600MW机组选择性催化还原烟气脱硝反应系统模拟优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合实验研究和数值计算,针对燃煤烟气脱硝选择性催化还原催化剂的组成和性质进行了分析,设计优化了该技术脱硝所需的关键技术设备,为催化剂设计、流道优化及反应强化提供理论依据。
     以600MW机组为例,对大型SCR脱硝工程进行设计研究。从催化剂设计和反应装置优化入手,进行烟气脱硝技术开发研究。
     对工程使用的催化剂进行表征,从组成和物理性质角度分析催化剂的脱硝性能。催化剂具有良好的表面孔隙结构,载体TiO_2为锐钛矿型,活性物质分布较均匀且颗粒比较小,具有稳定的Bronsted酸位。通过活性测试,确定催化剂最佳工作温度在300~420℃之间。
     建立SCR脱硝反应数学模型,进行蜂窝式催化剂体积、结构的优化设计。基于催化剂脱硝宏观特性实验数据,确定模型关键参数,计算出系统运行所需催化剂体积。在运行参数变化、催化剂活性降低条件下,催化剂用量完全可以满足系统烟气脱硝性能的要求。还通过理论计算,对催化剂内部NO浓度分布进行研究,对催化剂几何特征提出了优化方案,对于工程应用具有一定的理论价值。
     引入CFD软件FLUENT对SCR反应器及其连接烟道内的流体流动及氨扩散过程进行数值模拟,揭示其内部流动规律。基于流体力学分析结果,对反应装置的结构设计要点进行了研究。反应器顶部采用斜顶结构优于平顶结构,烟道采用弧形拐角可以削弱烟气惯性产生的高低速区现象。对上述布置方案,设置并改进导流叶片的位置、数量与形状,从而在大截面空间范围内有效控制烟气速度均匀分布。还单独研究了NH_3的流动轨迹及迁徙规律,对喷氨格栅进行优化。通过优化几何布置设计出一个达标可靠的系统。
Selection of catalysts and simulation of reactor were two key parts of the research of Selective Catalytic Reduction (SCR) technology. It can apply the academic gist to design catalyzer, optimize flue path and strengthen reduction.
     Based on a 600MW project, some designs for program were propsed, which are compared with actual dates. It is viable for SCR systems to provide domestic theory of accumulation.
     The cellular catalyst with a better industrial application has a better surface structure, a carrier for anatase TiO_2, some active substances which were distribution of relatively small particles, and Br(?)nsted sites. Optimd activity temperatme of catalysts was between 300℃and 420℃.
     The design of size of cellular catalyst was calculated with 3D mathematical model. The test data of macroscopie reaction properties of catalyst obtained in the experiment of laboratory-scale was an access to key parameters of model. SCR catalyst volume required was analysised. Performance data and catalyst life of the impact on the size of the catalyst for the system also were considered. The volume of catalyst fully satisfied the system performance requirement. Through theoretical calculations, the geometric characteristics of catalyst were optimized by the distribution of NO within catalyst.
     Software FLUENT of CFD is a suitable tool to study the fluid flow and diffusion process of ammonia, in order to reveal its internal flow pattern. Based on the results, the structure of the system design was studied. Reactor at the top of bevel face is better than flat-top structure. The use of arc-shaped corner of the flue gas can reduce the high speed phenomenon. On above-mentioned arrangement, set up and improve location, amount and shape of guide device, for section effective control of the speed of uniform distribution of flue gas. Ammonia injection grid (AIG) is other important party of the simulation and optimation, by analysis of NO_x flow field distributions.
引文
[1]Forzatti P.Present status and perspectives in de-NO_x SCR catalysis.Applied Catalysis A:General,2001,222:221-236
    [2]孙克勤,钟秦.火电厂烟气脱硝技术及工程应用.北京:化学工业出版社,2007
    [3]Nakahjima F,Hamada I.The state-of-the-art technology of NO_x control.Catalysis Today,1996,29:109-115
    [4]岑可法,姚强,骆仲泱,等.燃烧理论与污染控制.北京:机械工业出版社,2004
    [5]徐向乾,巩志强,姜波,等.低NO_x燃烧技术.电力环境保护,2007,23(5):36-38
    [6]张建,李金科,徐红兵,等.低NO_x燃烧器研究开发.乙烯工业,2006,18(1):22-25
    [7]Smith G R,Guillory W A.Spectroscopy of the thermal oxidation of nitric oxide in solid oxygen at cryogenic temperatures.Journal of Molecular Spectroscopy,1997,68(2):223
    [8]赵毅,孙小军,许佩瑶,等.烟气同时脱硫脱硝的高活性吸收剂的表征及脱除机理研究.中国科学E辑技术科学,2006,36(3):326-340
    [9]Veldhuizen E M,Rutgers W R,Bityurin V A.Energy efficiency of NO removal by pulsed corona discharges.Plasma Chemistry and Plasma Processing,1996,16(2):227-247
    [10]伍斌,童志权.NO分解催化剂的研究进展.工业催化,2005,13(7):52-55
    [11]何志桥,王家德.生物法处理NO_x废气的研究进展.环境污染治理技术与设备,2002,3(9):59-62
    [12]Mok Y S,Nam I S.Modeling of pulsed corona discharge process for the removal of nitric oxide and suifurdioxide.Chemical Engineering Journal,2002,85:87-97
    [13]Qi G S,Yang R T.A superior catalyst for low-temperature NO reduction with NH_3.Chemical Communication,2003,7:848-850
    [14]Khodayari R,Odenbrand CUI.Regeneration of commercial TiO_2-V_2O_5-WO_3 SCR catalysts used in bio fuel plants.Applied Catalysis B:Environmental,2001,30:87-99
    [15]Apostolescu N,Geiger B,Hizbullah K,et al.Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts.Applied Catalysis B:Environmental,2006,62:104-114
    [16]Forzatti P,L Lietti.Recent advances in De-NOxing catalysis for stationary applications.Heterogeneous Chemistry Reviewa,1996,3:33-51
    [17]Regalbuto J R,Zhang T,Miller J T.The bifuntional reaction pathway and dual kinetic regimes in NO_x SCR by methane over cobalt mordant catalysts.Catalysis Today,1999,54:495-505
    [18]Meunier F C,Zeniuk V,Breen J P,et al.Mechanistic differences in the selective reduction of NO by propene over cobalt and silver promoted aluminum catalysis:kinetic and in situ DRIFTS study.Catalysis Today,2000,59:287-304
    [19]Foratti P,L Lietti.Catalyst deactivation.Catalysis Today,1999,52:165-181
    [20]George L,Bauerle S C,Nobe K.Deactivation of a vanadia-alumina catalyst for nitric oxide reduction by ammonia:fresh catalyst.Industrial and Engineering Chemistry Product Research and Development.1978,17(2):117-112
    [21]Kohler K,Engweiler J,Baiker A.Vanadia-chromia grafted on titanium:structural and catalytic properties in the selective catalytic reduction of NO by NH_3.Journal of Molecular Catalysis A:Chemical,2000,162:423-430
    [22]Alemany L J,Lietti L,Ferlazzo N.Reactivity and physicochemical characterization of V_2O_5-WO_3/TiO_2 DeNO_x catalyst.Journal Of Catalysis,1995,155:117-130
    [23]李晓芸,赵毅,王修彦.火电厂有害气体控制技术.此京:中国水利水电出版社,2005:144-182
    [24]Rajadhyaksha,Rajeev A,Helmut Knozinger.Ammonia Adsorption on Vanadia Supported on Titania-silica Catalyst-AnInfrared Spectroscopic Investigation.Applied Catalysis,1989,51:81-92
    [25]陈琳,雷乐成.低温等离子体技术应用于二氧化钛光催化剂制备与改性.水处理技术,2007,33(9):1-5
    [26]Zeman P,Takahashi S.Nano-scaled photocatalytic TiO_2 thin films prepared by magnetron sputtering.Thin Solid Films,2003,43(3):57-62
    [27]Yang R T,W B Li,N Chen.Reversible chemisoption of nitric oxide in the presence of oxygen on titania and titania modified with suface sulfate.Applied Catalysis a-General,1998,196(2):215-225
    [28]Olthof B,Khodakov A,Bell A T,et al.Effects of support somposition and pretreatment conditions on the structure of vanadia dispersed on SiO_2,Al_2O_3,TiO_2,ZrO_2 and HfO_2.Jounral of Physical Chemistry,2000,104:1516-1528
    [29]Busca G,Lietti L,Ramis G,et al.Chemical and mechanistic aspects of the selective catalytic reduction of NO_x by ammonia over oxide catalysts:A review.Applied Catalysis B:Environmental,1998,18:1-36
    [30]Ihara T,Miyoshi M.Preparation of a visible-light-active TiO_2 photocatalyst by RF plasma treatment.Journal of Membrance Science,2001,36:4201-4207
    [31]叶代启,梁红.大气污染治理中的催化技术.工业催化,1999,5:3-8
    [32]Topsoe N Y,J A Dumesic,H Topsoe.Vanadia-tiania catalysts for selective catalytic reduction of Nitric-Oxide by annonia 2 studies of active-sites and formulation of catalytic cycles.Journal of Catalysis,1995,151(1):241-252
    [33]Bauerle G L,Wu S C,Nobe K,et al.Parametric and durability study of NO_x reduction with NH_3on V_2O_5 catalysts.Industrial & Engineering Chemistry Process Design & Development,1978, 17(2): 117-122
    [34]Nam I S.Eldridge J W, Kittrell J R, et al.Deactivation of a vandia-alumina catalyst for NO reduction by NH_3.Industrial & Engineering Chemistry Process Design & Development, 1986,25(2): 186-192
    [35]Qi G S, Yang R T.Performance and kinetics study for low-temperature SCR of NO with NH_3 over MNO_x-CeO_2 catalyst.Journal of Catalysis, 2003, 217(2): 434-441
    [36]Long R Q, Yang R T.Selective catalytic oxidation of ammonia to nitrogen over Fe_2O_3-TiO_2 prepared with a Sol-Gel method.Journal of Catalysis, 2002, 207(2): 158-165
    [37]Bjorklund RB, Odenbrand C U I, Brandin JG M, etal.An infrared and electrical conductance study of V_2O_5/SiO_2-TiO_2 catalysts active for the reduction of NO by NH_3.Journal of Catalysis, 1989, 119(1): 187-200
    [38]Maki T K, Mitsuyuski S, Takaharu O, et al.The adsorption and the reaction of NH_3 and NO on supported V_2O_5 catalysts: effect of supporting material.Canadian Journal of Chemistry, 1980,58: 2132-2137
    [39]Willi R, Roduit B R, Koeppel A, etal.Selective reduction of NO by NH_3 over vanadia-based commercial catalyst: Parametric sensitivity and kinetic modeling.Chemical Engineering Science,1996, 51(11): 2897-2902
    [40]Paganini M C, Acqua L D, Giamello E, et al.An EPR study of the surface chemistry of the V_2O_5-WO_3/TiO_2 catalyst: Redox behavior and state of V(IV).Journal of Catalysis, 1997, 166:195-205
    [41]M Koebel, M Elsener.Selective catalytic reduction of NO over commercial DeNOx-catalysts: experimental determination of kinetic and thermodynamic parameters.Chemical Engineering Science, 1998, 53(4): 657-669
    [42]Tops0e N Y.Characterization of the nature of surface sites on vandia titania catalysts by FTIR.Journal of Catalysis, 1991, 128(2): 499-511
    [43]Handjiivanov K .Indentification of neutral and charged N_xO_y suface species by IR spectroscopy.Catal Rev-SCI ENG, 2000, 42(1&2): 71-144
    [44]Guido Busca, Luca Lietti, Gianguide Ramis, et al.Review chemical and mechanistic aspects of selective catalytic reduction of NO_x by ammonia over oxide catalysts.Applied Catalysis B:Environmental, 1998, 18: 1-36
    [45]Lietti L, Alemany J L, Forzatti P, etal.Reactivity of V_2O_5-WO_3/TiO_2 catalysts in the selective catalytic reduction of nitric oxide by ammonia.Catalysis Today, 1996, 29: 143-148
    [46]Nam 1 S, Eldridge J W, Kittrell J R, et al.Deactivation of a vandia-alumina catalyst for NO reduction by NH_3.Industrial & Engineering Chemistry Process Design & Development, 1986, 25(2): 186-192
    [47]Burkardt A, Weisweiler W, Lox E S, etal.Influence of the V_2O_5 loading on the structure and activity of V_2O_5/TiO_2 SCR catalysts for vehicle application.Topics in Catalysis, 2001, 16:369-375
    [48]Topsoe N Y.Characterization of the nature of surface sites on vanadia-titania catalysts by FTIR.Journal of Catalysis, 1991, 128(2): 499-511
    [49]Tronconi E, Beretta A, Elmi A S, et al.A complete model of SCR monolith reactors for the analysis of interaction NO_x reduction and SO_2 oxidation reactions.Chemical Engineering Science, 1994,49(24A): 4277-4287
    [50]Enrico Tronconi.Interaction between chemical kinetics and transportphenomena in monolithic catalysts.Catalysis Today, 1997, 34(3-4): 421-427
    [51]Alessandra Beretta, Carlo Orsenigo, Natale Ferlazzo, et al.Analysisof the Performance of Plate-Type Monolithic Catalysts for Selective Catalytic Reduction DeNOx Applications.Ind Eng Chem Res, 1998, 37(7): 2623-2633
    [52]B Roduit, A Baiker, F Bettoni, et al.3-D modeling of SCR of NO_x by NH_3 on Vanadia honeycomb catalysts.AIChE Journal, 1998, 44(12): 2731-2744
    [53]M Koebel, M Elsener.Selective catalytic reduction of NO over commercial DeNOx-catalysts: experimental determination of kinetic and thermodynamic parameters.Chemical Engineering Science, 1998, 53(4): 657-669
    [54]Ho Jeong Chae, Soo Tae Choo, Hoon Choi, et al.Direct Use of Kinetic Parameters for Modelling and Simulation of a Selective Catalytic Reduction Process.Ind Eng Chem Res, 2000, 39(5): 1159-1170
    [55]G Schaub, DUnruh, J Wang, etal.Kinetic analysis of selective catalytic NO_x reduction(SCR)in a catalytic filter.Chemical Engineering and Processing, 2003, 42(5): 365-371
    [56]E Tronconi, P Forzatti, S Malloggi, et al.Experimental and Theoretical Investigation of Dynamics of the SCR-DeNO_x Reaction.Chemical Engineering Science, 1996, 51(11): 2965-2970
    [57]Lietti L, Camurri S, Tronconi E, et al.Dynamics of the SCR-DeNO_x reaction by the transient-response method.AIChE Journal, 1997, 43(10): 2559-2570
    [58]Isabella Nova, Luca Lietti, Enrico Tronconi,et al..Transient response method applied to the kinetic analysis of the DeNO_x-SCR reaction.Chemical Engineering Science, 2001, 56: 1229-1237
    [59]Michiel Van Nieuwstadt.Model Based Analysis and Control Design of a Urea-SCR deNO_x Aftertreatment System.Journal of Dynamic Systems, Measurement and Control, 2006, 128(3):737-741
    [60]Enrico Tronconi, Andrea Cavanna, Carlo Orsenigo, et al.Transient kinetics of SO_2 oxidation over SCR-DeNO_x monolith catalysts.Industrial&Engineering Chemistry Research, 1999, 38(7): 2393-259
    [61]曲虹霞,钟秦.V_2O_5/TiO_2片状催化剂上NH_3选择性还原NO_x反应传质情况研究.北京化工大学学报,2004,31(4):12-15
    [62]管一明,胡宇峰.火电厂高飞灰布置SCR系统的主要组成和设备.电力环境保护,2004,4:25-27
    [63]陶文铨.数值传热学(第2版).陕西:西交交通大学出版社,2001
    [64]孙克勤,周山明,仲兆平,等.大型烟气脱硫的流体动力学模拟及优化殴计.热能动力工程,2005,3:270-274
    [65]曾芳,陈力,李晓芸.湿式脱硫流场数值计算.华北电力大学学报,29(2):106-110
    [66]李少华,张本贤,于静梅,等.除尘脱硫内气固两相流动数值模拟.东北电力学院学报,2003,23(2):1-5
    [67]David C Wilhite.The use of computational fluid dynamics(CFD)in selective catalytic reduction system ductwork design,In:Proceedings of the ASME Fluids Engineering Division,FED-Vol 247,ASME:1998-1998
    [68]Bradley Adams,Marc Cremer,James Valentine.Use of CFD modeling for design of NO_x reduction systems in utility boilers.Proceedings of IJPGC'02,2002 international Joint Power Generating Conference,June24-26,2002.Phoenix,AZ,USA:2002:695-702
    [69]Jin Man Cho,Jeong-Woo Choi,Sung Ho Hong,et al.Application of computational fluid dynamics analysis for improvingperformance of commercial scale selective catalytic reduction.TheKorean Journal of Chemical Engineering,2006,23(1):43-56
    [70]刘霞,葛新锋.FLUENT软件及在我国的应用.能源研究与利用,2003,2:36-38
    [71]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版,2004
    [72]Sayre A N,Milobowski.Validation of numerical models of flow through SCR untils.EPRl-DOE-EPA,Combined Utility Air Pollutant Control,1999:1-4
    [73]Kevin Rogers,Mel Albrecht,Michael varner.Numerical modeling for design optimization of SCR application.ICAC NO_x Forum,2000:1-6
    [74]郑晓峰,包正强,冯耀勋,等.选择性催化还原烟气脱硝技术(SCR)的实践与探讨.节能,2006,25(2):51-53
    [75]杨忠灿,文军,徐党旗.燃煤锅炉的选择性催化还原烟气脱硝技术.广东电力,2006,19(2):13-17,30
    [76]李敏,仲兆平.氨选择性催化还原(SCR)脱除氮氧化物的研究.能源研究与利用,2004,000(002):24-27
    [77]蒋文辉,王定,周文龙.电站锅炉加装脱硝装置的可行性研究分析.锅炉技术,2005,36(5):61-65,70
    [78]杨卫娟,周俊虎,刘建忠,等.选择催化还原SCR脱硝技术在电站锅炉的应用.热力发电,2005,34(9):10-14
    [79]黄涛,张治忠.预留烟气脱氮空间应注意的问题.电力环境保护,2004,20(3):31-33
    [80]邓永强,胡将军,邓永华,等.高尘区选择性催化还原法的主要影响因素分析.电力环境保护,2004,20(3):28-30
    [81]方利国,陈砺.计算机在化学化工中的应用.北京:化学工业出版社,2003
    [82]朱炳辰,翁惠新,朱子彬.催化反应工程.北京:中国石化出版社,2001
    [83]郭汉贤.应用化工动力学.北京:化学工业出版社,2003
    [84]Tronconi E,Beretta A,Elmi A S,et al.A complete model of SCR monolith reactors for the analysis of interaction NO_x reduction and SO_2 oxidation reactions.Chemical engineering science,1994,49(24A):4277-4287
    [85]Lietti L,G Ramis,F Berti,et al.Chemical,structural and mechanistic aspects on NO_x SCR over commercial and model oxide catalysts.Catalysis Today,1998,42(1-2):101-116
    [86]Svachula J,Ferlazzo N,Forzatti P,et al.Selective reduction of NO_x by NH_3 over honeycombs DeNOing catalysts.Ind Eng Chem Res,1993,32:1053-1060
    [87]Isabella Nova,Luca Lietti,Enrico Tronconi,et al.Transient response method applied to the kinetic analysis of the DeNO_x SCR reaction.Chemical Engineering Science,2001,56:1229-1237
    [88]Isabella Nova,Luca Lietti,Enrico Tronconi.Dynamics of SCR reaction over a TiO_2-supported vanadia-tungsta commercial catalyst.Catalysis Today,2000,60:73-82
    [89]Schaub G,Unrui I D,Wang J,etal.KineticanalysisOfselective catalytic NO_x reductinon(SCR)in a catalyticfilter.Chemical Engeering and Prcessing,2003,42:365-371
    [90]李绍芬.化学与催化反应工程.北京:化学工业出版社,1986
    [91]James E.Staudt.Minimizing the Impact of SCR Catalyst on Total Generating Cost through Effective Catalyst Management.In:ASME(American Society of Mechanical Engineers)Power Conference,30 March-1 April,2004.Baltimore,MD,US:2004.733-742
    [92]J E Cichanowicz,L J Muzio.Factors Affecting Selection of A Catalyst Management Strategy.In:Combined Power Plant Air Pollutant Control Mega Symposium,2003.Washington,DC,USA:2004.736-746
    [93]韩古忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用,北京:北京理工大学出版社,2004
    [94]Rogers K J.SCR inlet maldistributions-their effects & strategies for their control.DOE 2002Conference on SCR & SNCR reduction for NO_x control,Pittsburgh:15-16
    [95]Rogers K J.Mixing performance characterization for optimization and development on SCR application.DOE 2003 Conference on SCR/SNCR for NO_x control:29-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700