镁基非晶态合金的制备及其结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁是现代工业重要的金属材料,大块非晶态合金又是一种具有独特结构和性能的新型材料,制备和研究镁基大块非晶态合金是物理和材料研究者的共同热点,也具有很好的应用前景。
     采用机械合金化法研究了球磨时间、转速、球料比和过程控制剂等工艺参数对Mg-Cu二元合金相图上的五个主要成分配方的球磨过程的影响。发现化合物成分易于形成非晶态结构,球磨时间、转速和球料比对合金转变过程有着重要影响,过程控制剂的使用对球磨过程也有一定的影响。随着球磨时间的增加,MgCu合金粉末在球磨过程中首先发生粉末颗粒度的逐步细化,然后Mg颗粒逐步扩散、固溶入Cu颗粒中,并形成Mg在Cu中的过饱和固溶体,当固溶体的变形能量积聚到很大时,会发生晶体结构的失稳,最终形成Mg和Cu分布均匀的非晶态合金粉末。
     采用真空甩带法制备了MgCuY非晶态合金薄带,DSC测试确定了表示非晶形成能力的T_g、T_x、T_l、T_(rg)和ΔT_x等温度参数,同时提出了用晶化放热值和熔化吸热值的比值(称作约化玻璃转变焓)这一新参数来表示非晶形成能力,新参数与其它参数可以相互验证,配合使用。在确定温度参数时,提出了微商极值法处理DSC曲线数据,确定特征温度的方法。在确定晶化起始温度时,采用向下的纵坐标表示放热的DSC图;在确定玻璃转变温度时,采用向上的纵坐标表示放热的DSC图,对转变局域的曲线微商,n次微商曲线上的极小值温度比n-1次微商曲线上的极小值温度更低,更接近玻璃转变起始温度。采用2次微商曲线上的极小值表示特征温度就有很好的精度,该微商极值法对同一组数据求解的特征温度完全一致,存在很好的重复性和再现性。该方法也较好地解决了国际热分析联合会推荐的切线法在求解DSC曲线上的温度参数时精度较差的问题。
     设计制造了新的薄带脆性测量实验装置,该装置测量准确,较好地解决了薄带脆性测量重复性差的问题。根据热传导理论,数学解析求解得到薄带的温度场和薄带自由面的冷却速度方程式。发现薄带自由面的凝固结束瞬间的冷却速度与薄带厚度的平方根成反比。根据该方程式计算得到的50μm厚镁基非晶薄带的自由侧在凝固结束时的冷却速度为5.84×10~6K/s,与文献报道的冷却速度(10~6K/s)相当。
     研究了添加Al、Ni、La、Tb和Gd等第四组元对MgCuY三元非晶态合金非晶形成能力的影响,并制备了相应的四元大块非晶态合金。用Al部分替代Mg对合金的玻璃形成能力影响较大,虽然可以形成非晶,但其玻璃形成能力降低。当少量的Ni部分替代Cu时,扩大了过冷液相区的宽度(当x=1时,ΔT_x的宽度可达43.30K)。当用较多的Ni部分替代Cu时,提高了非晶形成能力(当x=3时,T_(rg)可达0.5892)。用Ni部分替代Cu,提高了合金的玻璃形成能力,但是降低了合金的热稳定性。La部分替代Y对合金的玻璃形成能力和热稳定性影响较大。当1%、2%的La部分替代Y时,降低了其热稳定性,提高了其玻璃形成能力。当3%、4%的La部分替代Y时,此时La的加入超过了合金所能承受的最低限度,合金从而失去热稳定性,玻璃形成能力降低,并出现晶体相。随着合金元素Tb含量的增加,Mg_(65)Cu_(25)Y_(10-x)Tb_x(x=0,2,4,6,8,10)块体非晶态合金的玻璃形成能力逐渐增强,当x=8时,合金的玻璃形成能力最强,随后当x=10时,有所下降。Gd含量的增加有助于增加Mg_(65)Cu_(25)Y_(10-x)Gd_x(x=0,4,10)块体非晶态合金的玻璃形成能力。
     研究了非晶态合金Mg_(65)Cu_(15)Ag_(10)Y_(10)和Mg_(65)Cu_(22)Ni_3Y_(10)的晶化过程,其晶化过程存在显著的动力学特征,等温加热时,随着保温温度的增加,孕育时间缩短,同耐热流量增加;连续加热时,随着加热速度的提高,所有特征温度移向高温端,并且热流量显著增加。非晶态合金Mg_(65)Cu_(15)Ag_(10)Y_(10)的等温晶化激活能是192.92 KJ/mol;非等温晶化用Kissinger方程、Ozawa方程和FWO方程确定的激活能分别是186.12,184.40和180.86 KJ/mol(加热速度是5,10,15和20 K/min)以及107.52,109.95和110.15 KJ/mol(加热速度是20,40,60和80 K/min)。非晶态合金Mg_(65)Cu_(22)Ni_3Y_(10)的等温晶化激活能是218.97 KJ/mol;非等温晶化用Kissinger方程、Ozawa方程和FWO方程确定的激活能分别是117.48,125.47和114.29 KJ/mol。非晶态合金Mg_(65)Cu_(15)Ag_(10)Y_(10)和Mg_(65)Cu_(22)Ni_3Y_(10)的等温晶化过程的Avrami晶化指数n均位于1.5~2.5区间内,说明晶化过程属于扩散控制的晶核生长过程。
     在深入理解非晶态合金理论的基础上,本文最后提出了表示非晶态合金配方的混乱度的新参数——相对标准差,其物理意义清楚,和表示非晶形成能力的临界冷却速度有较好的对应关系,对合金组元的选择有一定的指导作用,理论计算的二元合金体系组元的成分含量对现有的有些实验结果比较符合。但由于没有考虑合金组元的原子半径随着核最外层电子重新分配导致的变化,仅仅使用单质的原子半径进行计算的结果并不适合三元合金体系中组元成分的选择。指出合金组元的原子半径和单质的原子半径在数值上存在差异,混合热,价电子浓度等都是影响核外层电子分布和原子半径的因素。
Magnesium is very important metallic material for modern industry. However, bulk metallic glasses, a new material, have unique structure and novel properties. Integrating these two sides into a magnesium based bulk metallic glass is the focus for many physical scientist and material specialist. The bulk metallic glasses also possess promising application.
    At first, the effect of milling time, milling speed, ball/powder weight ratio and process control agents on the GFA (glass forming ability) of five powder blend with three eutectic compositions and two compound compositions based on the Mg-Cu binary phase diagram was studied under mechanical alloying conditions. X-ray diffraction results show that compound composition may be vitrified easily. Milling time, speed and ball/powder ratio have a key influence on the structure transforming process and process control agents have a definite influence. The particle size of powder becomes smaller and smaller firstly after milling. Then magnesium atoms diffuse and melt into crystal lattice of copper. At last all the magnesium atoms melt into the crystal lattice and supersaturation solid solute is formed. If the solid solute gets more energy at this time, the crystal lattice will crash and metastable amorphous state will replace.
    MgCuY amorphous ribbons were prepared by melt spinning process and the amorphous structure was testified by X-ray diffraction analysis and differential scanning calorimeter analysis. The values of T_g、 T_x、 T_1、T_(rg) and ΔT_x, which are the parameters to describe the GFA for bulk metallic glasses, are determined. The ratio of the crystallization heat and melting heat was presented as a new parameter—reduced glass transition enthalpy. DSC quantification analysis showed that this new parameter and old parameters gave consistent results when described the GFA of MgCuY amorphous ribbons. A new differential and extremum method was proposed to analysis DSC data and to determine characteristic temperature. Negative direction of y axis expresses exothermic in the DSC graph when determining onset crystallization temperature. While position direction of y axis expresses exothermic when determining T_g. If differentiating local data of DSC, the minimum value of the n multiple derivative is smaller than that of n-1 multiple derivative and it is closer to T_g. The minimum value of two times derivative is determined as T_g. The temperature is only and has enough precision. It is better than tangent method recommended by
    ICTA (international confederation for thermal analysis).
    A new experimental instrument for measuring the brittleness of ribbons was designed and fabricated. It solved the measurement of brittleness successfully. Heat transfer during rapid solidification processing of a ribbon prepared by melt spinning can be approximately modeled by a one dimensional heat conduction equation. The temperature distribution and the cooling rate within the ribbon are determined by integration of the equation based on heat transfer principle. According to the integration function, the cooling rate is in inverse proportion to the square of the thickness of the ribbon. When molten liquid of a 50 μm thick magnesium ribbon solidifies, the calculated cooling rate at the free surface of the ribbon is up to 5.85×10~6K/s. This result agrees very well with other estimated values reported previously.
    The influence of fourth constituent, Al, Ni, La, Tb and Gd, addition on the GFA of MgCuY bulk metallic glasses was studied and corresponding quaternary alloys were prepared. The GFA of Mg_(60-x)Al_xCu_(30)Y_(10) (x=0.3, 0.9, 2.1) bulk amorphous alloy will decrease while Al substituting Mg and the thermal stability and GFA of the amorphous alloy decreased at the same time. It is identified that the width of super cooled region ΔT_x of Mg_(65)Cu_(25-x)Ni_xY_(10) (x=1, 2, 3) will be enlarged with little Ni addition and the width will reach as much as 43.30K when x=1. The GFA will be increased with larger Ni addition and will reach up to 0.5892 when x=3. It indicates that a proper amount of Ni substituting Cu in the alloy will increase the GFA but decrease the thermal stability. La substituting Y have a significant influence on the thermal stability and GFA of the Mg_(65)Cu_(25)Y_(10-x)La_x (x=0, 0.35, 1, 2, 3, 4) bulk amorphous alloys. Bulk amorphous alloy has a largest glass-forming ability (T_(rg)=0.5872) when x=2. It is found that some crystalline phases appear in the matrix of the amorphous alloys when x=3 and x=4, indicating that the GFA of these alloys decreases markedly. The GFA of Mg_(65)Cu_(25)Y_(10-x)Tb_x (x=0, 2, 4, 6, 8, 10) amorphous alloys become more and more strong with the increment of Tb. The GFA of the Mg_(65)Cu_(25)Y_(10-x)Tb_x amorphous alloy is the strongest when x=8, and then drops when x=10. It is helpful to the GFA of Mg_(65)Cu_(25)Y_(10-x)Gd_x( x=0, 4, 10) alloy with larger Gd addition.
    The crystallization kinetics of amorphous alloy Mg_(65)Cu_(15)Ag_(10)Y_(10) and Mg_(65)Cu_(22)Ni_3Y_(10) were studied. The remarkable dynamics character exists in the crystallization process revealed by DSC curves. The incubation time is becoming shorter and heat flux is obviously enhancing with increasing temperature when
    isothermal heating. And the exothermal peaks are significantly shifted to higher temperatures and heat flux is also obviously enhancing with increasing heating rate when continuous heating. The overall activation energy for crystallization of amorphous alloy Mg_(65)Cu_(15)Ag_(10)Y_(10) are determined as 186.12, 184.40, and 180.86 KJ/mol for the heating rates used being 5, 10, 15, and 20 K/min, and 107.52, 109.95, and 110.15 KJ/mol for the heating rates used being 20, 40, 60, and 80 K/min, when using the Kissinger peak method, Ozawa peak method, and Ozawa's isoconversional method, respectively. The overall activation energy for crystallization of amorphous alloy Mg_(65)Cu_(22)Ni_3Y_(10) are determined as 117.48, 125.47, and 114.29 KJ/mol when using the Kissinger peak method, Ozawa peak method, and Ozawa's isoconversional method, respectively. The nucleation-and-growth kinetics is manifested as a rule in the early stages of the crystallization. The Avrami exponent, n, is larger than 1.5 and less than 2.5 for amorphous alloy Mg_(65)Cu_(15)Ag_(10)Y_(10) and Mg_(65)Cu_(22)Ni_3Y_(10) during isothermal heating; suggesting that the diffusion controlled three-dimensional growth dominates in the growth of the nucleation.
    A statistical term, standard deviation of radii, is used for describing the confusion degree of dense random packing of hard spheres with different radii in multicomponent amorphous alloys. The parameter has clear physical meaning and coincides with our common understanding of confusion degree. The greater the RD (r) value of a glass is, the greater its confusion degree and the lower its R_c is. The parameter can describe the packing confusion exactly and may be used for constituent selection and composition selection for binary alloy after further investigation. But it is not fit for ternary alloy. For further explaining the deviation of radii caused by mixture enthalpy, redistribution of valence electron and other factors should be considered.
引文
1.殷建华.世界镁工业的发展与前景[J].有色金属,2005,(7):58-66.
    2.殷建华.近年来世界镁工业的发展现状与前景[J].中国金属通报,2005,(31):8-13.
    3.周惦武,庄厚龙,刘金水,彭平.镁合金材料的研究进展与发展趋势[J].河南科技大学学报(自然科学版),2004,25(3):14-18.
    4.Stieger H.镁合金压铸笔记本电脑外壳[J].特种铸造及有色合金,2000,(S1):73.
    5.邓玉勇,朱江,李立.新型金属材料镁合金的发展前景分析[J].科技导报,2002,(10):37-39.
    6.谭建波,李立新,张国青等.镁合金压铸的现状及发展趋势[J].热加工工艺,2002,(3):57-59.
    7.张鹏,曾大本.异军突起的镁合金压铸[J].特种铸造及有色合金,2000,(6):55-57.
    8.宋才飞.中国压铸市场的机遇与挑战[J].特种铸造及有色合金,2004,(2):47-49.
    9. Dexing P, Jingtang W, Bingzhe D, Qihong S, Zhongjin Y. Relationships between quenching rates and properties in amorphous alloys[J]. Materials Letters, 1987, 5(11-12): 439-441.
    10. Svec P, Duhaj P. Growth of crystalline phase in amorphous alloys[J]. Materials Science and Engineering B, 1990, 6(4): 265-271.
    11. Wang WH, Dong C, Shek CH. bulk metallic glasses[J], materials science and engineering R, 2004, 44: 45-89.
    12. Bian Z, Kato H, Qin C, Zhang W, Inoue A. Cu-Hf-Ti-Ag-Ta bulk metallic glass composites and their properties[J]. Acta Materialia, 2005, 53(7): 2037-2048.
    13. Chen HS, Goldstein M. Anomalous Viscoelastic Behavior of Metallic Glasses of Pd—Si-Based Alloys[J]. Journal of Applied Physics, 1972, 43(4): 1642-1648.
    14. Chiriac H, Lupu N. Design and preparation of new soft magnetic bulk amorphous alloys for applications[J]. Materials Science and Engineering A, 2004, 375-377: 255-259.
    15. Drozdz D, Latuch J, Ferenc J, Kulik T. Crystallisation behaviour of rapidly quenched cast irons with small amount of boron[J]. Materials Science and Engineering A, 2004, 375-377: 722-727.
    16. Drozdz D, Latuch J, Kulik T. Bulk amorphous cast iron with small boron addition, produced by powder compaction at high pressure[J]. Journal of Alloys and Compounds, 2005, 395(1-2): 59-62.
    17. Ito F, Ando H, Watanabe Y, Ito T. Serum bilirubin fractions in cholestatic pediatric patients: Determination with Micronex high-performance liquid chromatography[J]. Journal of Pediatric Surgery, 1995, 30(4): 596-599.
    
    18. Hodge AM, Nieh TG. Evaluating abrasive wear of amorphous alloys using nanoscratch technique[J]. Intermetallics, 2004, 12(7-9): 741-748.
    
    19. Salimon AI, Ashby MF, Bréchet Y, Greer AL. Bulk metallic glasses: what are they good for[J]. Materials Science and Engineering A, 2004, 375-377: 385-388.
    
    20. Inoue A, Masumoto T. Mg-based amorphous alloys[J]. Materials Science and Engineering A, 1993, 173(1-2): 1-8.
    
    21. Klement JW, H WR, Pol D. Non-crystalline structure in solidified Gold-Silicon alloys[J]. Nature, 1960, 187(4740): 869-870.
    
    22. Pond R, Maddin R. A method of preparing rapidly solidified filamentary castings[J]. Trans.Met. Soc. AIME, 1969, 245: 2475-2476.
    
    23. Peker A, Johnson WL. A highly processable metallic glass: Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10.0)Be_(22.5)[J]. Appl. Phys. Lett., 1993, 63(17): 2342-2344.
    
    24. Mark CL, James MK, William LJ. Spheres of the metallic glass Au_(55)Pb_(22.5)Sb_(22.5) and their surface characteristics[J]. Applied Physics Letters, 1982, 40(5): 382-384.
    
    25. Drehman AJ, Greer AL, Turnbull D. Bulk formation of a metallic glass: Pd_(40)Ni_(40)P_(20)[J]. Applied Physics Letters, 1982, 41(8): 716-717.
    
    26. Kui HW, Greer AL, Turnbull D. Formation of bulk metallic glass by fluxing[J]. Applied Physics Letters, 1984, 45(6): 615-616.
    
    27. Inoue A, Masumoto T. Mg-based amorphous alloys[J]. Materials Science & Engineering, 1993, A173: 1-8.
    
    28. Yuan G, Inoue A. The effect of Ni substitution on the glass-forming ability and mechanical properties of Mg-Cu-Gd metallic glass alloys[J]. Journal of Alloys and Compounds, 2005, 387(1-2): 134-138.
    
    29. Inoue A, Kohinata M, Tsai A-P, Masumoto T. Mg-Ni-La Amorphous Alloys with a Wide Supercooled Liquid Region[J]. Materials Transactions, JIM, 1989, 30(5): 378-381.
    
    30. Inoue A, Kato A, Zhang T, Kim SG, Masumoto T. Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method[J]. Materials Transactions, JIM, 1991, 32(7): 609-616.
    
    31. Horikiri H, Kato A, Inoue A, Masumoto T. New Mg-based amorphous alloys in Mg-Y-misch metal systems[J]. Materials Science and Engineering A, 1994, 179-180(Part 1): 702-706.
    
    32. Louzguine DV, Kawamura Y, Inoue A. Influence of Ni, Cu, Zn and Al Additions on Glass-Forming Ability and Mechanical Properties of Mg-Y-Mm[J]. Mater. Sci. Forum, 2000, 350-351(123-128).
    33. Amiya K, Inoue A. Preparation of Bulk Glassy Mg_(65)Y_(10)Cu_(15)Ag_5Pd_5 Alloy of 12 mm in Diameter by Water Quenching[J]. Materials Transactions, JIM, 2001, 42(3): 543-545.
    34. Xi XK, Zhao DQ, Pan MX, Wang WH. On the criteria of bulk metallic glass formation in MgCu-based alloys[J]. Intermetallics, 2005, 13(6): 638-641.
    35. Xi XK, Wang RJ, Zhao DQ, Pan MX, Wang WH. Glass-forming Mg-Cu-RE (RE=Gd, Pr, Nd, Tb, Y, and Dy) alloys with strong oxygen resistance in manufacturability[J]. Journal of Non-Crystalline Solids, 2004, 344(3): 105-109.
    36. Liu WY, Zhang HF, Hu ZQ, Wang H. Formation and mechanical properties of Mg65Cu25Er10 and Mg_(65)Cu_(15)Ag_(10)Er_(10) bulk amorphous alloys[J]. Journal of Alloys and Compounds, 2005, 397(1-2): 202-206.
    37. Zhang J, Zhang HF, Quan MX, Hu ZQ. Effect of pressure on thermal stability of Mg_(65)Cu_(25)Y_(10) bulk metallic glass[J]. Scripta Materialia, 2003, 49(6): 485-489.
    38. Wei YX, Xi XK, Zhao DQ, Pan MX, Wang WH. Formation of MgNiPr bulk metallic glasses in air[J]. Materials Letters, 2005, 59(8-9): 945-947.
    39. Xu Y-K, Ma H, Xu J, Ma E. Mg-based bulk metallic glass composites with plasticity and gigapascal strength[J]. Acta Materialia, 2005, 53(6): 1857-1866.
    40. Ma H, Ma E, Xu J. A new Mg_(65)Cu_(7.5)Ni_(7.5)Zn_5Ag_5Y_(10) bulk metallic glass with strong glass-forming ability[J]. J. Mater. Res., 2003, 18(10): 2288-2291.
    41. Men H, Hu ZQ, Xu J. Bulk metallic glass formation in the Mg-Cu-Zn-Y system[J]. Scripta Materialia, 2002, 46(10): 699-703.
    42. Xu YK, Xu J. Ceramics particulate reinforced Mg_(65)Cu_(20)Zn_5Y_(10) bulk metallic glass composites[J]. Scripta Materialia, 2003, 49(9): 843-848.
    43. Men H, Yang MC, Xu J. Glass-forming ability of Mg-Cu-Co-Y alloy[J]. Materials science forum, 2002, 386-388: 39-46.
    44.纪松,钱坤明,张延松,谭锁奎.非晶/纳米晶软磁材料及其应用[J].兵器材料科学与工程,2005,28(1):51-55.
    45.顾德骥.非晶态材料与应用[J].宝钢技术,1996(4):59-63.
    46. Mendham AD, Chatham NJD. Magnetic amorphous metal alloy[P]. US patent: 4, 321, 090, 1982.
    47. Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure[J]. Journal of Applied Physics, 1988, 64(10): 6044-6046.
    48.卢志超,李德仁,周少雄.非晶软磁合金丝材的国内外发展现状及应用展望[J].新材料产业,2004,(11):46-52.
    49.张甫飞.非晶纳米晶合金材料的工艺技术、产业化和应用[J].磁性材料及器件,2004,35(5):13-16.
    50. Peker A, Viejo A. Methods of forming molded articles of amorphous alloy with high elastic limit[P]. US Patent: 6, 875, 293 B2., 2005.
    51. Peker A, Johnson WL. Metal frame for electronic hardware and flat panel displays[P]. US Patent: 6, 771, 490 B2., 2004.
    52. Kundig AA, Johnson WL, Dommann A. Casting of amorphous metallic parts by hot mold quenching[P]. US Patent: 6, 620, 264 B2, 2004.
    53. Scruggs DM, Johnson WL, Peker A. Golf club made of a bulk solidifying amorphous metal[P]. US Patent: 6, 685, 577 B1, 2004.
    54. Dandliker RB, Conner RD, Tenhover MA, Johnson WL. Composite penetrator[P]. US Patent: 6, 010, 580, 2000.
    55. Hays CC, Kim CP, Johnson WL. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metailic. glasses containing in situ formed ductile phase dendrite dispersions[J]. Physical review letters, 2000, 84(13): 2901-2904.
    56. Schroers J, Johnson WL. Highly processable bulk metallic glass-forming alloys in the Pt-Co-Ni-Cu-P system[J]. Applied physics letters, 2004, 84(18): 3666-3668.
    57. Peker A, Johnson WL. Metal frame for electronic hardware and flat panel displays[P]. US Patent: 6, 771, 490 B2, 2004.
    58. Peker A, Viejo A. Methods of forming molded articles of amorphous alloy with high elastic limit[P]. US Patent: 6, 875, 293 B2, 2005.
    59.钱志远.CD-R/RW碟片的技术特征[J].实用影音技术,2002,(2):69-74.
    60. Inoue A, Takeuchi A. Recent Progress in Bulk Glassy Alloys[J]. Mater. Trans., 2002, 43(8): 1892-1906.
    61.王煦,娄德诚,高占军,刘磊,梁红梅,马明臻.Zr基大块非晶合金制备轴承滚动体的应用研究[J].燕山大学学报,2005,29(2):169-173.
    62. Eckert J. Mechanical alloying of highly processable glassy alloys[J]. Materials Science and Engineering A, 1997, 226-228: 364-373.
    63. Donald IW, Davies HA. Prediction of glass-forming ability for metallic systems[J]. Journal of Non-Crystalline Solids, 1978, 30(1): 77-85.
    64. Koch CC, Cavin OB, Mckamey CG, Scarbrough JO. Preparation of amorphous Ni_(60)Nb_(40) by mechanical alloying[J]. Appl. Phys. Lett., 1983, 43(11): 1017-1019.
    65. Schwarz RB, Petrich RR, Saw CK. The synthesis of amorphous Ni-Ti alloy powders by mechanical alloying[J]. Journal of non-crystalline solids, 1985, 76: 281-302.
    66. Schwarz RB, Johnson WL. Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals[J]. Physical Review Letters, 1987, 51(5): 415-418.
    67.李月珠.快速凝固技术和材料[M].北京:国防工业出版社,1993.
    68.杨于兴,漆璿.X射线衍射分析(修订版)[M].上海:上海交通大学出版社,1994.
    69. Inoue A. Amorphous, Nanoquasicrystalline and Nanocrystalline Alloys in Al-Based Systems[J]. Prog. Mater. Sci., 1998, 43: 365-520.
    70. Inoue A, Zhang T, Takeuchi A, Zhang W. Hard Magnetic Bulk Amorphous Nd-Fe-Al Alloys of 12 mm in Diameter Made by Suction Casting[J]. Materials Transactions, JIM, 1996, 37(4): 636-640.
    71. Inoue A, Zhang T, Takeuchi A. Preparation of Bulk Pr-Fe-Al Amorphous Alloys and Characterization of Their Hard Magnetic Properties[J]. Materials Transactions, JIM, 1996, 37(12): 1731-1740.
    72.曾汉民主编.高新技术新材料要览[M].北京:中国科学技术出版社,1993.
    73. Gebert A, Wolff U, John A, Eckert J. Corrosion behaviour of Mg_(65)Y_(10)Cu_(25) metallic glass[J]. Scripta Materialia, 2000, 43(3): 279-283.
    74. Yao HB, Li Y, Wee ATS. Corrosion behavior of melt-spun Mg_(65)Ni_(20)Nd_(15) and Mg_(65)Cu_(25)Y_(10) metallic glasses[J]. Electrochimica Acta, 2003, 48(18): 2641-2650.
    75. Gebert A, Wolff U, John A, Eckert J, Schultz L. Stability of the bulk glass-forming Mg_(65)Y_(10)Cu_(25) alloy in aqueous electrolytes[J]. Materials Science and Engineering A, 2001, 299(1-2): 125-135.
    76.王晓军,陈学定,夏天东,杨春秀,王晓丽.Mg_(80-x)Cu_(10+x)Y_(10)非晶态合金的DSC研究[J].兰州理工大学学报,2005,31(1):1-3.
    77. Park ES, Kang HG, Kim WT, Kim DH. The effect of Ag addition on the glass-forming ability of Mg-Cu-Y metallic glass alloys[J]. Journal of Non-Crystalline Solids, 2001, 279(2-3): 154-160.
    78. Ren YL, Zuo JH, Qiu KQ, Zhang HF, Hu ZQ. Eutectic structure and bulk glass formation in Mg-based alloys[J]. Intermetallics, 2004, 12(10-11): 1205-1209.
    79. Men H, Kim WT, Kim DH. Glass formation and crystallization behavior in Mg_(65)Cu_(25)Y_(10-x)Gd_x (x=0, 5 and 10) alloys[J]. Journal of Non-Crystalline Solids, 2004, 337(1): 29-35.
    80. S. Takayama. Review amorphous structures and their formation and stability[J]. Journal of materials science, 1976, 11(1): 164-185.
    81. Lienhard JI, Lienhard JV. A heat transfer textbook, 3rd ed[M]. Massachusetts, USA: Phlogiston Press, 2003.
    82. O"zisik MN. Heat transfer, a basic approach[M]. New York, USA: McGraw-Hill, 1985.
    83.何圣静,高莉如.非晶态材料及其应用[M].北京:机械工业出版社,1987.
    84.杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998.
    85.陈平昌,朱六妹,李赞。材料成形原理[M].北京:机械工业出版社,2002.
    86. Wang XJ, Chert XD, Xia TD, Yu WY, Wang XL. Influencing factors and estimation of the cooling rate within an amorphous ribbon[J]. Intermetallics, 2004, 18(10-11): 1233-1237.
    87. Linderoth S, Pryds NH, Ohnuma M, et al.. On the stability and crystallisation of bulk amorphous Mg-Cu-Y-Al alloys[J]. Materials Science and Engineering A, 2001, 304-306: 656-659.
    88. Pryds NH. Bulk amorphous Mg-based alloys[J]. Materials Science and Engineering A, 2004, 375-377: 186-193.
    89. Massalski TB. Binary Alloy Phase Diagrams, Vol.1-3[M]. US: ASM Int., 1990.
    90. deBoer FR, Boom R, Martens WCM, Miedema AR, Niessen AK. Cohesion in metals-transition metal alloys[M]. Amsterdam: North-holland, 1988.
    91. Colin JS, Eric AB. Metals reference book: Atomic and ionic radii[M]. London: Butterworths, 1976.
    92. Johnson WL. Fundamental Aspects of Bulk Metallic Glass Formation in Multicomponent Alloys[J]. Mater Sci Forum, 1996, 225-227: 35-50.
    93. Fan C, Inoue A. Improvement of Mechanical Properties by Precipitation of Nanoscale Compound Particles in Zr-Cu-Pd-AI Amorphous Alloys[J]. Mater. Trans., JIM, 1997, 38: 1040-1046.
    94.孙民华,边秀房,王艳.Al_(80)Cu_(20)合金液态原子微观结构及其与非晶形成能力的关系[J].金属功能材料,2001,8(4):33-37.
    95. Turnbull D. Under what conditions can a glass be formed[J]. Contemporary Physics, 1969, 10(5): 473-488.
    96. Egami T, Waseda Y. Atomic size effect on the formability of metallic glasses[J]. J Non-Cryst Solids 1984, 64(1): 113-134.
    97. Fan C, Takeuchi A, Inoue A. Preparation and Mechanical Properties of Zr-Based Bulk Nanocrystalline Alloys Containing Compound and Amorphous Phases[J]. Mater Trans JIM, 1999, 40: 42-51.
    98.王丽云.Co基非晶合金晶化激活能的实验研究[J].金属材料研究,1999,25(3,4):80-82.
    99. Kissinger HE. Reaction kinetics in differential thermal analysis[J]. Analytical Chemical, 1957, 29(11): 1702-1706.
    100. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis[J]. J Res Nat Bur Stand, 1956, 57(4): 217-221.
    101.庄艳歆,赵德乾,张勇,汪卫华,潘明祥.锆基大块非晶合金玻璃转变和晶化动力学效应[J].中国科学(A辑),2001,30(5):445-450.
    102. Loffler JF. Bulk metallic glasses[J]. Intermetallics, 2003, 11(6): 529-540.
    103. Yan ZJ, Li JF, He SR, Zhou YH. Evaluation of the optimum solute concentration for good glass forming ability in multicomponent metallic glasses[J]. Materials Research Bulletin, 2003, 38(4): 681-689.
    104. Lu ZP, Tan H, Li Y, Ng SC. The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses[J]. Scripta Materialia, 2000, 42(7): 667-673.
    105. Lu ZP, Li Y, Ng SC. Reduced glass transition temperature and glass forming ability of bulk glass forming alloys[J]. Journal of Non-Crystalline Solids, 2000, 270(1-3): 103-114.
    106. Inoue A. Slowly-cooled bulk amorphous alloys[J]. Materials science forum, 1995, 179-181: 691-700.
    107. Fang S, Xiao X, Xia L, Li W, Dong Y. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses[J]. Journal of Non-Crystalline Solids, 2003, 321(1-2): 120-125.
    108. Buschow KHJ. Short-range order and thermal stability in amorphous alloys[J]. J. Phys. F: Met. Phys, 1984, 14(3): 593-607.
    109. Lasocka M, Harmelin M. The effect of heating rate range on the activation energy for glass-to-crystal transition[J]. Scripta Metallurgica, 1984, 18(10): 1095-1098.
    110. Mukherjee S, Schroers J, Zhou Z, Johnson WL, Rhim WK. Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability[J]. Acta Materialia, 2004, 52(12): 3689-3695.
    111. Salimon AI, Ashby MF, Brechet Y, Greer AL. Bulk metallic glasses: what are they good for[J]. Materials Science and Engineering A, 2004, 375-377: 385-388.
    112. Kim JJ, Choi Y, Suresh S, Argon AS. Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature[J]. Science, 2002, 295: 654-657.
    113. Inoue A, Kawamura Y, Matsushita M, Hayashi K. High strength nanocrystalline Mg based alloys[J]. Mater. Sci. Forum, 2002, 386-388: 509-518.
    114.泽仑.非晶态固体物理学[M].北京:北京大学出版社,1988.
    115. Kolmogorov A. A statistical theory for the recrystallization of metals[J]. Akad. nauk SSSR, Izv., Ser. Matem., 1937, 1: 355-359.
    116. Anderson W, Mehl RF. Recrystallization of Al in terms of the rate of nucleation and growth[J]. Trans. AIME, 1945, 161: 140-172.
    
    117. Johnson WA, Mehl KF. Reaction kinetics in processes of nucleation and growth[J]. Trans. Am. Inst. Mining Met. Eng., 1939, 135 416-458.
    
    118. Avrami M. Kinetics of Phase Change I General Theory[J]. J. Chem. Phys., 1939, 7(12): 1103-1112.
    
    119. Avrami M. Kinetics of Phase Change II Transformation-Time Relations for Random Distribution of Nuclei[J]. J. Chem. Phys., 1940, 8(2): 212-224.
    
    120. Avrami M. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III[J]. J. Chem. Phys., 1941, 9(2): 177-184.
    
    121. Malek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses[J]. Thermochimica Acta, 1995, 267: 61-73.
    
    122. Vazquez J, Wagner C, Villares P, Jiménez-Garay R. A theoretical method for determining the crystallized fraction and kinetic parameters by DSC, using non-isothermal techniques[J]. Acta Mater., 1996, 44(12): 4807-4813.
    
    123. Wang H-R, Gao Y-L, Ye Y-F, Min G-H, Chen Y, Teng X-Y. Crystallization kinetics of an amorphous Zr-Cu-Ni alloy: calculation of the activation energy[J]. Journal of Alloys and Compounds, 2003, 353(1-2): 200-206.
    
    124. Pratap A, Lad KN, Rao TLS, Majmudar P, Saxena NS. Kinetics of crystallization of amorphous Cu_(50)Ti_(50) alloy[J]. Journal of Non-Crystalline Solids, 2004, 345-346: 178-181.
    
    125. Ozawa T. Kinetics of glass crystallization[J]. J Therm Anal 1970, 15(2): 301-305.
    
    126. Ozawa T. Kinetics of Nonisothermal crystallization[J]. Polymer, 1971, 12(1): 150-158.
    
    127. Malek J. Kinetic analysis of crystallization processes in amorphous materials[J]. Thermochimica Acta, 2000, 355(1-2): 239-253.
    
    128. Atkinson HV. Theories of normal grain growth in pure single phase systems[J]. Acta Metall, 1988, 36(3): 469-491.
    
    129. Illekova E. FINEMET-type nanocrystallization kinetics[J]. Thermochimica Acta, 2002, 387(1): 47-56.
    
    130. Bernal JD. The structure of liquids[J]. Proc. Roy. Soc. (London), 1964, A 280: 299-322.
    
    131. Lu ZP, Liu CT. A new glass-forming ability criterion for bulk metallic glasses[J]. Acta Materialia, 2002, 50(13): 3501-3512.
    
    132. Inoue A. Stabilization and high strain-rate superplasticity of metallic supercooled liquid[J]. Materials Science and Engineering A, 1999, 267(2): 171-183.
    133. Lindsay GA. Confusuion by design[J]. Nature, 1993, 366(6453): 303-304.
    134. Wang YM, Zhang XF, Qiang JB, et al.. Composition optimization of the Al-Co-Zr bulk metallic glasses[J]. Seripta Materialia, 2004, 50(6): 829-833.
    135.董闯,王英敏,羌建兵,陈伟荣.大块非晶合金成分设计方法[P].中国专利:CN1341771A,2002.
    136.何凤姣主编.无机化学[M].北京:科学出版社,2001.
    137. Egami T. Atomistic mechanism of bulk metallic glass formation[J]. Journal of Non-Crystalline Solids, 2003, 317(1-2): 30-33.
    138. Egami T. Universal criterion for metallic glass formation[J]. Materials Science and Engineering, 1997, A 226-228(15): 261-267.
    139. Senkov ON, Miracle DB. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys[J]. Materials Research Bulletin, 2001, 36(12): 2183-2198.
    140. Senkov ON, Scott JM. Specific criteria for selection of alloy compositions for bulk metallic glasses[J]. Scripta Materialia, 2004, 50(4): 449-452.
    141. Miracle DB, Senkov ON, Sanders WS, Kendig KL. Structure-forming principles for amorphous metals[J]. Materials Science and Engineering A, 2004, 375-377: 150-156.
    142. Miracle DB, Sanders WS, Senkov ON. The influence of efficient atomic packing on the constitution of metallic glasses[J]. Philos Mag A, 2003, 83(20): 2409-2428.
    143.German RM著,曲选辉等译.粉末注射成形(Powder Injection molding)[M].长沙:中南大学出版社,2001.
    144. Inoue A. Bulk Amorphous Alloys, Practical characteristics and application[M]. Switzerland: Trans Tech Publications Ltd,, 1999.
    145.迟宝全.非晶合金形成能力的研究[M].吉林大学,2003.
    146.杨德清.计算金属原子半径和功函数的新方法[J].物理学报,1994,43(9):1507-1516.
    147. Morris HDG, Mark JS. Probability and statistics[M]. Beijing: Higher Education Press, 2005.
    148. Tang M-B, Zhao D-Q, Pan M-X, Wang W-H. Binary Cu-Zr Bulk Metallic Glasses[J]. Chin. Phys. Lett., 2004, 21(5): 901-903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700