酶生物燃料电池中催化剂及其载体的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本着提高酶生物燃料电池的性能和解决酶生物燃料电池中酶在电极上易脱落、失活、电子传递速率低、稳定性差等问题的目的。本文从生物燃料电池酶的载体入手,分别以天然高分子材料壳聚糖(CHi)、无机纳米材料二氧化硅(SiO2)、导电材料碳纳米管(CNT)、介孔碳材料FDU-15及硅分子筛SBA-15作为酶的载体,研究了酶生物燃料电池中阴、阳极催化剂在上述载体上的直接电化学行为和电催化作用,为组成酶生物燃料电池作一些前期的基础工作。采用了电化学分析技术与光谱学表征方法,对酶生物燃料电池中阴、阳催化剂及其载体进行了分析与表征。特别指出的是:文中使用的介孔碳FDU-15及硅分子筛SBA-15这两个载体材料对阳极催化剂在电极的电化学行为有较大的促进作用。文中双酶电极的构建思想,对酶生物燃料电池及多功能生物传感器酶电极的开发提供了一个崭新的思路。
In recent years, with less and less fossil fuel on the earth day after day, the new energy’s the exploit and utilization has been paid much more attention by governments around the world. Now, developing new energy is very important the urgent mission of our scientific research worker.
     The enzymatic biofuel cell is special fuel cell; the organic compounds are used as fuel and enzyme are directly or indirectly used as catalyst in it. It can directly convert chemical energy which is stored in animals and plants to electrical energy. it has many the merit such as high energy conversion efficiency、good biocompatibility、wide source of raw materials and is a really and ideally green environmental-protecting power sources. In the future, the enzymatic biofuel cell has wide application prospect and huge potential market. But, the enzymatic biofuel cell also has many disadvantages such as enzyme is deactivated in Vitro、poor stability、low electron transfer efficiency、short life etc. These disadvantages become bottleneck which hinders the development of the enzymatic biofuel cell. So, prolonging Life of enzyme and improving electron transfer efficiency between enzyme and electrode are critical problem to increase enzymatic biofuel cell performance.
     In order to increase enzymatic biofuel cell performance and solve the problem such as enzyme catalyst is deactivated in Vitro、low electron transfer rate、poor stability. This paper researches the direct electrochemistry behavior and the electrocatalysis action of GOD which is anode catalyst and MP-11 which is cathode catalyst in enzymatic biofuel cell on different matrix, selects suitable matrix material of electrode of enzymatic biofuel cell, the basic work for construction enzymatic biofuel cell is done in the future. The main research contents in this paper are as follows:
     (1)Mesopore Molecular Sieve SBA-15 is used as matrix of GOD which is anode catalyst of enzymatic biofuel cell in this paper; the Nafion/GOD-SBA-15/GC work electrode is prepared by physical adsorption method. The direct electrochemistry behaviors of Nafion/GOD-SBA-15/GC electrode were characterized by cyclic voltammogram (CV). The result indicates that the GOD immobilized on Nafion/GOD-SBA-15/GC electrode can display direct, nearly reversible and surface-controlled redox reaction which contains two electrons and two protons exchange. Secondly, the GOD immobilized on Nafion/GOD-SBA-15/GC electrode has linear response to glucose both in positive potential range and in negative potential range, which proves that the GOD on modified electrode can keep its own biocatalytic activity.
     On the other hand, the spectra of UV–vis and FTIR shown spatial structure of the adsorbed GOD on the mesopore molecular sieve SBA-15 surface has been changed which is beneficial to direct electron transfer between the GOD molecular and electrode, and which greatly improves electron-transfer rate constant of the GOD molecular immobilized on modified electrode. Therefore, the mesopore molecular sieve SBA-15 is an efficient matrix of GOD, which is hopeful to be applied in enzymatic biofuel cell in the future.
     (2)In this paper, mesoporous carbon FDU-15 (MC-FDU-15) used as matrix of GOD which is anode catalyst of enzymatic biofuel cell, the Nafion/GOD-MC-FDU-15/GC work electrode is prepared by physical adsorption method. The electrochemistry behaviors of the Nafion/GOD-MC-FDU-15/GC electrode were characterized by cyclic voltammogram (CV). The result indicates that the GOD immobilized on MC-FDU-15/Nafion composite membrane has displayed direct, reversible electrochemical reaction which contains two electrons and two protons transfer. Moreover, the formal potential of electrochemical reaction is close to that of the native GOD. While the acidity and basicity of phosphate buffer solution is nearly neutral, the direct electrochemistry of the GOD on MC-FDU-15/Nafion composite membrane is optimal.
     In addition, under ferrocenecarboxylic acid condition (FCA), the GOD on MC-FDU-15/Nafion composite membrane has linear response to glucose in positive potential range, so MC-FDU-15 will be used as matrix of the second generation’s glucose biosensor. Under O2-saturated conditions, the GOD immobilized on MC-FDU-15/Nafion composite membrane can catalyze the reduction of O2 in negative potential range, thus, MC-FDU-15 may be used as matrix of cathode catalyst of enzymatic biofuel cell in the near future. In short, MC-FDU-15 is suitable for matrix of GOD, which can promote direct electron transfer between the GOD molecular and electrode. Last, MC-FDU-15 is hopeful to be intensively applied in enzymatic biofuel cell and biosensor.
     (3)MP-11 which is cathode catalyst of enzymatic biofuel cell is immobilized on chitosan(CHI)matrix which has good biocompatibility. In this article, the MP-11/CHI/GC work electrode is prepared by physical adsorption method, and the MP-11/CHI/GC electrode is analyzed by cyclic voltammogram. The result shows that the MP-11 on work electrode has displayed quasi-reversible coupled with proton transfer electrochemical reaction, besides that, the MP-11 on work electrode has the catalysis behaviour to O2 and H2O2. All this indicates that the MP-11on CHI matrix keep its own biocatalytic activity, and natural polymer matrix material CHI which has good biocompatibility can supply suitable microenvironment for MP-11.Thus, the matrix material CHI which has many merit such as abundant yield、high Stability、low market value is worthy of attention. In the future, the matrix material CHI can meet with great production of enzymatic biofuel cell, and it is adapted to practical application requirement of enzymatic biofuel cell.
     (4)In this article, the widespread research idea which constructs compound membrane modified electrode by multi-wall carbon nanometer tube (MWCN) combined with other material has been changed, only MWCN is used as matrix material for immobilized MP-11, and the MP-11 is immobilized on glassy carbon electrode by simply physical adsorption method, and the electrochemical characteristics of MP-11 immobilized on MWCN modified electrode are researched. The testing results by cyclic voltammogram(CV) show that the MP-11 on MWCN modified electrode has displayed direct、quasi-reversible coupled with one proton and two electron transfer redox reaction. Secondly, the reduction reaction of the MP-11 immobilized on modified electrode to O2 is diffusion-controlled process. The MP-11 immobilized on modified electrode has linear response to H2O2 concentration, and the apparent Michaelis–Menten constant of the reaction is very small, and indicating strong the appetency between immobilized MP-11 and H2O2. So, the single use of MWCN as matrix of cathode catalyst is possible, this work is helpful for practical preparation of enzymatic biofuel cell.
     (5) At present, the study of gold nano-particles as matrix of enzyme catalyst is very general, but because of high price for gold nano-particles, it has some limitation as matrix material of enzymatic biofuel cell in the practical production. Thus, it is necessary to find appropriate nano-particles instead of gold nano-particles as matrix of enzyme catalyst in enzymatic biofuel cell, which is an effective approach to reduce the cost of enzymatic biofuel cell. In this paper, silicon dioxide (SiO2) nanoparticles which has many advantages such as low price、high specific surface area、excellent electric-thermal stability、non-toxic and good biocompatibility becomes ideal substitute of gold nano-particles. The cathode catalyst MP-11 of enzymatic biofuel cell is modified on the surface of silicon dioxide nanoparticles by simple method, and the MP-11/SiO2/GC work electrode is successfully prepared. The modified MP-11on glassy carbon electrode has also undergone a direct and reversible coupled with two electron and one proton transfer electrochemical reaction. The electrical catalytic reaction of MP-11 on modified electrode to O2 is controlled by diffusion of O2. In addition, MP-11/SiO2/GC electrode shows sensor’s functions to substrate H2O2, and the detection limit of MP-11/SiO2/GC electrode is 0.22mmol/L at a signal-to-noise ratio of 3 in the linear range. Therefore, the MP-11on silicon dioxide nanoparticles matrix completely realizes self-electrochemistry behaviors. It is feasible to adopt silicon dioxide nanoparticles instead of gold nano-particles as matrix of enzyme catalyst in enzymatic biofuel cell; the ideality of reducing the cost of enzymatic biofuel cell by the method has come true in the next several years.
     (6) Both GOD and Cytc are together immobilized on surface of glassy carbon modified with CHI matrix by physical adsorption method, these two enzymes both keep their own activities and each direct electrochemistry characteristics is also realize on modified electrode. The direct quasi-reversible and surface-controlled electrochemical reaction coupled with two protons and two electrons transfer of GOD on modified has displayed. The direct quasi-reversible and surface-controlled electrochemical reaction coupled with one proton and two electron transfer of Cytc on modified has also displayed. While O2 and glucose coexist, the catalytic reduction of the GOD and Cytc bienzyme electrode to O2 occurs at -0.623V, and there was a good linear relationship between reduction current and glucose concentration, thus, the bienzyme electrode hold promise as glucose sensor to be used in the future. In addition, the catalytic reduction current of Cytc on bienzyme electrode to H2O2 has linear response to H2O2 concentration, so, the bienzyme may be prepared hydrogen peroxide sensor. While glucose is examined by the GOD and Cytc bienzyme electrode, the detection potential of glucose is relatively low which can completely prevent from interference of the matter is easily oxidized, which provide a new idea for construction glucose biosensor. The simultaneous response of the GOD and Cytc bienzyme electrode to glucose and hydrogen peroxide is realized, which can also provide a novel idea for development multifunctional sensor.
     The innovative points of the paper:
     (1) Mesoporous carbon FDU-15(MC- FDU-15) is used as matrix of anode catalyst of enzymatic biofuel cell for the first time, and the anode of enzymatic biofuel cell is prepared successfully, MC- FDU-15 adsorption makes the space conformation for at the direction of electron transfer, which shortens the distance between electrode and catalyst and electron-transfer rate of GOD is increased greatly, and develops a new research field of catalysts matrix of enzymatic biofuel cell. (2) Mesopore Molecular Sieve SBA-15 is used alone as matrix of anode catalyst of enzymatic biofuel cell, at the same time, anode of enzymatic biofuel cell is also made, direct electrochemistry characteristics of the GOD is completely displayed on the matrix, the high load of GOD on SBA-15 surface accelerate electron-transfer GOD and electrode, thus, matrix SBA-15 with high stability is used, which may extend the enzymatic biofuel cell using life.
     (3) The natural polymer matrix material CHI which has good biocompatibility can supply suitable microenvironment for cathode catalyst MP-11, which promotes the electrochemistry response of cathode catalyst MP-11of enzymatic biofuel cell.
     (4) The design idea of the GOD and Cytc bienzyme electrode provide a new idea for exploiting multifunctional biosensor.
     The research results of this article provide a simple and convenient analysis method for understanding of electrochemical characteristics of redox proteins, and provide an effective direction for studying catalyst matrix of enzymatic biofuel cell, and also provide a significant reference for exploiting multifunctional biosensor.
引文
[1] WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors [J]. Chem.Rev, 2004, 104(10): 4245-4270.
    [2] M CGINLEY J, MCHALE F N, HUGHES P, et al. Production of electrical energy from carbohydrates using a transition metal-catalysed liquid alkaline fuel cell[J]. Biotechnol. Lett, 2004, 26 (23): 1771-1776.
    [3] DAWAR S, BEHERA P. Development of a low-cost oxy-hydrogen biofuel cell B.K.for generation electricity using nostoc as a source of hydrogen [J]. Int. J. Energy Res, 1998, 22(12): 1019-1028.
    [4] JOON K. Fuel cells—21st century power system [J]. J. Power Sources, 1998, 71(1-2): 12-18.
    [5] WILLNER I. Biomaterials for sensors, fuel cells, and circuitry [J]. Science, 2002, 298(5602): 2407-2408.
    [6] PIZZARIELLO A, STRED’ANSKY M, MIERTU S, A. glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix [J]. Bioelectrochemistry, 2002, 56(1-2): 99-105.
    [7] NAIDJA A, KRISHNA C R, BUTCHER T, et al. Cool flame partial oxidation and its role in combustion and reforming of fuels for fuel cell systems[J]. Prog. Energ. Combust. Energy Sci, 2003, 29(2): 155-191.
    [8] LAANE C, PRONK W, FRANSSEN M et a1. Enzyme Micmb.Techno1, 1984, 6 (4): 165-l68.
    [9] BULLEN R A, ARNOT T C, LAKEMAN J B, et al. Biofuel cells and their development[J]. Biosensors and Bioelectronics, 2006, 21(11): 2015-2045.
    [10] KIM J, JIA H F, WANG P. Challenges in biocatalysis for enzyme-based biofuel cells [J]. Biotechnology Advances, 2006, 24(3): 296-308.
    [11] WI11N ER I, KETZ E, PATOLSKY F, et al. [J]. Chem. Soc, 1998, 1817-1826.
    [12] PIZ E, RRIEU A, SUEDY M, MIERTNS S. Bioeleetroehemistry, 2002, 56(1-2): 99-105.
    [13] HUDAK N S, BARTON S C. [J] J.Electrochemical Society, 2005, 152 (5): 876-881.
    [14] LIU Y, WANG M K, ZHAO F, et a1. Chem. Eur, 2005, 11(17):4970-4974.
    [15] HELLER A. Physical Chemistry Chemical Physics, 2004, 6(2):209- 216.
    [16] KATZ E, WILLNER I, KOTLYAR A B. A non-compartmentalized glucose?O2biofuel cell by bioengineered electrode surfaces [J]. Journal of Electroanalytical Chemistry, 1999, 479(1): 64-68.
    [17] CHEN T, BARTON S C, BINYAMIN G., et al. A miniature biofuel cell [J]. J. Am. Chem. Soc, 2001, 123(35): 8630-8631.
    [18] MANO N, MAO F, A. Heller. A miniature biofuel cell operating in physiological buffer [J]. J. Am. Chem. Soc, 2002, 124(44): 12962-12963.
    [19] MANO N, Mao F, HELLER A. Characteristics of a miniature compartment-less glucose/O2 biofuel cell and its operation in a living plant [J]. J. Am. Chem. Soc., 2003, 125(21): 6588-6594.
    [20] ] RAMANAVICIUS A, KAUSATITE A, RAMANAVICIENE A. Biofuel cell based on direct bioelectrocatalysis [J]. Biosensors and Bioelectronics, 2005, 20(10): 1962-1967.
    [21] LIU Y, DONG S J. A biofuel cell harvesting energy from glucose-air and fruit juice-air [J].Biosensors and Bioelectronics, 2007, 23(4): 593-597.
    [22] LIU Y, DONG S J, A biofuel cell with enhanced power output by grape juice [J]. Electrochemistry Communications, 2007, 9(7): 1423-1427.
    [23] KATZ E, WILLNER I, KOTLYAR A B. A non-compartmentalized glucose O2 biofuel cell by bioengineered electrode surface [J] J. Electroanal. Chem., 1999, 479(1): 64-68.
    [24] TOPCAGIC S, MINTEER S D. Development of membraneless ethanol/oxygen biofuel cell. Abstracts of Papers of the American Chemical Society, 2004, 227: U82-U83.
    [25] MANO N, MAO F, HELLER A. A miniature membrane- less biofuel cell operating at +0.60 V under physiological conditions [J]. Chem. Biochem, 2004, 5(12): 1703-1705.
    [26] http://www.caili.com.cn/art/1738
    [27] http://digi.it.sohu.com/20070827/n254239384.shtml
    [28] KAMITAKA Y, TSUJIMURA S, SETOYAMA N, et al. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis[J]. J.Chem. Phys, 2007, 1(9): 1793-1801.
    [29] www.mp3.net
    [30]王镜岩,朱圣庚,徐长法,生物化学[M],高等教育出版社,北京,2003.
    [31] WONG T S, SCHWANEBERG U. Protein engineering in bioelectrocatalysis [J].Curr. Opin. Biotech, 2003, 14 (6): 590-596.
    [32] IKEDA T, KANO K. An electrochemical approach to the studies of biological redox reactions and their applications to biosensors, bioreactors and biofuel cells [J]. J. Biosci. Bioeng, 2001, 92(1): 9-18.
    [33] CORVIS Y, WALCARIUS A, RINK R. Preparing catalytic surfaces for sensing applications by immobilizing enzymes via hydrophobin layers [J]. Anal. Chem., 2005, 77(6): 1622-1630.
    [34] BLIN J L, GERARDIN C, CARTERET C, et al. Direct one-step immobilization of glucose oxidase in well-ordered mesostructured silica using a nonionic fluorinated surfactant[J]. Chem. Mater, 2005, 17(6): 1479-1486.
    [35] SCOTT R A, MAUK A G.. Cytchrome c, A Multidisciplinary Approach, University Science Books [M]. Sausalito, California, 1996.
    [36] DEERE J, MAGNER E, Wall G. J, Hodnett B K. Mechanistic and Structural Features of Protein Adsorption onto Mesoporous Silicates[J]. J. Phys. Chem. B, 2002, 106(29): 7340-7347.
    [37] BANCI L, BERTINI I, ROSATO A, VARANI G. Mitochondrial cytochromes c: a comparative analysis [J]. JBIC, 1999, 4(6): 824-837.
    [38]罗国安,王宗花,王义明,生物兼容性电极构置及应用[M],北京,科学出版社, 2006
    [39] LU T H, YU X J, Dong S J. Direct electrochemical reactions of cytochrome c at iodide-modified electrodes [J]. J. Electroanal. Chem, 1994, 369(1-2): 79-86.
    [40] QU X G, QIAO Z H, LU T H, Dong S J. Study on the electrochemical behaviour of Cytochro me c[J]. Chinese J. Anal. Chem., 1994, 22(12): 1267-1272.
    [41] WANG J X, LI M. ShI X Z, J, N. G U.Direct Electrochemistry of Cytochrome c at a Glassy Carbon Electrode Modified with Single-Wall Carbon Nanotubes[J]. Anal. Chem., 2002, 74(9): 1993-1997.
    [42] XU J, PENG Y, LIU S, ChEN H. Direct Electrochemistry of Cytochrome c on EDTA-ZrO2 Organic-inorganic Hybrid Film Modified Electrodes [J]. Chinese Journal of Chemistry, 2004, 22: 1403-1406.
    [43] TUPPY H, PALEUS S. Study of peptic degradation product of cytochrome c, I Purification and chemical composition[J].Acta Chem.Scand., 1955, 9:353-364.
    [44] EHRENBERG A, THEORELL H. On the stereochemical structure of cytochrome c [J]. Acta Chem.Scand, 1955, 9: 1193-1205.
    [45] RAZUMAS V, ARNEBRANT T. Direct electrochemistry of microperoxidase-11at gold electrodes modified by self-assembled monolayers of 4,4’-dithiodipyridine and 1-octadecanethiol[J]. J. Electroanal.Chem.1997, 427(1-2):1-5.
    [46]杨辉,黄志忠,姜慧,物理化学学报[J].2000, 16(6):527-532.
    [47] HUANG W M , JIA J B, ZhANG Z L , et al.Biosens. Bioelectron [J].2003, 18 (10):1225-1230
    [48] WANG M K, SHEN Y, LIU Y, et al. J. Electroanal. Chem [J].2005, 578 (1): 121-127.
    [49]刘颖,生物电化学及生物燃料电池的研究[D].长春:中国科学院研究生院博士学位论文, 2006.
    [50] BARTON S C, GALLAWAY J, ATANASSOV P. Enzymatic Biofuel Cells for Implantable and Microscale Devices [J]. Chem. Rev, 2004, 104(10): 4867-4886.
    [51] BOROLE A. P, LABARGE S, SPOTT B A.Three-dimensional, gas phase fuel cell with a laccase biocathode [J]. Journal of Power Sources, 2009, 188 (2): 421-426.
    [52] SHIUNCHIN C, WANG, F Y, SILVA M, et al. Membrane-less and mediator-free enzymatic biofuel cell using carbon nanotube/porous silicon electrodes [J]. Electrochemistry Communications, 2009, 11 (1):34-37.
    [53] HARTMANN M. Ordered Mesoporous Materials for Bioadsorption and Biocatalysis [J]. Chem. Mater, 2005, 17(18): 4577-4593.
    [54] SHLEEV S, TKAC J, CHIRISTENSON A, RUAGAS T, A. et al. Direct electron transfer between copper-containing proteins and electrodes[J].Biosensors and Bioelectronics, 2005, 20(12): 2517-2554.
    [55] TARASEVICH M R, BOGDANOVSKAYA V A, KAPUSTIN A V. Nanocomposite material laccase/dispersed carbon carrier for oxygen electrode [J]. Electrochemistry Communications, 2003, 5(6): 491-496.
    [56]鞠幌先,电分析化学与生物传感技术[M].北京,科学出版社, 2006.
    [57] ZHOU Y X, NAGAOKA T, ZHU G.Y. Electrochemical studies of cytochrome c disulfide at gold electrodes [J]. Biophysical Chemistry, 1999, 79(1): 55-62.
    [58]董绍俊,车广礼,谢远武,化学修饰电极[M].北京,科学出版社, 2003.
    [59] LINDGREN A, RUZGAS T, GORTON L. Direct electron transfer of native and modified peroxidases [J]. Curr. Top. Anal Chem. 2001, 2: 71-94.
    [60] LIU T, ZHONG J, GAN X, FAN C H, LI G. X. Wiring Electrons of Cytochrome c with Silver Nanoparticles in Layered Film [J].Chem. Phys. Chem, 2003, 4: 1364-1366.
    [61] BIANCO P, TAYE A, HALADJIAN J. Incorporation of cytochrome c and cytochrome c3 within poly (ester sulfonic acid) films on pyrolytic graphite electrodes[J].J Electroanal Chem, 1994, 377(1-2): 299-303.
    [62] ZITTEL H E, MILLER F J. A Glassy-Carbon Electrode for Voltammetry [J]. Anal. Chem, 1965, 37(2): 200-203.
    [63] YAN Y M, ZHENG W, ZHANG M N, WANG L, et al. Bioelectrochemically Functional Nanohybrids through Co-Assembling of Proteins and Surfactants onto Carbon Nanotubes: Fbcilitated Electron Transfer of Assembled Proteinswith Enhanced Faradic Response [J]. Langmuir, 2005, 21(14): 6560-6566.
    [64] Wang K Q, YANG H, ZHU L. Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified by Nafion and ordered mesoporous silica-SBA-15[J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 58(1-4):194-198.
    [65] PIZZARIELLO A, STRED’ANSKY M, MIERTU? S. A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxedase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix[J]. Bioelectrochemistry, 2002, 56(1-2): 99-105.
    [66] KATZ E, WILLNER I. A biofuel cell with electrochemically switchable and tunable power output [J]. J. Am. Chem. Soc., 2003, 125(22): 6803-6813.
    [67] ATANASSOV P, APBLETT C, BANTA S, BROZIK S, et al. Enzymatic Biofuel Cells[J]. The Electrochemical Society Interface, 2007, summer, 28-31.
    [68]宝玥,吴霞琴,生物燃料电池的研究进展[J].电化学, 2004, 10 (1):1-8.
    [69] TAKEUCHI Y, AMAO Y. Photo-operated glucose-O2 biofuel cell based on the visible-light photosensitization of chlorophyll derivatives adsorbed on nanocrystalline TiO2 film [J]. J. Jpn. Petrol. Inst., 2004, 47 (5): 355-358.
    [70] Barbara K. Application of chitin and chitosan-based materials for enzyme immobilization: a review [J]. Enzyme and Microbial Techn, 2004, 35(2-3):126-139.
    [71] BULLOCKC. Immobilized enzymes, Sci Progress [J]. 1995, 78:119.
    [72] CHAPLIN M F, BUCKEC. Enzyme Technology [M].USA, Cambridge, Cambridge University Press. 1990.
    [73] WISEMAN A. Designer enzyme and cell application in industry and in environment monitoring [J]. J Chem. Techn.Biotechn.1993, 56(1): 3-13.
    [74] PSKIN A K. Therapeutic potential of immobilized enzymes [J]. NATO. ASL. Ser E, 1993, 252: 191.
    [75] WU S, ZENG F, ZhU H, TONG Z. Energy and Electron Transfers in Photosensitive Chitosan [J]. J. Am. Chem. Soc, 2005, 127(7): 2048-2049.
    [76]钱军民,李旭祥,聚合物在生物传感器中的应用研究进展[J].高分子材料科学与工程, 2002, 18: 21-26.
    [77] WU G, PAN H, WU Y, et al. Handbook of biochemical and molecular biological experiments [J]. Scientific Press, Chinese, 1999.
    [78] GILL I. Bio-doped Nanocomposite Polymers: Sol-Gel Bioencapsulates [J].Chem. Mater, 2001(10), 13: 3404-3421.
    [79] WANG Q, LU G, YANG B. Myoglobin/Sol-Gel film modified electrode: Direct electrochemistry and electrochemical catalysis [J]. Langmuir, 2004, 20(4);1342-1347.
    [80] NIU J J, GUO Y Z, DONG S J.The direct electrochemistry of Cryo-hydrogel immobilized myoglobin at a glassy carbon electrode [J]. J. Electroanal. Chem, 1995, 399: 41-46.
    [81] FAN C, WANG H, SUN S, et al. Electron-transfer reactivity and enzymatic activity of hemoglobin in a sephadex membrane [J]. Anal Chem, 2001, 73(13): 2850-2854.
    [82] WANG Q, LU G, YANG B. Direct electrochemistry and electrocatalysis of hemoglobin immobilized on carbon paste electrode by silica sol- gel film[J]. Biosens. Bioelectron, 2004, 19(10): 1269-1275.
    [83] NADZHAFOVA O Y, ZAITSEV V N, DROZDOVA MV, et al. Heme proteins sequestered in silica sol- gels using surfactants feature direct electron transfer and peroxidase activity [J]. Electrochem. Commun, 2004, 6(2): 205-209.
    [84] LIU H H, TIAN Z Q, LU Z X, et al. Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films [J]. Biosens. & Bioelectron, 2004, 20 (2): 294-304.
    [85] UGO P, ZHANGRANDO V, MORETTO L M, et al. Ion-exchange voltammetry and electrocatalytic sensing capabilities of Cytochrome c at polyestersulfonated ionomer coated glassy carbon electrodes [J].Biosens. Bioelectron, 2002, 17(6-7): 479-487.
    [86] HUANG R, HU N F. Direct electrochemistry and electrocatalysis with horseradish peroxidase in Eastman AQ films [J].Bioelectrochem, 2001, 54:75-81.
    [87] SHEN L, HU N. Heme protein films with polyamidoamine dendrimer: direct electrochemi stry and electrocatalysis [J]. Biochimica et Biophysica Acta, 2004, 1608(1): 23-33.
    [88]王琨琦,马中苏,陆天虹.微过氧化物酶-11在壳聚糖修饰玻碳电极上的电化学[J].高等学校化学学报,2009,30(2): 553-556.
    [89] RINAUDO M. Chitin and chitosan: Properties and applications [J]. Prog. Polym. Sci, 2006 (31): 603-632.
    [90] Ghosh P K, Bard A J. Clay-modified electrodes [J].J. Am. Chem. Soc, 1983,105 (17): 5691-5693.
    [91] MCHA S M, FITCH A. Acta, 1998, 128: 1-4.
    [92] LEI C H, LISDAT F, WOLLENBERGER U, et al. Cytochrome c/clay-modified Electrode [J]. Electroanalysis, 1999, 11(4): 274-276.
    [93] LEI C H, WOLLENBERGER U, JUNG C, et al. Clay-Bridged electron transfer between Cytochrome P450cam and electrode, Biochem. Biophys. Res. Commun[J]. 2000, 268(3): 740-744.
    [94] LEI C H, WOLLENBERGER U, BISTOLAS N, et al. Electron transfer of hemoglobin at electrodes modified with colloidal clay nanoparticles [J].Anal. Bioanal.Chem.2002, 372(2): 235-239.
    [95] LEI C H, WOLLENBERGER U, SCHELLER F W. Clay based direct electrochemistry of myoglobin [J]. Quimica Analitica, 2000, 19: 28-31.
    [96] FAN C H, GAO Q X, ZHU D X, et al. An unmediated hydrogen peroxide biosensor based on hemoglobin incorporated in a montmorillonite membrane [J]. Analyst, 2001, 126(7): 1086-1089.
    [97] SHUMYANTSEVA V V, IVANOV Y D, BISTOLAS N, et al. Direct electron transfer of cytochrome P450 2B4 at electrodes modified with nonionic detergent and colloidal clay nanoparticles [J]. Anal. Chem, 2004, 76 (20): 6046-6052.
    [98]李旭光,高颖等,炭载微过氧化物酶-11电极对O2和H2O2还原的电催化性能[J].应用化学, 2002, 19(3): 285-289.
    [99] RICHARD C, BALAVOINE F, SCHULTZ P, EBBESEN T W, et al. Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes [J]. Science, 2003, 300(5620): 775-778.
    [100] LIU J, RINZLER AG, DAI H, HAFNER J H, et al. Fullerene pipes[J]. Science, 1998, 280(5367): 1253-1256.
    [101] SINANI V A, GHEITH M K, .YAROSLAVOV A A, et al. Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations [J]. J. Am. Chem. Soc, 2005, 127(10): 3463-3472.
    [102] SHEN K, CURRAN S, XU H, ROGELJ S, et al. Single-walled carbon nanotube purification, pelletization, and surfactant-assisted dispersion: a combined TEM and Resonant Micro-Raman spectroscopy study [J]. J. Phys. Chem. B., 2005, 109(10): 4455-4463.
    [103] KATZ E., WILLNER I. Biomolecule-functionalized carbon nanotubes: Applications in nanobioelectronics [J]. Chem. phys. Chem., 2004, 5 (8): 1085-1104.
    [104] GOODING J J, WIBOWO R, LIU J Q, et al. Protein Electrochemistry Using Aligned Carbon Nanotube Arrays [J]. J. Am. Chem. Soc., 2003, 125(30): 9006-9007.
    [105] CAI C X, CHEN J. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode [J]. Anal. Biochem. 2004, 325 (2): 285-292.
    [106] CAI C X, CHEN J. Direct electrochemistry of horseradish peroxidase at a carbon nanotube electrode [J]. Acta Chim. Sinica, 2004, 62 (3): 335-340.
    [107] ZHAO F, WU X, WANG M, LIU Y, et al. Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials[J]. Anal. Chem, 2004, 76(17): 4960-4967.
    [108] LIOUBASHEVSKI O, CHEGEL V I, PATOLSKY F, et al. Enzyme-catalyzed bio-pumping of electrons into Au-nanoparticles: A surface Plasmon resonance and electrochemical study [J]. J. Am. Chem. Soc., 2004, 126 (22): 7133-7143.
    [109] HE P, HU N, RUSLING J F. Driving forces for layer-by-layer self-assembly of films of SiO2 nanoparticles and heme proteins [J]. Langmuir, 2004, 20(3): 722-729.
    [110] TOPOGLIDIS E, CASS A.E.G, O’REGAN B, DURRANT J R. Immobilisation and bioelectrochemistry of proteins on nanoporous TiO 2 and ZnO films [J]. J. Electroanal. Chem., 2001, 517(1-2): 20-27.
    [111]唐芳琼,孟宪伟,陈东,冉均国,苟立,郑昌琼.纳米颗粒增强的葡萄糖生物传感器[J].中国科学(B辑), 2000, 30(2): 119-124.
    [112] ZHANG Y, HE P, HU N. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: Direct electrochemistry and bioelectrocatalysis [J]. Electrochimica Acta, 2004, 49(12): 1981-1988.
    [113] LIU S, DAI Z, CHEN H, JU H. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor[J].Biosens. Bioelectron, 2004, 19(9): 963-969.
    [114] DEERE J, MAGNER E, WALL J G, HODNETT B K. Chem. Commun. 2001,5:465-466.
    [115] DEERE J, MAGNER E, WALL J G, HODNETT B K, [J] Stud. Surf. Sci. Catal.2001, 135, 3694.
    [116] Deere J, Magner, E, Wall J G, Hodnett, B. K.[J] J. Phys. Chem. B 2002,106(29), 7340-7347.
    [117] DEERE J, MAGNER E, WALL J G, HODNETT B K. Catal. Lett. 2003, 85(1-2):19-23.
    [118] BAI Y, YANG H, YANG W.W, et al. Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction [J]. Sensors and Actuators B.
    [119] HAN Y J, JORDAN T, WASTON, GALEN D. Catalytic activity of mesoporous Silicate-immobilized-chlorperoxidase [J]. J Molecular Catalysis B: enzymatic, 2002, 17(1): 1-8.
    [120] ZHANG M, SMITH A, GORSKI W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes [J]. Anal. Chem,2004, 76(17): 5045-5050.
    [121] GONG K, ZHANG M, YAN Y, et al. Sol-Gel-Derived ceramic-carbon nanotube nanocomposite electrodes: Tunable electrode dimension and potential electrochemical applications [J]. Anal. Chem., 2004, 76(21): 6500-6505.
    [122]谢钢,张秋禹,李铁虎.磁性高分子微球[J].高分子通报, 2001, 6:38.
    [123]邱广明,孙宗华.磁性高分子微球共价结合中性蛋白酶[J].生物医学工程杂志,199512(3): 209.
    [124] YABUKI S, SHINOHARA H, AIZAWA M. Electro-conductive enzyme membrane [J]. J. Chem. Soc, Chem. Commun, 1989, 14: 945-946.
    [125] MATSUE T, KASAI N, NARUMI M, et al. Electro-transfer from NADH dehydrogenase to polypyrrole and its applicability to electrochemical oxidation of NADH[J]. J. Electroanal. Chem. 1991, 300(1-2): 111-118.
    [126] TATSUE T, GONDAIRA M, WATANABE T. Peroxidase-incorporated polypyrrole membrane electrodes [J]. Anal. Chem. 1992, 64(10): 1183-1187.
    [127]陈小乐,胡乃非,曾泳淮.细胞色素c在Eastman AQ聚离子薄膜电极上的直接电化学[J].北京师范大学学报(自然科学版), 2002,38 (4): 515-520.
    [128] SUYE S, ISNIGAKI A. Immobilization of glucose in poly-(L-lysine)-modified polycarbonate membrane [J]. Biotechn Appl. Biochem, 1998, 27(3): 245.
    [129] MANO N, KIM H H, HELLER A. On the relationship between the characteristics of bilirude oxidases and O2 cathodes based on their“wiring”[J]. J. Phys. Chem. B, 2002, 106(34): 8842-8848.
    [130] FERNANDEZ J L, MANO N, HELLER A, et al. Optimization of“wired”enzyme O2-electroreduction catalyst compositions by scanning electrochemical microscopy [J]. Angew. Chem. Int. Edit., 2004, 43 (46): 6355-6357.
    [131] SHI L X, XIAO Y, WILLNER I. Electrical contacting of glucose oxidase by DNA-templated polyaniline wires on surfaces [J]. Electrochem. Commun. 2004, 6 (10): 1057-1060.
    [132] CAI C X, CHEN J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes [J]. Anal. Biochem Anal. Biochem. 2004, 332(1):75-83.
    [133] LIU Y, WANG M, ZHAO F, et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix [J].Biosens. Bioelectron Biosens. Bioelectron. 2005, (21): 984-988.
    [134] HUANG Y X, ZHANG W J, XIAO H, et al. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode [J]. Biosens. Bioelectron. 2005, (21): 817-821.
    [135] LI J W, FAN C, et al. Influence of ionic liquids on the direct electrochemistryof glucose oxidase entrapped in nanogold-N, N-dimethylformamide-ionic liquid composite film [J]. Electrochimica Acta 2007, 52 (20): 6178-6185.
    [136] LEE J, KIM J, J. JIA H, KIM M I, et al. Simple synthesis of hierarchically ordered mesocellular mesoporous silica materials hosting crosslinked enzyme aggregates[J]. Small, 2005, 1(7): 744-753.
    [137] HARTMANN M. Ordered mesoporous materials for bioadsorption and biocatalysis [J]. Chem. Mater 2005, 17(18): 4577-4593.
    [138] KIM M I, KIM J, LEE J, et al. Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: A simple and effective method for enzyme stabilization [J]. Biotechnol. Bioeng 2007, 96(2): 210-218.
    [139] ZHAO D, HUO Q, FENG J, et al. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures[J]. J. Am. Chem. Soc, 1998, 120(24): 6024-6036.
    [140] ZHAO D Y, FENG J L, HUO Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279(5350): 548-552.
    [141] HAN Y J, KIM J M, STUCHY G. D. Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15 [J]. Chem. Mater, 2000, 12(8): 2068-2069.
    [142] ZHENG L, ZHANG S, ZHAO L, et al. Resolution of N-(2-ethyl-6-methylphenyl)alanine via free and immobilized lipase from Pseudomonas cepacia[J]. J. Mol. Catal. B: Enzym, 2006, 38(3-6): 119-125.
    [143] SALIMI A, SHARIFI E, NOORBAKHAH A, et al. Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide nanoparticles[J]. Electrochem Commun, 2006, 8(9): 1499-1508.
    [144] WASHMON-KRIEL L, JIMENEZ V L, BALKUS K J, et al. Cytochrome c immobilization into mesoporous molecular sieves[J]. J. Mol. Catal. B-Enzym, 2000, 10(5): 453-469.
    [145] WANG Y, CARUSO F. Mesoporous Silica Spheres as Supports for Enzyme Immobilization and Encapsulation [J]. Chem. Mater, 2005, 17(5): 953-961.
    [146] KISLER J M, DAHLER A, STEVENS G. W, et al. Mechanical properties of mesoporous silicas and alumina–silicas MCM-41 and SBA-15 studied by N2 adsorption and 129Xe NMR [J]. Micro. Meso. Mat, 2001, 44-45: 769-774.
    [147] KISLER J M, STEVENS G. W, O’Connor A J. Adsorption of Proteins on Mesoporous Molecular Sieves [J]. Mater. Phys. Mech, 2001, 4: 89-93.
    [148] TAKAHASHI H, LI B, SASAKI T, et al. Catalytic Activity in Organic Solvents and Stability of Immobilized Enzymes Depend on the Pore Size and Surface Characteristics of Mesoporous Silica [J]. Chem. Mater, 2000, 12(11): 3301-3305.
    [149] YIU H P, BOTTING C H, BOTTING N P, et al. Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve [J]. Phys. Chem, Chem Phys. 2001, 3: 2983-2985.
    [150] DIAZ J F, BALKUS K J. Enzyme immobilization in MCM-41 molecular sieve[J]. J. Mol. Catal. B-Enzym, 1996, 2(2-3): 115-126.
    [151] GIMON-KINSEL M E, JIMENEZ V L, WASHMON L, et al. Mesoporous Molecular Sieve Immobilized Enzymes [J]. Stud. Surf. Sci. Catal, 1998, 117: 373-380.
    [152] ZHAO Y D, ZHANG W D, CHEN H, LUO Q M. Direct electron transfer of glucose oxidase molecules adsorbed onto carbon nanotube powder microelectrode [J]. Anal. Sci. 2002, (18): 939-941.
    [153] LIN J, WANG X. Preparation, microstructure, and properties of novel low-κbrominated epoxy/mesoporous silica composites [J]. European Polymer Journal. 2008, 44(5): 1414-1427.
    [154] KAUPPIEN J K , MOFFATT D J, MANTSCH H H , et al.[J].J. Appl. Spectrosc. 1981, 35(1): 271-276.
    [155] ZHAO X J, MAI Z B, KANG X H, ZOU X Y. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay–chitosan-gold nanoparticle nanocomposite [J]. Biosens. Bioelectron. 2008, 23(7): 1032-1038
    [156] SWOBODA B E P, MASSEY V. [J] Biol. Chem. 1965, (240): 2209-2215.
    [157] ZHAO Y D, ZHANG W D, CHEN H, LUO Q M. Direct electron transfer of glucose oxidase molecules adsorbed onto carbon nanotube powder microelectrode [J]. Anal. Sci. 2002, (18): 939-941.
    [158] MENG X W, TANG F Q, RAN Y G, GOU L. Chemistry. 2001, (6): 364-367.
    [159]江龙,量子化尺寸纳米颗粒及其在生物体系中的作用[J]无机化学学报2000,16(2):185-194.
    [160] HOSHI T, ANMI J, OSA T. Controlled Deposition of Glucose Oxidase on Platinum Electrode Based on an Avidin/Biotin System for the Regulation of Output Current of Glucose Sensors [J]. Anal. Chem. 1995, 67 (4): 770-774.
    [161] COHEN I A. Dimeric nature of hemin hydroxides [J]. J. Am. Chem. Soc. 1969, (91): 1980-1983.
    [162] YU C, FAN J, TIAN B, ZHAO D. Morphology Development of Mesoporous Materials: a Colloidal Phase Separation Mechanism [J]. Chem. Mater. 2004,16(5): 889-898.
    [163] LAVIRON E. General expression of the linear potential sweep voltammogram in the case of Diffusionless electrochemical systems [J].J. Electroanal. Chem. 1979, (101): 19-28.
    [164] GUISEPPI–ELIE A, LEI C. Direct electron transfer of glucose oxidase on carbon Nanotubes [J]. Nanotechnology. 2002, (13): 559-564.
    [165] CHI Q, ZHANG J, DONG S, WANG E. Direct electrochemistry and surface characterization of glucose oxidase adsorbed on anodized carbon electrode [J]. Electrochim. Acta. 1994,39 (16): 2431-2438.
    [166] CAI C X, CHEN J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes [J]. Anal. Biochem. 2004, 332(1): 75-83.
    [167] LIU S Q, JU H X. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode Biosens. Bioelectron [J]. 2003, 19(3): 177-183.
    [168] XIAO Y, PATOLSKY F. KATZ E, et al.“Plugging into enzymes”: Nanowiring of redox enzymes by a gold nanoparticle [J]. Science. 2003, 299(5614): 1877-1881.
    [169] CHRISTISON G B, MACKENZIE H A. Med. Boil. Eng. Comp. 1993, 31(3): 284-290.
    [170] WANG G, THAI N M, YAU S T. Electrochemistry Communications [J]. 2006, 8(6) 987-992.
    [171] ZHOU Y, YANG H, CHEN H Y. Direct electrochemistry and reagentless biosensing of glucose oxidase immobilized on chitosan wrapped single-walled carbon nanotubes [J].Talanta. 2008, 76(2): 419-423.
    [172] DONG S J. Cobalt porphyrin nafion film on carbon microarray electrode to monitor oxygen for enzyme analysis of glucose [J]. Electroanalysis, 1991, 3(6): 485-591.
    [173] DIXON B M, LOWRY J P, O’NEILL D R. Characterization in vitro and in vivo of the oxygen dependence of an enzyme/polymer biosensor for monitoring brain glucose[J].Journal of Neuroscience Methods. 2002, 119(2): 135-142.
    [174] SUN Y Y, WANG H Y, SUN C Q.Amperometric glucose biosensor based on layer-by-layer covalent attachment of AMWNTs and IO4?-oxidized GOx [J].Biosens. Bioelectron. 2008, 24(1): 22-28.
    [175] LU K, CHUNG D D L. Carbon 1997, 35: 427.
    [176] RYOO R, JOO S H, JUN S. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation [J]. J, Phys. Chem. B 1999, 103(37): 7743-7746.
    [177] JOO S H, CHOI S J, OH I, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J]. Nature 2001, 412(12): 169-172.
    [178] LEE J S, JOO, S H, RYOO R. Synthesis of Mesoporous Silicas of Controlled Pore Wall Thickness and Their Replication to Ordered Nanoporous Carbons with Various Pore Diameters [J]. J. Am. Chem. Soc. 2002, 124(7):1156-1157.
    [179] YAN Y, WEI J, ZHANG F Q. The pore structure evolution and stability of mesoporous carbon FDU-15 under CO2, O2 or water vapor atmospheres [J]. Microporous and Mesoporous Materials 2008, 113(1-3): 305-314.
    [180] MENG Y, GU D, ZHANG F Q. A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic?Organic Self-Assembly [J]. Chem. Mater. 2006, 18 (18): 4447-4464.
    [181] FENG J J, XU J J, CHEN H Y. Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly [J].Biosens. Bioelectron 2007, 22(8): 1618-1624.
    [182] VINU A, STREB V C, MARTIN HARTMANN M. Adsorption of Cytochrome C on New Mesoporous Carbon Molecular Sieves [J]. J. Phys. Chem. B, 2003, 107(33): 8297-8299.
    [183] YU J J, LI D, YU T, et al. Development of amperometric glucose biosensor through immobilizing enzyme in a Pt nanoparticles/mesoporous carbon matrix [J].Talanta 2008, 74(5): 1586-1591.
    [184] MENG Y, GU D, ZHANG F Q, et al. Ordered Mesoporous Polymers and Homologous Carbon Frameworks: Amphiphilic Surfactant Templating and Direct Transformation [J]. Angew. Chem. Int. Ed. 2005, 44(43): 7053-7059.
    [185] RUSLING F, FORSTER R J, J. Electrochemical catalysis with redox polymer and polyion–protein films [J].Colloid. Interf. Sci. 2003, 262(1): 1-15.
    [186] BOURDILLON C, DEMAILLE C, GUERIS J, et al. A fully active monolayer enzyme electrode derivatized by antigen-antibody attachment [J]. J. Am. Chem. Soc. 1993, 115(26): 12264-12269.
    [187] ZHOU M, SHANG L, LI B, et al. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors [J].Biosens. Bioelectron 2008, 24(3): 442-447.
    [188] KAUPPIEN J K, MOFFATT D J, MANTSCH H H, et al. Appl. Spectrosc 1981, 35(1):271-274.
    [189] NDAMANISHA J C, GUO L P, WANG G.. Mesoporous carbon functionalized with ferrocenecarboxylic acid and its electrocatalytic properties[J].Microporous Mesoporous Mater. 2008, 113(1-3):114-121.
    [190] ZHAO X J, MAI Z B, KANG X H, et al. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay–chitosan-gold nanoparticle nanocomposite [J]. Biosens. Bioelectron. 2008, 23(7): 1032-1038.
    [191] FORTIER G., VAILLANCOURT M, BéLANGER D I. evaluation of Nafion as media for glucose-oxidase immobilization for the development of an amperometric glucose biosensor [J]. Electroanalysis 1992, 4(3): 275.
    [192] LAVIRON E. General Expression of the linear potential sweep voltammogram in the case of Diffusionless electrochemical systems [J]. Electroanal. Chem 1979, 101(1): 19-28.
    [193] CHI Q, ZHANG J, DONG S J, WANG E. Direct electrochemistry and surface characterization of glucose oxidase adsorbed on anodized carbon electrodes [J]. Electrochim. Acta1994, 39(16): 2431-2438.
    [194] CAI C X, CHEN J. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode [J].Anal. Biochem 2004, 332(1): 75-83.
    [195] LIU S Q, JU H X. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode [J].Biosens. Bioelectron 2003, 19(3): 177-183.
    [196] WANG G., THAI N M, YAU S T. Preserved enzymatic activity of glucose oxidase immobilized on an unmodified electrode [J].Electrochemistry Communications. 2006, 8(6): 987-992.
    [197] DIXON B M, LOWRY J P, O’NEILL R D. Characterization in vitro and in vivo of the oxygen dependence of an enzyme/polymer biosensor for monitoring brain glucose [J].J. Neurosci Meth 2002, 119(2): 135-142.
    [198] XIAO Y, PATOLSKY F, KATZ E, et al.“Plugging into enzymes”: Nanowiring of redox enzymes by a gold nanoparticle [J]. Science 2003, 299(5614): 1877-1881.
    [199] TUPPY H, PALEUS S. [J] Acta Chem.Scand, 1955, (9): 353-364.
    [200]王凤彬,姜慧君,邢巍.微过氧化物酶-11在聚赖氨酸修饰银电极上的电化学及电催化[J]物理化学学报, 2002, 18 (5): 404-408.
    [201] KATZ E, FILANOVSKY B, WILLNER I. A biofuel cell based on two immiscible solvents and glucose oxidase and microperoxidase-11 monolayer-functionalized electrode [J].New. J. Chem, 1999, 23(5): 481-487.
    [202] LIU Y, WANG M K, et al. Direct electron transfer and electrocatalysis of microperoxidase immobilized on nanohybrid film [J]. Journal of Electroanalytical Chemistry 2005, 581(1): 1-10.
    [203] HUANG W M, JIA J B, et al. Hydrogen peroxide biosensor based onmicroperoxidase-11 entrapped in lipid membrane[J]. Biosensors & Bioelectronics, 2003, 18(10): 1225-1230.
    [204] COLE J L, AVIGLIANO L, MORPURGO L, et al. Spectroscopic and chemical studies of the ascorbate oxidase trinuclear copper active site: comparison to laccase [J]. J. Am. Chem. Soc., 1991, 113(24): 9080-9089.
    [205] TARASEVICH M R, BOGDANOVSKAYA V A, KAPUSTIN A V. Nanocomposite material laccase/dispersed carbon carrier for oxygen electrode [J]. Electrochemistry Communications, 2003, 5(6): 491-496.
    [206] LINDGREN A, RUZGAS T, GORTON L. Direct electron transfer of native and modified peroxidases [J]. Curr. Top. Anal Chem. 2001, 2: 71-94.
    [207] LIU T, ZHONG J, GAN X, et al. Wiring Electrons of Cytochrome c with Silver Nanoparticles in Layered Film [J]. Chem. Phys. Chem, 2003, 4(12): 1364-1366.
    [208] KRAJEWSKA B. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review [J]. Enzyme. Microb. Technol, 2004, 35 (2-3): 126–139.
    [209] HUANG H, HU N F, ZENG Y H, et al. Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films [J].Anal. Biochem, 2002, 308 (1): 141-151.
    [210] SANTUCCI R, REINHARD H, BRUNORI M, et al. Direct electrochemistry of the undecapeptide from cytochrome c (microperoxidase) at a glassy carbon electrode [J] J. Am. Chem. Soc, 1988, 110 (25): 8536-8537.
    [211] XU Z A, GAO N, ChEN H G, et al. Biopolymer and Carbon Nanotubes Interface Prepared by Self-Assembly for Studying the Electrochemistry of Microperoxidase-11J].Langmuir, 2005, 21 (23): 10808-10813.
    [212] LIU Y, WANG M K, ZHAO F, et al. Direct electron transfer and electrocatalysis of microperoxidase immobilized on nanohybrid film [J]. J.Electroanal. Chem, 2005, 581 (1): 1-10
    [213] WANG M K, SHEN Y, LIU Y, et al. Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes [J]. J. Electroanal. Chem, 2005, 578 (1): 121-127.
    [214] BEHERA S, RETNARAJ C. Mercaptoethylpyrazine promoted electrochemistry of redox protein and amperometric biosensing of uric acid [J]. Biosens. Bioelectron, 2007, 23 (4): 556-561.
    [215] IIJIMA S. Helical microtubeles of graphitic carbon [J].Nature, 1991, 354(1): 56-58.
    [216] IIJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363(17): 603-605.
    [217] THOSTENSON E T, REN Z F, T. CHOU W. Advances in the science and technology of carbon nanotubes and their composites: a review [J].Compos. Sci. Technol. 2001, 61(13): 1899-1912.
    [218] DILLON A C, JONES K M, BEKKEDAHL T A, et al. Storage of hydrogen in single-walled carbon nanotubes [J]. Nature, 1997, 386(27): 377-379.
    [219] PLANEIX J M, COUSTEL N, COQ B, et al. Application of carbon nanotubes as supports in heterogeneous catalysis [J].J. Am. Chem. Soc. 1994, 116(17):7935-7936.
    [220] CRESPI V H, COHEN M L, RUBIO A. In situ band gap engineering of carbon nanotubes [J].Phys. Rev. Lett., 1997, 79(11): 2093-2096.
    [221] LIU C, SICHEL E K, HOCH R, et al. High power electrochemical capacitors based on carbon nanotube electrodes [J]. Appl. Phys. Lett, 1997, 70(11): 1480-1482.
    [222] HALICIOGLU T, JAFFE R L. Solvent effect on functional groups attached to edges of carbon nanotubes [J]. Nana Lett, 2002, 2(6):573-575.
    [223] WANG J. Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis [J]. 2005, 17(1): 7-14.
    [224] KATZ E, WILLNER I. Biomolecule-functionalized carbon nanotubes: applications in nanbioelectronics [J], Chem Phys Chem.2004, 5(8): 1084-1140.
    [225] LIU Y, WANG M K, ZHAO F, et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix, Biosens. Bioelectron [J].2005, 21(6): 984-988.
    [226] CAE C, CHEN J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes [J]. Anal. Biochem, 2004, 332(1): 75-83.
    [227] WANG J X, LI M X, SHI Z J, et al. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes [J].Anal. Chem., 2002, 74(10): 1993-1997.
    [228] SMART S K, CASSADY A I, LU G. Q, et al. The biocompatibility of carbon nanotubes, Carbon [J], 2006, 44(6): 1034-1047.
    [229] GUISEPPI-ELIE A, LEI C, BAUGHMAN R. Direct electron transfer of glucose oxidase on carbon nanotubes [J], Nanotechnology, 2002, 13(5): 559-564.
    [230] LIU Y, ZOU X Q, DONG S J. Electrochemical Characteristics of Facile Prepared Carbon Nanotubes-Ionic Liquid Gel Modified Microelectrode and Application in Bioelectrochemistry [J], Electrochem. Commun, 2006, 8(9): 1429-1434.
    [231] XU Z A, GAO N, CHEN H G, et al. Biopolymer and Carbon Nanotubes Interface Prepared by Self-Assembly for Studying the Electrochemistry of Microperoxidase-11 [J]. Langmuir, 2005, 21(23): 10808-10813.
    [232] LIU Y, WANG M K, ZHAO F, et al. Direct electron transfer and electrocatalysis of microperoxidase immobilized on nanohybrid film [J]. Electroanalytical Chemistry, 2005, 81(1): 1-10.
    [233] BARD A.J, FAULKNER L.R. Electrochemical Methods: Fundamentals and Applications [M]. New York, Wiley, 1980.
    [234] RAZUMAS V, KAZLAUSKAITE J, VIDZEIūNAITEA R. Electrocatalytic reduction of hydrogen peroxide on the microperoxidase-11 modified carbon paste and graphite electrodes [J]. Bioelectrochem. Bioenerg, 1996, 39(1):139-143.
    [235]杨海朋,纳米电化学生物传感器研究[D],北京,清华大学博士后研究报告,清华大学, 2005.
    [236] KIM J, JIA H, WANG P. Challenges in biocatalysis for enzyme-based biofuel cells [J].Biotechnology Advances, 2006, 24(3): 296-308.
    [237] XIAO Y, PATOLSKY F, E. KATZ, et al.“Plugging into Enzymes”: Nanowiring of Redox Enzymes by a Gold Nanoparticle [J]. Science, 2003, 299(5614): 1877-1881.
    [238] LIU S, JU H. Electrocatalysis via direct electrochemistry of myoglobin immobilized on colloidal gold nanoparticles [J]. Electroanalysis, 2003, 15(18): 1488-1493.
    [239] LIU Y, WANG M, ZHAO F, et al. Direct electron transfer and electrocatalysis of microperoxidase immobilized on nanohybrid film [J]. Journal of Electroanalytical Chemistry, 2005, 581(1): 1-10.
    [240] SALIMI A, SHARFI E, NOORBAKHSH A, et al. Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on glassy carbon electrode modified with nickel oxide nanoparticles [J]. Electrochem Commun., 2006, 8(9): 1499-1508.
    [241] LVOV Y, MUNGE B, GIRALDO O, et al. Films of manganese oxide nanoparticles with polycations or myoglobin from alternate-layer adsorption[J].Langmuir, 2000, 16(23), 8850-8857.
    [242] KIMIZUKA N, TANAKA M, KUNITAKE T. Spatially controlled synthesis of protein/inorganic nano-assembly: Alternate molecular layers of cyt c and TiO2 nanoparticles, Chem. Lett [J].1999, 12, 1333-1334.
    [243] CHU X, DUAN D, SHEN C, et al. Amperometric glucose biosensors based on electrodeposition of platinum nanoparticles onto covalently immobilizedcarbon nanotube electrode [J]. Talanta, 2007, 71(5): 2040-2047.
    [244] AZAMIAN B R, DAVIS J J, COLEMAN K S. Bioelectrochemical single-walled carbon nanotubes [J].J Am Chem Soc, 2002, 124(43):12664-12665.
    [245] LIU Y, WANG M, ZHAO F, et al. A Low-cost Biofuel Cell with pH-Dependent Power Output Based on Porous Carbon as Matrix[J]. Chem. A. Eur. J, 2005, 11(17): 4970-4974.
    [246] KAMBHANPATI D K, JAKOB T A M. Novel silicon dioxide sol-gel films for potential sensor applications: a surface plasmon resonance study [J].Langmuir, 2001, 17(4): 1169-1175.
    [247] QHOBOSHEANE M, SANTRA S, ZHANG P, et al. Biochemically functionalized silica nanoparticles [J]. Analyst, 2001,126 (8): 1274-1278.
    [248] CHEN Z J, OU X M, TANG F Q, et al. Effect of nanometer particles on the adsorbability and enzymatic activity of glucose oxidase, Colloid Surface B: Biointerface [J]. 1996, 7(3-4): 173-179.
    [249] WERNER S, ARTHUR F. Controlled growth of monodisperse silica spheres in the micron size range [J]. J. Colloid Interf. Sci., 1968, 26(1): 62-69.
    [250] CHEN S L, DONG P, YANG G. H, et al. Characteristic aspects of formation of new particles during the growth of monosize silica seeds [J]. J. Colloid Interf. Sci., 1996, 180(1): 237-241.
    [251] BUINING P, Lizmarzan L, PHILIPSE A. A simple preparation of small, smooth silica spheres in a seed alcosol for Stober synthesis[J]. J. Colloid Interf. Sci., 1996, 179(1): 318-321.
    [252] WANG J. Glucose biosensors: 40 years of advances and challenges [J].Electroanalysis 2001, 13(12): 983-988.
    [253] VAGO J M, DALL’ORTO V C, FORZANI E, et al. New bimetallic porphyrin film: An electrocatalytic transducer for hydrogen peroxide reduction, applicable to first-generation oxidase-based biosensors[J].Sens. Actuators B, 2003, 96(1-2): 407–412.
    [254] WANG K, XU J J, CHEN H Y. A novel glucose biosensor based on the nanoscaled cobalt phthalocyanine–glucose oxidase biocomposite Biosens. Bioelectron [J].2005, 20 (7):1388-1396.
    [255] LEI C X, WANG H, SHEN G L, et al. Immobilization of enzymes on the nano-Au film modified glassy carbon electrode for the determination of hydrogen peroxide and glucose [J]. Electroanalysis, 2004, 16(9): 736-740.
    [256] XIAO Y, JU H X, CHEN H Y. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrodesurface by cysteamine monolayer [J].Anal. CHim. Acta. 1999, 391(1): 73-82.
    [257] FIORITO P A, BRETT C M A, C′Ordoba TORRESI S I. Polypyrrole/copper hexacyanoferrate hybrid as redox mediator for glucose biosensors [J].Talanta 2006, 69(2):403-408.
    [258] O’HALLORAN M P, PRAVDA M, GUILBAULT G G. Prussian Blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors [J].Talanta 2001, 55(3): 605–611.
    [259] XU J Z, ZHU J J, WU Q, et al. An amperometric biosensor based on the coimmobilization of horseradish peroxidase and methylene blue on a carbon nanotubes modified electrode [J]. Electroanalysis 2003, 15(3): 219-224.
    [260] LIANDE Z, SHOBHA JEYKUMARI D R, SRIMAN NARAYANAN S. Fabrication of bienzyme nanobiocomposite electrode using functionalized carbon nanotubes for biosensing applications [J].Biosensors and Bioelectronics 2007, 23(4): 528-535.
    [261] DEERE J, MAGNE E J, WALL G., et al. Mechanistic and Structural Features of Protein Adsorption onto Mesoporous Silicates [J]. J. Phys. Chem. B, 2002, 106(29): 7340-7347.
    [262] QU X G., QIAO Z H, LU T H. Study on the electrochemical behaviour of Cytochrome c [J].Chinese J. Anal. Chem., 1994, 22(12): 1267-1272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700