protein kinase C dependent mechanisms. Neuroscience. 2007;146(1):375-83.
    41. Jung CY, Lee SY, Choi HS, Lim EJ, Lee MK, Yang GY, Han SR, Youn DH, Ahn DK.Participation of peripheral group I and II metabotropic glutamate receptors in the development or maintenance of IL-1 beta-induced mechanical allodynia in the orofacial area of conscious rats. Neurosci Lett. 2006 6;409(3): 173-178.
    42. Lee HJ, Choi HS, Ju JS, Bae YC, Kim SK, Yoon YW, Ahn DK. Peripheral mGluR5 antagonist attenuated craniofacial muscle pain and inflammation but not mGluR1 antagonist in lightly anesthetized rats. Brain Res Bull. 2006;70(4-6):378-385.
    43. El-Kouhen O, Lehto SG, Pan JB, Chang R, Baker SJ, Zhong C, Hollingsworth PR, Mikusa JP, Cronin EA, Chu KL, McGaraughty SP, Uchic ME, Miller LN, Rodell NM, Patel M, Bhatia P, Mezler M, Kolasa T, Zheng GZ, Fox GB, Stewart AO, Decker MW, Moreland RB, Brioni JD, Honore P.Blockade of mGluR1 receptor results in analgesia and disruption of motor and cognitive performances: effects of A-841720, a novel non-competitive mGluRl receptor antagonist. Br J Pharmacol. 2006; 149(6):761-774.
    44. Han JS, Fu Y, Bird GC, Neugebauer V. Enhanced group II mGluR-mediated inhibition of pain-related synaptic plasticity in the amygdala. Mol Pain. 2006;2:18
    45. Li W, Neugebauer V. Differential changes of group II and group III mGluR function in central amygdala neurons in a model of arthritic pain. J Neurophysiol. 2006;96(4): 1803-15.
    46. Yamauchi, T. Molecular constituents and phosphorylation-dependent regulation of post-synaptic density, Mass Spect. Rev. 2002;21: 266-286.
    47. Kennedy MB. Signal-processing machines at the postsynaptic density. Science. 2000;290(5492):750-754.
    48. Kim E, Sheng M. PDZ domain proteins of synapses. Nat Rev Neurosci. 2004;5(10):771-781.
    49. Sheng M, Kim MJ. Postsynaptic signaling and plasticity mechanisms.Science. 2002;298(5594):776-780.
    50. Chen X, Winters C, Azzam R, Li X, Galbraith JA, Leapman RD, Reese TS. Organization of the core structure of the postsynaptic density. Proc Natl Acad Sci U S A. 2008;105(11):4453-4458.
    51. Xu W, Schluter OM, Steiner P, Czervionke BL, Sabatini B, Malenka RC. Molecular dissociation of the role of PSD-95 in regulating synaptic strength and LTD. Neuron. 2008;57(2):248-262.
    52. Li C, Han D, Zhang F, Zhou C, Yu HM, Zhang GY. Preconditioning ischemia attenuates increased neurexin-neuroliginl-PSD-95 interaction after transient cerebral ischemia in rat hippocampus. Neurosci Lett. 2007;426(3): 192-197.
    53. Gascon S, Sobrado M, Roda JM, Rodriguez-Pena A, Diaz-Guerra M. Excitotoxicity and focal cerebral ischemia induce truncation of the NR2A and NR2B subunits of the NMDA receptor and cleavage of the scaffolding protein PSD-95. Mol Psychiatry. 2008;13(1):99-114.
    54. Tian H, Zhang QG, Zhu GX, Pei DS, Guan QH, Zhang GY. Activation of c-Jun NH2-terminal kinase 3 is mediated by the GluR6.PSD-95.MLK3 signaling module following cerebral ischemia in rat hippocampus. Brain Res. 2005;1061(1):57-66.
    55. Hou XY, Zhang GY, Wang DG, Guan QH, Yan JZ. Suppression of postsynaptic density protein 95 by antisense oligonucleotides diminishes postischemic pyramidal cell death in rat hippocampal CA1 subfield. Neurosci Lett. 2005;385(3):230-233.
    56. Pei DS, Sun YF, Guan QH, Hao ZB, Xu TL, Zhang GY. Postsynaptic density protein 95 antisense oligodeoxynucleotides inhibits the activation of MLK3 and JNK3 via the GluR6/PSD-95/MLK3 signaling module after transient cerebral ischemia in rat hippocampus. Neurosci Lett. 2004;367(1):71-75.
    57. Song B, Yan XB, Zhang GY. PSD-95 promotes CaMKII-catalyzed serine phosphorylation of the synaptic RAS-GTPase activating protein SynGAP after transient brain ischemia in rat hippocampus. Brain Res. 2004; 1005(1-2):44-50.
    58. Zhang B, Tao F, Liaw WJ, Bredt DS, Johns RA, Tao YX. Effect of knock down of spinal cord PSD-93/chapsin-110 on persistent pain induced by complete Freund's adjuvant and peripheral nerve injury. Pain. 2003; 106(1-2): 187-196.
    59. Tao F, Tao YX, Mao P, Johns RA. Role of postsynaptic density protein-95 in the maintenance of peripheral nerve injury-induced neuropathic pain in rats. Neuroscience. 2003; 117(3):731 -739.
    60. Garry EM, Moss A, Delaney A, O'Neill F, Blakemore J, Bowen J, Husi H, Mitchell R, Grant SG, Fleetwood-Walker SM. Neuropathic sensitization of behavioral reflexes and spinal NMDA receptor/CaM kinase II interactions are disrupted in PSD-95 mutant mice. Curr Biol. 2003;13(4):321-328.
    61. Tao F, Tao YX, Gonzalez JA, Fang M, Mao P, Johns RA. Knockdown of PSD-95/SAP90 delays the development of neuropathic pain in rats. Neuroreport. 2001;12(15):3251-3255.
    62. Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, Brakeman P, Doan A, Aakalu VK, Lanahan AA, Sheng M, Worley PF. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron. 1999;23(3):583-592.
    63. Xiao B, Tu JC, Petralia RS, Yuan JP, Doan A, Breder CD, Ruggiero A, Lanahan AA, Wenthold RJ, Worley PF. Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron. 1998;21(4):707-716.
    64. Miletic G, Miyabe T, Gebhardt KJ, Miletic V. Increased levels of Homerlb/c and Shank la in the post-synaptic density of spinal dorsal horn neurons are associated with neuropathic pain in rats. Neurosci Lett. 2005;386(3): 189-193.
    65. Tappe A, Klugmann M, Luo C, Hirlinger D, Agarwal N, Benrath J, Ehrengruber MU, During MJ, Kuner R. Synaptic scaffolding protein Homerla protects against chronic inflammatory pain. Nat Med. 2006; 12(6):677-681.
    66. Adam JS, Michael EG. CREB: A Stimulus-Induced Transcription Factor Activated by A Diverse Array of Extracellular Signals. Annu. Rev. Biochem, 1999; 68:821-861
    67. Tabuchi A. Synaptic plasticity-regulated gene expression: a key event in the long-lasting changes of neuronal function. Biol Pharm Bull. 2008;31(3):327-335.
    68. Niederberger E, Ehnert C, Gao W, Coste O, Schmidtko A, Popp L, Gall C, Korf HW, Tegeder I, Geisslinger G. The impact of CREB and its phosphorylation at Ser142 on inflammatory nociception. Biochem Biophys Res Commun. 2007;362(1):75-80.
    69. Crown ED, Ye Z, Johnson KM, Xu GY, McAdoo DJ, Hulsebosch CE. Increases in the activated forms of ERK 1/2, p38 MAPK, and CREB are correlated with the expression of at-level mechanical allodynia following spinal cord injury. Exp Neural. 2006;199(2):397-407.
    70. Song XS, Cao JL, Xu YB, He JH, Zhang LC, Zeng YM. Activation of ERK/CREB pathway in spinal cord contributes to chronic constrictive injury-induced neuropathic pain in rats. Acta Pharmacol Sin. 2005;26(7):789-798.
    71. Liou JT, Liu FC, Hsin ST, Yang CY, Lui PW.Inhibition of the cyclic adenosine monophosphate pathway attenuates neuropathic pain and reduces phosphorylation of cyclic adenosine monophosphate response element-binding in the spinal cord after partial sciatic nerve ligation in rats. Anesth Analg. 2007;105(6): 1830-1837
    72. Harris JA. Using c-fos as a neural marker of pain. Brain Res Bull. 1998;45(1):1-8.
    73. Coggeshall RE. Fos, nociception and the dorsal horn. Prog Neurobiol. 2005;77(5):299-352.
    74. Todd AJ, Spike RC, Young S, Puskar Z. Fos induction in lamina I projection neurons in response to noxious thermal stimuli. Neuroscience. 2005;131(1):209-217.
    75. Bianchi R, Rezzani R, Borsani E, Rodella L. mGlu5 receptor antagonist decreases Fos expression in spinal neurons after noxious visceral stimulation. Brain Res. 2003;960(l-2):263-266.
    76. Wu SX, Wang W, Wang YY, Ni TS, Li YQ, Yew DT. C-fos antisense oligodeoxynucleotide decreases subcutaneous bee venom injection-induced nociceptive behavior and fos expression in the rat. Neurosignals. 2002;ll(4):224-230.
    77. Butler SH, Godefroy F, Besson JM, Weil-Fugazza J. A limited arthritic model for chronic pain studies in the rat. Pain. 1992;48(1):73-81.
    78. Sun S, Cao H, Han M, Li TT, Zhao ZQ, Zhang YQ. Evidence for suppression of electroacupuncture on spinal glial activation and behavioral hypersensitivity in a rat model of monoarthritis. Brain Res Bull. 2008;75(1):83-93.
    79. Ansah OB, Pertovaara A. Peripheral suppression of arthritic pain by intraarticular fadolmidine, an alpha 2-adrenoceptor agonist, in the rat. Anesth Analg. 2007;105(1):245-250.
    80. Infante C, Diaz M, Hernandez A, Constandil L, Pelissier T. Expression of nitric oxide synthase isoforms in the dorsal horn of monoarthritic rats: effects of competitive and uncompetitive N-methyl-D-aspartate antagonists. Arthritis Res Ther. 2007;9(3):R53.
    81. Pelissier T, Infante C, Constandil L, Espinosa J, Lapeyra CD, Hernandez A. Antinociceptive effect and interaction of uncompetitive and competitive NMDA receptor antagonists upon capsaicin and paw pressure testing in normal and monoarthritic rats. Pain. 2008;134(1-2):113-127.
    82. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33(1):87-107.
    83. Jergova S, Kolesar D, Cizkova D. Expression of c-Fos in the parabrachial nucleus following peripheral nerve injury in rats. Eur J Pain. 2008; 12(2): 172-9.
    84. Dong XW, Goregoaker S, Engler H, Zhou X, Mark L, Crona J, Terry R, Hunter J, Priestley T. Small interfering RNA-mediated selective knockdown of Na(V)1.8 tetrodotoxin-resistant sodium channel reverses mechanical allodynia in neuropathic rats. Neuroscience. 2007; 146(2):812-821.
    85. Hughes DI, Scott DT, Riddell JS, Todd AJ. Upregulation of substance P in low-threshold myelinated afferents is not required for tactile allodynia in the chronic constriction injury and spinal nerve ligation models. J Neurosci. 2007;27(8):2035-2044.
    86. Zimmermann M. (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16,109-110.
    87. Castro-Lopes JM, Tavares I, Tolle TR, Coito A, Coimbra A. Increase in GABAergic Cells and GABA Levels in the Spinal Cord in Unilateral Inflammation of the Hindlimb in the Rat. Eur J Neurosci. 1992;4(4):296-301.
    88. Sun S, Cao H, Han M, Li TT, Pan HL, Zhao ZQ, Zhang YQ. New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis. Pain. 2007;129(1-2):64-75.
    89. Butler SH, Weil-Fugazza J. The foot-bend procedure as test of nociception for chronic studied in a modle of monoarthritis in the rat. Pharmacol Commun 1994;4:327-334.
    90. Cruz CD, Neto FL, Castro-Lopes J, McMahon SB, Cruz F. Inhibition of ERK phosphorylation decreases nociceptive behaviour in monoarthritic rats. Pain. 2005;116(3):411-419.
    91. Hargreaves K, Dubner R, Brown F, et al. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain, 1988; 32:77-88
    92. Chaplan SR, Bach FW, Ppogrel JW, et al. Quantitative assessment of allodynia in the rat paw. J Neurosci Methods, 1994; 53:55-56.
    93. Coderre TJ, Van Empel I. The utility of excitatory amino acid (EAA) antagonists as analgesic agents. I. Comparison of the antinociceptive activity of various classes of EAA antagonists in mechanical, thermal and chemical nociceptive tests. Pain. 1994;59(3):345-352.
    94. St(?)rkson RV, Kj(?)rsvik A, Tj(?)lsen A, Hole K. Lumbar catheterization of the spinal subarachnoid space in the rat. J Neurosci Methods. 1996;65(2): 167-172.
    95. Cao Z, Wu X, Chen S, Fan J, Zhang R, Owyang C, Li Y. Anterior cingulate cortex modulates visceral pain as measured by visceromotor responses in viscerally hypersensitive rats. Gastroenterology. 2008;134(2):535-543.
    96. Benuzzi F, Lui F, Duzzi D, Nichelli PF, Porro CA. Does it look painful or disgusting? Ask your parietal and cingulate cortex. J Neurosci. 2008;28(4):923-931.
    97. Toyoda H, Zhao MG, Xu H, Wu LJ, Ren M, Zhuo M. Requirement of extracellular signal-regulated kinase/mitogen-activated protein kinase for long-term potentiation in adult mouse anterior cingulate cortex. Mol Pain. 2007;3:36.
    98. Zhuo M. A synaptic model for pain: long-term potentiation in the anterior cingulate cortex. Mol Cells. 2007;23(3):259-271.
    99. Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron, 2002; 35: 605-623
    100. Herdegen T, Fiallos-Estrada CE, Schmid W, et al. The transcription factors c-JUN, JUN D and CREB, but not FOS and KROX-24, are differentially regulated in axotomized neurons following transection of rat sciatic nerve. Brain Res Mol Brain Res, 1992;14:155-165
    101. Ma W, Quirion R. Increased phosphorylation of cyclic AMP response element-binding protein (CREB) in the superficial dorsal horn neurons following partial sciatic nerve ligation. Pain, 2001 ;93:295-301
    102. Miletic G, Pankratz MT, Miletic V. Increases in the phosphorylation of cyclic AMP response element binding protein (CREB) and decreases in the content of calcineurin accompany thermal hyperalgesia following chronic constriction injury in rats.Pain,2002;99:493-500.
    103.Ma W,Hatzis C,Eisenach JC.Intrathecal injection of cAMP response element binding protein(CREB) antisense oligonucleotide attenuates tactile allodynia caused by partial sciatic nerve ligation.Brain Res,2003;988:97-104.
    104.Castro AR,Bowery N,Castro-Lopes JM.Baclofen and midazolam alter c-fos induction by peripheral noxious or innocuous stimulation in the spinal cord of normal and monoarthritic rats.Neuropharmacology.1999;38(11):1775-1788.
    105.Schadrack J,Castro-Lopes JM,Avelino A,Zieglgansberger W,Tolle TR.Modulated expression of c-Fos in the spinal cord following noxious thermal stimulation of monoarthritic rats.J Neurosci Res.1998 Jul 15;53(2):203-213.
    106.赵志奇,疼痛及其脊髓机理.上海:上海科技教育出版社,2000:86-88.
    107.Polgar E,Watanabe M,Hartmann B,Grant SG,Todd AJ.Expression of AMPA receptor subunits at synapses in laminae Ⅰ-Ⅲ of the rodent spinal dorsal horn.Mol Pain.2008;4:5.
    108.易浔飞,兰小鹏.反义核酸技术应用难点及研究进展.生物技术通讯,2007;(4):655-659
    109.潘明.反义核酸技术应用及研究进展.生物技术通报.2006;(6).68-71
    110.Benimetskaya L,Loike JD,Khaled Z,et al.Mac-1(CD11b /CD18) is an oligodeoxynucleotide-binding protein.Nat Med,1997;3(4):414
    111.Probst JC.Antisense oligodeoxynucleotide and ribozyme design.Methods,2000;22(3):271.
    112.Butler M,Hayes CS,Chappell A,Murray SF,Yaksh TL,Hua XY.Spinal distribution and metabolism of 2'-O-(2-methoxyethyl)-modified oligonucleotides after intrathecal administration in rats.Neuroscience.2005;131(3):705-715.
    113.Ghasemzadeh MB,Permenter LK,Lake R,Worley PF,Kalivas PW.Homerl proteins and AMPA receptors modulate cocaine-induced behavioural plasticity.Eur J Neurosci.2003;18(6):1645-1651.
    114.Sun S,Chen WL,Wang PF,Zhao ZQ,Zhang YQ.Disruption of glial function enhances electroacupuncture analgesia in arthritic rats.Exp Neurol.2006;198(2):294-302.
    115. Goudet C, Chapuy E, Alloui A, Acher F, Pin JP, Eschalier A. Group III metabotropic glutamate receptors inhibit hyperalgesia in animal models of inflammation and neuropathic pain. Pain. 2007; [Epub ahead of print]
    116. Pinto M, Lima D, Tavares I. Neuronal activation at the spinal cord and medullary pain control centers after joint stimulation: a c-fos study in acute and chronic articular inflammation. Neuroscience. 2007; 147(4): 1076-1089.
    117. Liu HX, Tian JB, Luo F, Jiang YH, Deng ZG, Xiong L, Liu C, Wang JS, Han JS. Repeated 100 Hz TENS for the Treatment of Chronic Inflammatory Hyperalgesia and Suppression of Spinal Release of Substance P in Monoarthritic Rats. Evid Based Complement Alternat Med. 2007;4(1):65-75.
    118. Ferreira-Gomes J, Neto FL, Castro-Lopes JM. GABA(B2) receptor subunit mRNA decreases in the thalamus of monoarthritic animals. Brain Res Bull. 2006;71(l-3):252-258.
    119. Levy AS, Simon O, Shelly J, Gardener M. 6-Shogaol reduced chronic inflammatory response in the knees of rats treated with complete Freund's adjuvant. BMC Pharmacol. 2006;6:12.
    120. Balayssac D, Cayre A, Authier N, Ling B, Maublant J, Eschalier A, Penault-Llorca F, Coudore F. Involvement of the multidrug resistance transporters in cisplatin-induced neuropathy in rats. Comparison with the chronic constriction injury model and monoarthritic rats. Eur J Pharmacol. 2006;544(l-3):49-57.
    121. Castro AR, Pinto M, Lima D, Tavares I. Secondary hyperalgesia in the monoarthritic rat is mediated by GABAB and NK1 receptors of spinal dorsal horn neurons: a behavior and c-fos study. Neuroscience. 2006;141(4):2087-2095.
    122. Ghavidel A, Cagney G, Emili A. A skeleton of the human protein interactome. Cell. 2005;122(6):830-2.
    123. Yan N, Chai J, Lee ES, Gu L, Liu Q, He J, Wu JW, Kokel D, Li H, Hao Q, Xue D, Shi Y. Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. Nature. 2005;437(7060):831-7.
    124.沈关心,龚非力译.抗体技术实验指南.北京:科学出版社,2003:131-157.
    
    125. Craven SE , Bredt DS. PDZ proteins organize synaptic signaling pathways. Cell, 1998; 93:495-498.
    126. Sheng M. The postsynaptic NMDA2receptor? PSD295 signaling complex in excitatory synapses of the brain. J Cell Sci, 2001; 114:1251-1252.
    127. Gardoni F , Schrama LH , Kamal A , et al. Hippocampal synaptic plasticity involves competition between Ca2 + / calmodulin2dependent protein kinase II and postsynaptic density 95 for binding to the NR2A subunit of the NMDA receptor. J Neurosci, 2001; 21:1501-1509.
    128. Conti F , Weinberg RJ . Shaping excitation at glutamateric synapses. Trends Neurosci, 1999; 22:451-458.
    129. A. de Bartolomeis, G Fiore, Postsynaptic density scaffolding proteins at excitatory synapse and disorders of synaptic plasticity: implications for human behavior pathologies, Int. Rev. Neurobiol. 2004;59:221 - 254.
    130. Y. Inoue, N. Honkura, A. Kato, S. Ogawa, H. Udo, K. Inokuchi, H. Sugiyama, Activity-inducible protein Homerla/Vesl-1S promotes redistribution of postsynaptic protein Homerlc/Vesl-1L in cultured rat hippocampal neurons, Neurosci. Lett. 2004;354:143-147.
    131. C. Sala, V. Piech, N.R. Wilson, M. Passafaro, G. Liu, M. Sheng, Regulation of dendritic spine morphology and synaptic function by Shank and Homer, Neuron 2001;31:115-130.
    132. Naisbitt S, Kim E, Tu J, Xiao B, Sala C, Valtschanoff J, Weinberg R, Worley P, Sheng M: Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron. 1999; 23:569-582.
    133. Tu JC, Xiao B, Yuan J, Lanahan A, Leoffert K, Li M, Linden D, Worley PF: Homer binds a novel proline rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron. 1998; 21:717-726.
    134. Ciruela F, Soloviev MM, Chan WY, McIlhinney RA: Homer-1c/Vesl-1L modulates the cell surface targeting of metabotropic glutamate receptor type la: evidence for an anchoring function. Mol Cell Neurosci. 2000; 15:36-50.
    135. Roche KW, Tu JC, Petralia RS, Xiao B, Wenthold RJ, Worley PF: Homer 1b regulates the trafficking of group I metabotropic glutamate receptors. J Biol Chem. 1999; 274:25953-25957.
    136. Brakeman PR, Lanahan AA, O'Brien R, Roche K, Barnes CA, Huganir RL, Worley PF: Homer: a protein that selectively binds metabotropic glutamate receptors. Nature. 1997; 386:284-288.
    137. Ma, Q.P., Woolf, C.J. Basal and touch-evoked fos-like immunoreactivity during experimental inflammation in the rat. Pain. 1996; 67:307-316.
    138. Leah, J.D., Porter, J., de-Pommery, J., Mene'trey, D., Weil-Fuguzza, J. Effect of acute stimulation on Fos expression in spinal neurons in the presence of presisting C-fiber activity. Brain Res. 1996; 719, 104-111.
    139. Abbadie, C, Besson, J.M. c-fos expression in rat lumbar spinal cord during the development of adjuvant-induced arthritis. Neuroscience, 1992; 48, 985-993.
    140. Lante'ri-Minet, M., de Pommery, J., Herdegen, T., Weil-Fugazza, J., Bravo, R., Menetrey, D. Differential time course and spatial expression of Fos, JUN, and KROX-24 proteins in spinal cord of rats undergoing subacute or chronic somatic inflammation. J. Comp. Neurol, 1993; 333,223-235.
    141. Schadrack, J., Castro-Lopes, J.M., Avelino, A., Zieglga¨nsberger, W., To¨lle, T.R. Modulated expression of c-fos in the spinal cord following noxious thermal stimulation of monoarthritic rats. J. Neurosci. Res, 1998; 53, 203-213.
    142. Castro AR, Bowery N, Castro-Lopes JM.Baclofen and midazolam alter c-fos induction by peripheral noxious or innocuous stimulation in the spinal cord of normal and monoarthritic rats.Neuropharmacology. 1999; 38(11):1775-1788.
    143. Korzus E. The relation of transcription to memory formation. Acta Biochim Pol, 2003; 50:775-882.
    144. Chan SH, Chang KF, Ou CC, et al. Nitric oxide regulates c-fos expression in nucleus tractus solitarii induced by baroreceptor activation via cGMP-dependent protein kinase and cAMP response element-binding protein phosphorylation. Mol Pharmacol, 2004; 65:319-325.
    145. Anderson LE, Seybold VS. Phosphorylated cAMP response element binding protein increases in neurokinin-1 receptor-immunoreactive neurons in rat spinal cord in response to formalin-induced nociception. Neurosci Lett, 2000;283:29-32.
    146. Bement MK, Sluka KA.Co-localization of p-CREB and p-NR1 in spinothalamic neurons in a chronic muscle pain model.Neurosci Lett. 2007;418(1):22-27.
    147. Liou JT, Liu FC, Hsin ST, Yang CY, Lui PW.Inhibition of the cyclic adenosine monophosphate pathway attenuates neuropathic pain and reduces phosphorylation of cyclic adenosine monophosphate response element-binding in the spinal cord after partial sciatic nerve ligation in rats.Anesth Analg. 2007; 105(6): 1830-1837
    148. Ji RR, Rupp F. Phosphorylation of transcription factor CREB in rat spinal cord after formalin-induced hyperalgesia: relationship to c-fos induction, J. Neurosci. 1997;17:1776-1785.
    149. Niederberger E, Ehnert C, Gao W, et, al. The impact of CREB and its phosphorylation at Ser142 on inflammatory nociception.Biochem Biophys Res Commun. 2007;362(1):75-80.
    150. Jones AK, Brown WD, Friston KJ, Qi LY, Frackowiak RS.Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc Biol Sci. 1991;244(1309):39-44.
    151. Coghill RC, Talbot JD, Evans AC, Meyer E, Gjedde A, Bushnell MC, Duncan GH.Distributed processing of pain and vibration by the human brain J Neurosci. 1994;14(7):4095-4108.
    152. Hsieh JC, Belfrage M, Stone-Elander S, Hansson P, Ingvar M. Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain. 1995;63(2):225-236.
    153. Hsieh JC, Hannerz J, Ingvar M. Right-lateralised central processing for pain of nitroglycerin-induced cluster headache.Pain. 1996;67(1):59-68.
    154. Craig AD, Reiman EM, Evans A, Bushnell MC.Functional imaging of an illusion of pain.Nature. 1996;384(6606):258-260.
    155. Liu RJ, Qiang M, Qiao JT. Nociceptive C-Fos expression in supraspinal areas in avoidan of descending suppression at the spinal relay station. Neuroscience.1998; 85 :1073-1087.
    156. Kuroda R, Yorimae A, Yamada Y, Nakatani J, Takatsuji K.C-fos expression after formalin injection into the face in the cat. Stereotact Funct Neurosurg. 1995;65(1-4):152-156.
    157. Lui F, Duzzi D, Corradini M, et al.Touch or pain? Spatio-temporal patterns of cortical fMRI activity following brief mechanical stimuli. Pain. 2008;27 [Epub ahead of print]
    158. Wang H, Ren WH, Zhang YQ, Zhao ZQ. GABAergic disinhibition facilitates polysynaptic excitatory transmission in rat anterior cingulate cortex. Biochem Biophys Res Commun. 2005;338(3):1634-169.
    159. Ren WH, Guo JD, Cao H, Wang H, Wang PF, Sha H, Ji RR, Zhao ZQ, Zhang YQ. Is endogenous D-serine in the rostral anterior cingulate cortex necessary for pain-related negative affect? J Neurochem. 2006;96(6): 1636-1647.
    160. Benuzzi F, Lui F, Duzzi D, Nichelli PF, et,al. Does it look painful or disgusting? Ask your parietal and cingulate cortex. J Neurosci. 2008;28(4):923-931.
    161. Cao Z, Wu X, Chen S, Anterior cingulate cortex modulates visceral pain as measured by visceromotor responses in viscerally hypersensitive rats.Gastroenterology. 2008;134(2):535-543.
    1 H. Merskey and N. Bogduk, Classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms (2nd ed.), IASP Press, Seattle. 1994, 212.
    2 Bridges D, Thompson S, Ricel A. Mechanisms of neuropathic pain, B J Anaesthesia, 2001,87:12-26.
    
    3 Flor H, Elbert T, Muhlnickel W, et al. Cortical reorganization and phantom phenomena in congenital and traumatic upper-extremity amputees. Exp Brain Res, 1998,119:205-212.
    4 Moalem G, Tracey DJ.Immune and inflammatory mechanisms in neuropathic pain.Brain Res Rev. 2006 Aug;51(2):240-64.
    5 Montminy M. R., Sevarino K. A., Wagner J. A., et al. and Goodman R. H. (1986) Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc. Natl. Acad. Sci. USA 83: 6682-6686.
    6 Montminy M. R. and Bilezikjian L. M. (1987) Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328: 175-178.
    7 Gonzalez G. A. and Montminy M. R. (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59: 675-680.
    8 Herdegen T, Blume A, Buschmann T, et al. Expression of activating transcription factor-2, serum response factor and cAMP/Ca response element binding protein in the adult rat brain following generalized seizures, nerve fibre lesion and ultraviolet irradiation. Neuroscience, 1997,81:199-212.
    9 Niederberger E, Ehnert C, Gao W,et al.The impact of CREB and its phosphorylation at Ser142 on inflammatory nociception.Biochem Biophys Res Commun. 2007;362:75-80.
    10 Adam JS, Michael EG. CREB: A Stimulus-Induced Transcription Factor Activated by A Diverse Array of Extracellular Signals. Annu. Rev. Biochem, 1999,68:821-861.
    11 Miyabe T, Miletic V. Multip le kinase pathways mediate the early sciatic ligation associated activation of CREB in the ratsp inal dorsal horn. Neurosci Lett, 2005, 381:80-85.
    12 Fang L, Wu J, Zhang X, Lin Q,et al.Calcium/calmodulin dependent protein kinase II regulates the phosphorylation of cyclic AMP-responsive element-binding protein of spinal cord in rats following noxious stimulation.Neurosci Lett. 2005;374(1):l-4.
    13 Bonni A, Brunet A, West AE, et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science, 1999,286:1358-1362.
    14 Lonze BE, Riccio A, Cohen S, et al. Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron, 2002, 34:371-385.
    15 Redmond L, Kashani AH, Ghosh A. Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron, 2002, 34:999-1010.
    16 Miletic G, Pankratz MT, Miletic V. Increases in the phosphorylation of cyclic AMP response element binding protein (CREB) and decreases in the content of calcineurin accompany thermal hyperalgesia following chronic constriction injury in rats. Pain, 2002,99:493-500.
    17 Miyabe T, Miletic V.Multiple kinase pathways mediate the early sciatic ligation-associated activation of CREB in the rat spinal dorsal horn.Neurosci Lett. 2005 Jun 10-17;381(1-2):80-85.
    18 Miletic G, Hanson EN, Miletic V.Brain-derived neurotrophic factor-elicited or sciatic ligation-associated phosphorylation of cyclic AMP response element binding protein in the rat spinal dorsal horn is reduced by block of tyrosine kinase receptors. Neurosci Lett. 2004 May 6;361(l-3):269-271.
    19 Ma W, Hatzis C, Eisenach JC. Intrathecal injection of cAMP response element binding protein (CREB) antisense oligonucleotide attenuates tactile allodynia caused by partial sciatic nerve ligation. Brain Res, 2003, 988:97-104.
    20 Vincler MA, Eisenach JC.Knock down of the alpha 5 nicotinic acetylcholine receptor in spinal nerve-ligated rats alleviates mechanical allodynia.Pharmacol Biochem Behav. 2005;80:135-143.
    21 E J. Nestler, P. Greengard, Serine and threonine phosphorylation, in: G.J. Siegel, B.W. Agranoff, R.W. Albers, M.D. Fisher S .K. Uhler (Eds.), Basic Neurochemistry Molecular, Cellular and Medical Aspects, Lippincott-Raven, Philadelphia, 1999, pp.471-495.
    22 Anderson LE, Seybold VS. Phosphorylated cAMP response element binding protein increases in neurokinin-1 receptor-immunoreactive neurons in rat spinal cord in response to formalin-induced nociception. Neurosci Lett, 2000, 283:29-32.
    23 Khasabov SG, Rogers SD, Ghilardi JR, et al. Spinal neurons that possess the substance P receptor are required for the development of central sensitization. J Neurosci, 2002, 22:9086-9098.
    24 Willis WD. Role of neurotransmitters in sensitization of pain responses. Ann N Y Acad Sci, 2001,933:142-156.
    25 Nguyen PV, Woo NH. Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog Neurobiol, 2003,71, 401-437.
    26 Ma W, Quirion R. Increased phosphorylation of cyclic AMP response element-binding protein (CREB) in the superficial dorsal horn neurons following partial sciatic nerve ligation. Pain, 2001, 93:295-301.
    27 Bement MK, Sluka KA.Co-localization of p-CREB and p-NR1 in spinothalamic neurons in a chronic muscle pain model.Neurosci Lett. 2007 May 11;418(1):22-27.
    28 Berta T, Poirot O, Pertin M, et al. Transcriptional and functional profiles of voltage-gated Na(+) channels in injured and non-injured DRG neurons in the SNI model of neuropathic pain. Mol Cell Neurosci. 2008;37:196-208.
    29 Jones MG, Munson JB, Thompson SW. A role for nerve growth factor in sympathetic sprouting in rat dorsal root ganglia. Pain, 1999, 79: 21-29
    30 Riccio A, Ann S, Davenport CM, et al. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science, 1999,286:2358-2361.
    1. L. De Petrocellis, M.G. Cascio and V. Di Marzo, The endocannabinoid system: a general view and latest additions, Br. J. Pharmacol. 2004; 141: 765-774.
    2. J. Ferreira, G.L. da Silva and J.B. Calixto, Contribution of vanilloid receptors to the overt nociception induced by B2 kinin receptor activation in mice, Br. J. Pharmacol. 2004; 141: 787-794.
    3. K. Starowicz, S. Maione, L. Cristino, E. Palazzo, I. Marabese, F. Rossi, V. de Novellis and V. Di Marzo, Tonic endovanilloid facilitation of glutamate release in brainstem descending antinociceptive pathways, J. Neurosci. 2007; 27: 13739-13749.
    4. Eglen RM, Hunter JC, Dray A. Ions in the fire: recent ion-channel research and approaches to pain therapy. Trends Pharmacol Sci, 1999,20:337-342.
    5. Davis KD, Meyer RA, Turnquist JL, et al. Cutaneous pretreatment with the capsaicin analog NE-21610 prevents the pain to a burn and subsequent hyperalgesia. Pain, 1995, 62:373-378.
    6. M.J. Caterina, A. Leffler, A.B. Malmberg, W.J. Martin, J. Trafton, K.R. Petersen-Zeitz, M. Koltzenburg, A.I. Basbaum and D. Julius, Impaired nociception and pain sensation in mice lacking the capsaicin receptor, Science 2000; 288: 306-313.
    7. Pabbidi RM, Yu SQ, Peng S, et al.Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity.Mol Pain. 2008;4:9.
    8. Neubert JK, Marines AJ, Karai LJ, et al.Perineural resiniferatoxin selectively inhibits inflammatory hyperalgesia.Mol Pain. 2008 Jan 16;4:3.
    9. Karai L, Brown DC, Marines AJ, et al. Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control. J Clin Invest, 2004, 113:1344-1352.
    10. Planells-Cases R, Aracil A, Merino JM, et al. Arginine-rich peptides are blockers of VR-1 channels with analgesic activity. FEBS Lett, 2000, 481:131-136.
    11.Christoph T, Bahrenberg G, De Vry J, et al.Investigation of TRPV1 loss-of-function phenotypes in transgenic shRNA expressing and knockout mice.Mol Cell Neurosci. 2008;37:579-589.
    12. Gavva NR, Treanor JJ, Garami A, et al.Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans.Pain. 2008 Mar 10 [Epub ahead of print]
    
    13. Remadevi R, Szallisi A.Adlea (ALGRX-4975), an injectable capsaicin (TRPV1 receptor agonist) formulation for longlasting pain relief. Drugs. 2008;11:120-132.
    14. L. Cristino, L. de Petrocellis, G. Pryce, D. Baker, V. Guglielmotti and V. Di Marzo, Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain, Neuroscience 2006; 139: 1405-1415.
    15. S. Maione, L. De Petrocellis, V. de Novellis, A.S. Moriello, S. Petrosino, E. Palazzo, F. Rossi, D.F. Woodward and V. Di Marzo, Analgesic actions of N-arachidonoyl-serotonin, a fatty acid amide hydrolase inhibitor with antagonistic activity at vanilloid TRPV1 receptors, Br. J. Pharmacol. 2007; 150 : 766-781.
    16. K. Starowicz, S. Nigam and V. Di Marzo, Biochemistry and pharmacology of endovanilloids, Pharmacol. Ther. 2007; 114: 13-33.
    17. S. McGaraughty, K.L. Chu, R.S. Bitner, B. Martino, R. El Kouhen, P. Han, A.L. Nikkei, E.C. Burgard, C.R. Faltynek and M.F. Jarvis, Capsaicin infused into the PAG affects rat tail flick responses to noxious heat and alters neuronal firing in the RVM, J. Neurophysiol. 2003; 90: 2702-2710
    18. E. Palazzo, V. de Novellis, I. Marabese, D. Cuomo, F. Rossi, L. Berrino, F. Rossi and S. Maione, Interaction between vanilloid and glutamate receptors in the central modulation of nociception, Eur. J. Pharmacol. 2002; 439: 69-75.
    19. Walker KM, Urban L, Medhurst SJ, et al. The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J Pharmacol Exp Ther, 2003, 304:56-62.
    20. Baker MD, Wood JN. Involvement of Na+ channels in pain pathways. Trends Pharmacol Sci 2001;22:27-31.
    21. Porreca F, Lai J, Bian D, et al. A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain, Proc Natl Acad Sci U S A, 1999, 96:7640-7644.
    22. Veneroni O, Maj R, Calabresi M, et al. Anti-allodynic effect of NW-1029, a novel Na(+) channel blocker, in experimental animal models of inflammatory and neuropathic pain. Pain, 2003,102:17-25.
    23. Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 2006;444:894-898.
    24. Ahmad S, Dahllund L, Eriksson AB, et al.A stop codon mutation in SCN9A causes lack of pain sensation.Hum Mol Genet 2007; [Epub ahead of print]
    25. Goldberg Y, Macfarlane J, Macdonald M, et al. Loss-of-function mutations in the Na(v)1.7 gene underlie congenital indifference to pain in multiple human populations.Clin Genet 2007;71:311-319.
    26. Black JA, Liu S, Tanaka M, Cummins TR, Waxman SG. Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain 2004; 108:237-247.
    27. Nassar MA, Stirling LC, Forlani G, et al. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc Natl Acad Sci USA 2004;101:12706-12711.
    28. Yeomans DC, Levinson SR, Peters MC, et al. Decrease in inflammatory hyperalgesia by herpes vector-mediated knockdown of Nav1.7 sodium channels in primary afferents. Hum Gene Ther 2005;16:271—277.
    29. Nassar MA, Levato A, Stirling LC, Wood JN. Neuropathic pain develops normally in mice lacking both Nav1 .7 and Nav1.8. Mol Pain 2005; 1:24.
    30. Brose WG, Gutlove DP, Luther RR, et al. Use of intrathecal SNX-111, a novel, N-type, voltage-sensitive, calcium channel blocker, in the management of intractable brachial plexus avulsion pain. Clin J Pain, 1997, 13:256-259.
    31. Flatters SJ, Bennett GJ. Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain. 2004 ,109:150-161
    32. C.P. Taylor, The biology and pharmacology of calcium channel α_2-δ proteins, CNS Drug Rev 2004; 10: 183-188.
    33. M. Bone, P. Critchley and D.J. Buggy, Gabapentin in postamputation phantom limb pain: a randomized, double-blind, placebo-controlled, cross-over study, Reg Anesth Pain Med 2002; 27: 481-486.
    34. A. Caraceni, E. Zecca, C. Bonezzi, E. Arcuri, R.Y. Tur and M. Maltoni et al., Gabapentin for neuropathic cancer pain: a randomized controlled trial from the gabapentin cancer pain study group, J Clin Oncol 2004; 22: 2909-2917.
    35. M.G. Serpell, Gabapentin in neuropathic pain syndromes: a randomized, double-blind, placebo-controlled trial, Pain 2002; 99: 557-566.
    36. Sutton KG, Snutch TP. Gabapentin: A novel analgesic targeting voltage-gated calcium channels. Drug Development Research, 2001, 54:167-172.
    37. Tan PH, Yang LC, Chiang PT, et al.Inflammation-induced up-regulation of ionotropic glutamate receptor expression in human skin.Br J Anaesth. 2008;100:380-384.
    38. Cvrcek P.Side effects of ketamine in the long-term treatment of neuropathic pain.Pain Med. 2008;9:253-257.
    39. Parsons CG NMDA receptors as targets for drug action in neuropathic pain, Eur J Pharmacol. 2001, 429:71-78.
    40. Olivar T, Laird JM. Differential effects of N-methyl-D-aspartate receptor blockade on nociceptive somatic and visceral reflexes. Pain, 1999, 79:67-73.
    41.Tsou K, Brown S, Sanudo-Pena MC, Mackie K, Walker JM.Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience. 1998;83:393—411.
    42. Farquhar-Smith WP, Egertova M, Bradbury EJ, et al. Cannabinoid CB(1) receptor expression in rat spinal cord. Mol Cell Neurosci. 2000; 15:510-521.
    43. Wotherspoon G, Fox A, McIntyre P, et al. Peripheral nerve injury induces cannabinoid receptor 2 protein expression in rat sensory neurons. Neuroscience. 2005; 135:235-245.
    44. Lunn CA, Reich EP, Bober L. Targeting the CB2 receptor for immune modulation. Expert Opin Ther Targets. 2006;10:653-663.
    45. Iversen L, Chapman V. Cannabinoids: a real prospect for pain relief? Curr Opin Pharmacol, 2002, 2:50-55.
    46. Fox A, Kesingland A, Gentry C, et al. The role of central and peripheral Cannabinoid1 receptors in the antihyperalgesic activity of cannabinoids in a model of neuropathic pain. Pain, 2001,92:91-100.
    47. Bridges D, Ahmad K, Rice AS. The synthetic cannabinoid WIN55,212-2 attenuates hyperalgesia and allodynia in a rat model of neuropathic pain. Br J Pharmacol, 2001, 133:586-594.
    48. Siegling A, Hofmann HA, Denzer D, et al. Cannabinoid CB(1) receptor upregulation in a rat model of chronic neuropathic pain. Eur J Pharmacol, 2001,415:R5-7.
    49. Monhemius R, Azami J, Green DL, et al. CB1 receptor mediated analgesia from the Nucleus Reticularis Gigantocellularis pars alpha is activated in an animal model of neuropathic pain. Brain Res, 2001, 908:67-74.
    50. Hohmann AG, Herkenham M. Localization of central cannabinoid CB1 receptor messenger RNA in neuronal subpopulations of rat dorsal root ganglia: a double-label in situ hybridization study. Neuroscience, 1999, 90:923-931.
    51. Ibrahim MM, Deng H, Zvonok A, et al.Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci U S A. 2003, 100:10529-10533.
    52. Hillsley K, McCaul C, Aerssens J,et al. Activation of the cannabinoid 2 (CB2) receptor inhibits murine mesenteric afferent nerve activity. Neurogastroenterol Motil. 2007; 19:769-777.
    53. Sanson M, Bueno L, Fioramonti J. Involvement of cannabinoid receptors in inflammatory hypersensitivity to colonic distension in rats. Neurogastroenterol Motil. 2006; 18:949-956.
    [1]Hopkins RA,Bull C,Haworth SG,et al.Pulmonary hypertensive crises following surgery for congenital heart defects in young children.Eur J Cardiothorac Surg,1991,5:628-634.
    [2]Reich DL,Bodian CA,Krol M,et al.Intraoperative hemodynamic predictors of mortality,stroke,and myocardial infarction after coronary artery bypass surgery.Anesth Analg,1999,89:814-822.
    [3]Tritapepe L,Voci P,Cogliati AA,et al.Successful weaning from cardiopulmonary bypass with central venous prostaglandin E1 and left atrial norepinephrine infusion in patients with acute pulmonary hypertension.Crit Care Med,1999,27:2180-2183.
    [4]Fischer LG,Van Aken H,Burkle H.Management of pulmonary hypertension:physiological and pharmacological considerations for anesthesiologists.Anesth Analg,2003,96:1603-1616.
    [5]Aral A,Oguz M,Ozberrak H,et al.Hemodynamic advantages of left atrial epinephrine administration in open heart operations.Ann Thorac Surg,1997,64:1046-1049.
    [6]王天龙.吸入性一氧化氮的临床应用指征.中华医学杂志,2004,84:524-528.
    [7]Aranda M,Bradford KK,Pearl RG.Combined therapy with inhaled nitric oxide and intravenous vasodilators during acute and chronic experimental pulmonary hypertension.Anesth Analg,1999,89:152-158.
    [8]D' Ambra MN,Laraia PJ,Philbin DM et al.Prostaglandin E_1:a new therapy for refractory right heart failure and pulmonary hypertension after mitral valve replacement.J Thorac Cardiovasc Surg,1985,89:567-572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700