SCR脱硝反应器入口烟道流场模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国对氮氧化物(NOx)排放标准的提高,以燃煤为主的火电厂如何减少氮氧化物的排放越来越受到重视。在众多的脱硝方法中,选择性催化还原(SCR)烟气脱硝技术具有脱硝效率高、运行可靠、无副产物、装置结构简单等优点,在世界上得到了广泛的应用。近年来,对SCR脱硝技术的研究主要集中在脱硝反应器流场优化和催化剂的研发上,如何提高脱硝效率,延长催化剂的寿命等相关问题是研究的热点。随着计算流体力学和计算机技术的发展,利用高效、便捷的计算流体力学软件对SCR脱硝系统进行数值模拟仿真,可以为脱硝反应器烟道、导流板及喷射系统的设计和改进提供重要参数。
     本文以某电厂600 MW机组所配置的SCR烟气脱硝装置为研究对象,利用FLUENT流体力学数值计算软件,对SCR反应器入口烟道流场进行了数值仿真计算。主要研究内容如下:通过对SCR反应器入口烟道流场的数值模拟,分析了不同数量的导流板时入口烟道流场分布,结果表明随着导流板数量的增加,入口烟道流场变得更均匀,但导流板数量的增加给SCR反应器带来更大的压降;当导流板的分布到一定程度后,导流板数量的增加对入口烟道流场的改善变得非常微弱。通过分析喷射格栅对入口烟道流场的影响,结果表明构成喷射格栅的管路对烟道流场有改善作用,且双层管路排布的喷射格栅比单层管路的作用更好。通过对入口烟道内烟气与还原剂混合的数值模拟,结果表明通过对喷嘴分区并设定不同的喷射速度,可以很好的改善烟气与还原剂的混合,且单层管路的喷射格栅比双层管路更有利于烟气与还原剂的分布。
With nitrogen oxides(NOx) emission standards to be more stringent, it attracts more and more attention to reduce nitrogen oxides from coal-fired power plants. The selective catalytic reduction(SCR) technology for flue gas has been used widely in power plants all over the world, which has the advantage of the high denitration efficiency, reliability service, no by-products, simple device, and so on. In recent years, the research on SCR DeNOx technology mainly focuses on the optimization of flow field of SCR and the preparation of catalyst. Research focus is how to improve denitration efficiency, extend the life of the catalyst, and so on. With the development of computational fluid dynamics and computer technology, we can simulate SCR DeNOx system using of efficient, convenient computational fluid dynamics software. The results can provide important parameters for the design and improvement of flue, guide vanes and the injection system.
     Using computational fluid dynamics software FLUENT, the flow field of the entrance flue of SCR in a 600MW power plant unit is simulated in this paper. The main research contents and results are as follows. The flow field of the entrance flue of SCR is simulated when the number of guide vanes is different. The results show that with the increase of the number of guide vanes, the flow field of flue becomes more uniform and the pressure drop is greater. Meantime, the effect of guide vanes becomes weak when the distribution of guide vanes gets to a certain extent. The role of injection grid to the flow field of flue is analyzed, the results show that injection grid pipings can improve the flow field of flue and the role of double-pipe arrangement is better than single pipeline. The mixing of flue gas and reducing agent in entrance flue of SCR is numerical simulated. The results show that it can improve the mixing and the concentration distribution of flue gas and reducing agent in the flue by dividing the nozzles as different areas and setting different injection speeds. Moreover, single-pipeline in the injection grid is more beneficial to the distribution of flue gas and reducing agent than double-pipelines.
引文
[1]朱法华,刘大钧,王圣.火电厂NOx排放及控制对策审视[J].环境保护,2009(21):40~41.
    [2]刘孜,易斌,高晓晶,等.我国火电行业氮氧化物排放现状及减排建议[J].环境保护,2008,8(B):7~10.
    [3]中国环境保护产业协会锅炉炉窑脱硝除尘委员会.我国火电厂脱硫脱销行业2008年发展综述[J].中国环保产业,2009(7):8~13.
    [4]卢芳.大气中氮氧化物对环境的影响[J].青海师范大学学报,2006(3):87~89.
    [5]熊蔚立,黄伟,张国斌.火电厂氮氧化物(NOx)的危害和防治[J].湖南电力,2002,22(1):61~63.
    [6]黄伟.燃煤电厂NOx污染及其控制技术[J].电力环境保护,2004,20(3):22~23.
    [7]井鹏,岳涛,李晓岩,等.火电厂氮氧化物排放标准、政策分析及研究[J].中国环保产业,2009(4):19~23.
    [8]Srivastava Ravi K, Hall Robert E, Khan Sikander, et al. Nitrogen Oxides Emission Control Options for Coal-Fired Electric Utility Boilers[J]. Air & Waste Management Association, 2005,55:1367~1388.
    [9]Muzio L J, Quartucy G C. Implementing NOx Control:Research to Application [J]. Progress in Energy and Combustion Science,1997(23):233~266.
    [10]胡倩,张世秋,吴丹.美国和欧洲氮氧化物控制政策对中国的借鉴意义[J].环境保护,2007,5(A):74~78.
    [11]王志轩.论我国火电厂氮氧化物控制[J].中国电力企业管理,2009(8):16~19.
    [12]郭斌,廖宏楷.我国NOx控制策略探讨[J].广东电力,2009,22(8):1~4.
    [13]王钟,王颖.火电厂烟气脱硝技术探讨[J].吉林电力,2005(6):1~5.
    [14]陈玲霞.SCR脱硝反应器的流动特性及硫酸根对催化剂性能影响的研究[D].东南大学硕士学位论文,2007:1~39.
    [15]Forzatti Pio. Present Status and Perspectives in De-NOx SCR Catalysis [J]. Applied Catalysis A:General,2001(222):221~236.
    [16]Muzio L J, Quartucy G C, Cichanowicz J E, et al. Overview and Status of Post-Combustion NOx Control:SNCR, SCR and Hybrid Technologies[J]. International Journal of Environment and Pollution,2002,17(2):24~30.
    [17]杨冬,徐鸿.SCR脱硝技术及其在燃煤电厂的应用[J].电力环境保护,2007,23(1):49~51.
    [18]俞逾.选择性催化还原系统的建模与仿真[D].重庆大学硕士学位论文,2007:1~34.
    [19]Tonn D P, Uysal T A.2200 MW SCR Installation on New Coal-Fired Project[C]. ICAC Forum'98, Durham, North Carolina, USA,1998:1-5.
    [20]Busca Guido, Lietti Luca, Ramis Gianguido, et al. Chemical and Mechanistic Aspects of the Selective Catalytic Reduction of by Ammonia over Oxide Catalysts:A Review[J]. Applied Catalysis B:Environmental,1998(18):1-36.
    [21]Maxwell J D. Demonstration of SCR Technology to Control Nitrogen Oxide Emissions from High-Sulfur, Coal-Fired Utility Boilers[C]. Fifth Annual Clean Coal Technology Conference, Tampa, Florida,1997:64~67.
    [22]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2002.
    [23]赵桂锋,杨文波.SCR脱硝技术概述[J].锅炉制造,2007(2):41~42.
    [24]廖能斌,蒋妮娜.烟气脱硝的SCR技术及其应用[J].中国科技财富,2009(5):34~35.
    [25]廖欲元.阐述SCR法烟气脱硝技术在火电厂的应用[J].广东科技,2009(6):129~131.
    [26]马忠云,陈慧雁,刘振强,等.烟气SCR法脱硝工艺流程的设计与应用[J].电力建设,2008,29(6):53~56.
    [27]李岷.SCR脱NOx效率的主要影响因素浅析[J].黑龙江科技信息,2008(15):63.
    [28]陈海林,宋新南,江海斌,等.SCR脱硝性能影响因素及维护[J].山东建筑大学学报,2008,23(2):145~149.
    [29]李宏伟,钟祚群,于德亭.锅炉脱硝效率影响因素的试验研究[J].电站系统工程,2008,24(5):68.
    [30]曾令大,周怀春,傅培舫,等.后石电厂选择性催化还原(SCR)脱硝装置的应用[J].洁净煤技术,2007,13(1):66~69.
    [31]赵华,丁经纬,毛继亮.选择性催化还原法烟气脱氮技术现状[J].中国电力,2004,37(12):74~76.
    [32]王树荣,王琦,王建华,等.选择性催化还原脱硝技术在燃煤电厂的应用及发展[J].电站系统工程,2005,21(4):11~13.
    [33]Mi Jia, Dan A, Haskew Tim. CFD Applicatons on Selective Catalytic NOx Reduction(SCR) Systems[C].4th ASME-JSME Joint Fluids Engineering Conference, New York, USA,2003: 2139~2146.
    [34]蔡小峰,李晓芸.SCR反应入口段烟气速度场的数值模拟[J].电力环境保护,2006,22(5):18~19.
    [35]沈丹,仲兆平,过小玲.600MW电厂SCR烟气脱硝反应器内不同导流板的流场数值模拟[J].电力环境保护,2007,23(1):42~45.
    [36]杜云贵,余宇,吴其荣,等.烟气脱硝系统流场模拟与实验研究[J].环境工程,2009,27:255~257.
    [37]袁景淇,宋善奎,金强,等.面向脱除率优化的烟气脱硝CFD仿真研究[J].控制工程,2009,16(6):735~737.
    [38]Morita Isato, Ogasahara Toru, Franklin Howard N. Recent Experience with Hitachi Plate Type SCR Catalyst[C]. The Institute of Clean Air Companies Forum'02, Tarrytown, New York,2002:1-20.
    [39]俞逾,杨晨,范莉.电厂SCR烟气脱硝系统流场的数值模拟[J].计算机仿真,2007,24(3):58~62.
    [40]周丽丽,刘辉,雷志刚.选择性催化还原反应器气体预分布器内速度场和浓度场模拟[J].化工进展,2009,28:194~198.
    [41]随莉莉,袁景淇.火电SCR烟气脱硝系统混合与均流CFD仿真[J].控制工程,2008,15(5):523~525.
    [42]徐芙蓉,平恒,姜柏卿,等.三河电厂二期工程SCR脱硝装置流场的模型试验和数值分析[J].热力发电,2007(11):28~32.
    [43]吕同波,李林,王淑荣,等.选择性催化还原法脱硝装置流动及阻力特性的研究[J].华电技术,2009,31(12):8~14.
    [44]Cremer Marc, Adams Bradley, Valentine James. Use of CFD Modeling for Design of NOx Reduction Systems in Utility Boilers[C]. Proceedings of Nineteenth Annual International Pittsburgh Coal Conference, Pittsburgh, Pennsylvania, USA,2002:695~702.
    [45]贾双燕.火电厂烟气脱硝的数值模拟[D].华北电力大学(北京)硕士学位论文,2004:
    1-57.
    [46]Naqvi Mughis, Meyer Chris. Gas-Gas Mixing as Applied to SCR's[C]. NETL Conference 2003, Pittsburgh, Pennsylvania,2003:1-30.
    [47]Choi Hang Seok, Kim Seock Joon, Kim Kwan Tae. Enhancement of Turbulent Scalar Mixing and Its Application by a Multihole Nozzle in Selective Catalytic Reduction of NOX[R]. Journal of Material Cycles and Waste Management,2008(10):1-6.
    [48]Chae Ho Jeong, Choo Soo Tae, Choe Hoon, et al. Direct Use of Kinetic Parameters for Modeling and Simulation of a Selective Catalytic Reduction Process[J]. Industrial & Engineering Chemistry Research,2000,39(5):1159~1170.
    [49]Khodayari Raziyeh, Ingemar Odenbrand C U. Selective Catalytic Reduction of NOx:A Mathematical Model for Pison Accumulation and Conversion Performance[J]. Chemical Engineering Science,1999,54(12):1775~1785.
    [50]Roduit B, Wokaun A, Baiker A. Global Kinetic Modeling of Reaction Occurring during Selective Catalytic Reduction of NOx by NH3 over Vanadia/Titania-Based Catalysts[J]. Industrial & Engineering Chemistry Research,1998,37:4577~4590.
    [51]Enrico Tronconi. The Role of Inter-and Intra-phase Mass Transfer in the SCR-DeNOx Reaction over Catalysts of Different Shapes[J]. Catalysis Today,1999,52:249~258.
    [52]Wilhite David C. The Use of Computational Fluid Dynamics in Selective Catalytic Reduction System Ductwork Design[C]. Proceedings of the ASME Fluids Engineering Division, New York,1998:247~248.
    [53]张彦军,高翔,骆仲泱,等.SCR脱硝系统入口烟道设计模拟研究[J].热力发电,2007(1):15~17.
    [54]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007:50~91.
    [55]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004:7~254.
    [56]韩占忠,王敬,兰小平.流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004:14~98.
    [57]江帆,黄鹏.Fluent高级应用与实例分析[M].北京:清华大学出版社,2008:112~182.
    [58]安晓玲.SCR法烟气脱硝技术的数值模拟[D].华北电力大学(保定)硕士学位论文,2008:27~44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700