基于环境1号卫星多光谱数据的太湖总悬浮物浓度估算模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内陆水体的总悬浮物浓度是其重要的水质参数,也是水质评价重要指标之一。与传统监测方法相比,基于遥感水质参数估算的方法具有效益高、面积大、时效好、可取得连续数据等优点。目前基于卫星数据的总悬浮物浓度估算模型已有大量研究,由于水质参数随着自然环境的变化,随时都在改变,野外实验实际采样往往需要一段时间,卫星数据获取是某一瞬间,因此用实测水质数据与卫星数据建立估算模型时,难以实现卫星数据与实测数据同步。本研究尝试针对这一问题进行改进。
     论文以太湖为研究区,采用太湖的实测光谱数据与水体总悬浮物浓度数据,通过ASD实测光谱数据模拟环境1号卫星通道,构建太湖水体总悬浮物浓度估算模型;通过地面定标方法,确定实测光谱估算参数与环境1号卫星所获得的参数之间的修正关系;最终实现基于环境1号卫星多光谱数据的太湖总悬浮物浓度估算模型构建。环境1号卫星数据采用B星CCD2传感器数据。
     通过研究得出以下结论:
     (1)确立了太湖水体总悬浮物浓度估算适宜波段
     太湖水体呈现典型内陆二类水体的光学特性。通过水体各组分吸收与散射特性的分析,同时结合样点实测光谱分析,确定太湖总悬浮物浓度估算敏感波段在600nm~700nm。
     (2)构建了基于ASD实测光谱模拟波段的总悬浮物浓度估算模型
     通过ASD实测光谱模拟环境1号卫星4个通道(HJ1、HJ2、HJ3、HJ4),得到ASD光谱模拟波段(ASD1、ASD2、ASD3和ASD4),分析了波段和波段组合与总悬浮物浓度相关性,相关性较好的分别有ASD3、ASD4、ASD4*ASD4/ASD1、ASD3*ASD4/(ASD 1+ASD2)。分别以这些参数为自变量建立了指数、线性、对数、多项式、乘幂等形式的模型,通过对比分析,最终选择最优化的模型为SS=2004*ASD3-34.95, SS是总悬浮物浓度。
     (3)构建了基于环境1号卫星的太湖总悬浮物浓度估算模型
     选择地表相对一致的地块作为定标区,通过定标方法确立了ASD模拟波段与环境1号卫星参数关系为ASD3=0.284*HJ3-0.014。从而构建了基于环境1号卫星的总悬浮物浓度估算模型为:SS=569.5*HJ3-63.9。模型计算的平均相对误差在0.25左右,与直接用卫星数据和地面实测水质数据进行建模(传统方法)的计算结果相比,精度有所提高。
     (4)太湖总悬浮物浓度时空分异特征
     首先在时间尺度上秋冬季节总悬浮物浓度含量较高,从高到低依次:冬>秋>春、夏,尤其在1、12月份总悬浮物浓度明显偏高。在空间分布上西南区域高多于东北区域,中心区域相对较高,在新塘港、小梅口、新港口、梅梁湖等区域也相对较高,东太湖偏低。总体来讲,太湖总悬浮物浓度分布较之其他水质参数规律性不太明显。
Total suspended solids(TSS) concentration is one of the most important indexes for inland water quality assessment and water environment evaluation. Compare to conventional measurements, remote sensing in estimating water indexes has excellencies of high efficiency, large area, effects, and it can get the continuous data. Currently there are many models of estimating the total suspended solids based on satellite data.However, due to water quality parameters with the natural environment, changing all the time. Actual sampling always need a long time, but Satellite data acquisition is a moment. During building retrieval model, the satellite data and water quality data are non-synchronization. This paper attempts to improve this problem.
     Taihu lake was selected as study area. First, we use the measured spectral synchronization data (ASD spectrometer data) to simulate HJ-1 multiply Spectral channels. Next, Build retrieval model of total suspended solids concentration based on measured data. Then through the scaler of measured spectral data (ASD spectrometer data) and HJ-1 satellite, we will get the relations of the modified parameters. At last, This paper is to build total suspended solids concentration retrieval model of Taihu lake which is based on HJ-1 satellite. Satellite data comes from HJ-1BCCD2 satellite.
     Through the research we get the following conclusions:
     (1) Water optical properties of Taihu lake and the suitable band for retrieval of total suspended solids concentration.
     Taihu lake has typical inland II water's optical properties. By water absorption and scattering properties of each component analysis and combined with the samples' measured spectrum, we get the total suspended solids concentration's appropriate estimated band is in the 600 nm-700nm.
     (2) Build the total suspended solids concentration estimation model based on ASD spectrometer data.
     ASD measured by spectral simulation HJ-1 satellite, four channels (HJ1, HJ2, HJ3, HJ4), by spectral simulation ASD band (ASD1, ASD2, ASD3 and ASD4).By analyzing the correlation between total suspended solids concentration and band combinations we get ASD3, ASD4, ASD3* ASD4/ASD1, ASD3* ASD4/(ASD1 +ASD2). Using these four factors as independent variables to build models of linear, logarithmic, polynomial, power and other forms. Through a series of comparative analysis, the final choice is zhe linear model:SS=2004* ASD3-34.95.
     (3) Correction between ASD spectrometer and HJ-1B CCD2.
     Total suspended solids concentration estimation mode based on HJ-1 multi-spectral data. By scaling we get the total suspended solids concentration's parameter relationship between ASD spectrometer and HJ-1B CCD2:ASD3= 0.284* HJ3-0.014. Finally the total suspended solids concentration's estimation model which based on HJ-1B CCD2:SS= 569.5* HJ3-63.9.Except a few abnormal samples, the model's average relative error is 0.25 and compared to traditional methods, this model improved in accuracy.
     (4) Temporal and Spatial Variations of total suspended solids concentration in Taihu lake.
     Firstly in the time scale, total suspended solids concentration of Taihu lake has higher levels at autumn and winter.Order:winter> autumn> spring, summer. especially in January and December, total suspended solids concentration is highest. At spatial distribution, mostly, southwest region higher than the northeast region, relatively central region is higher. In Xintang Hong Kong, Mei mouth, new port Meiliang Lake area will be relatively high. East Taihu lake has low value. In general, total suspended solids concentration'laws in Taihu lake is not obvious compare to the other water quality parameters.
引文
[1]Chen Z M, Hanson J D,Curran P J. The Form of the Relationship between Suspended Sediment Concentration and Spectral Reflectance:Its Implications for the Use of Daedalus 1268 data [J]. Int. J. Remote Sensing,1991, 12(1):215-222.
    [2]Choubey V K. Monitoring water quality in reservoirs with IRS-1A-LISS-I [J]. Water Resources Management,1994,8(2):121-136.
    [3]Cococcioni M,Corsini G, Lazzerini B et al. Approaching the ocean color problem using fuzzy rules [J] IEEE Transactions on Systems,Man and Cybernetics-Part B:Cybernetics,2004,34(3):1360-1373.
    [4]Dekker A G, Vos R J, Peters S W M. Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes[J]. The Science of the Total Environment,2001,268:197-214.
    [5]Doxaran D, Froidefond J M,Castaing P. A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters [J]. Int. J. Remote Sensing,2002,23(23):5079-5085.
    [6]Doxaran D, Froidefond J M, Lavender S et al. Spectral signature of highly turbid waters:Application with SPOT data to quantify suspended particulate matter concentrations [J]. Remote Sensing of Environment,2002,81:149-161.
    [7]Gitelson A, Garbuzov G, Szilagyi F et al. Quantitative remote sensing methods for real-time monitoring of inland water quality [J]. Int. J. Remote Sensing, 1993,14(7):1269-1295.
    [8]Gordon H R, Brown O B, Jacobs M M. Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean [J]. Applied Optics,1975,14(2):417-427.
    [9]Gordon H R, Wang M. Retrieval of water leaving radiance and aerosol optical thickness over the oceans with SeaWiFS:a preliminary algorithm [J]. Applied Optics,1994,33(3):443-452.
    [10]Herut B, Tibor G, Yacobi Y Z, and Kress N. Synoptic Measurements of Chlorophyll-a and Suspended Particulate Matter in a Transitional Zone from Polluted to Clean Seawater Utilizing Airborne Remote Sensing and Ground Measurements, Haifa Bay (SE Mediterranean) [J]. Marine Pollution Bulletin Volume 38, Issue 9, September 1999,762-772.
    [11]Jorge A S, Antonio T G. Estimating a term structure of interest rates for fuzzy financial pricing by using fuzzy regression methods [J]. Fuzzy Sets and Systems, 2003,139:313-331.
    [12]Kallioa K, Kutserb T, Hannonena T et al. Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons [J]. The Science of the Total Environment,2001,268:59-77.
    [13]Karaska M A, Huguenin R L, Beacham J L et al. AVIRIS Measurements of Chlorophyll, Suspended Minerals, Dissolved Organic Carbon and Turbidity in the Neuse River, North Carolina [J]. American Society for Photogrammetry and Remote Sensing,2004,70(1):125-133.
    [14]Keiner L E, Yan X H. A Neural Network Model for Estimating Sea Surface Chlorophyll and Sediments from Thematic Mapper Imagery [J]. Remote Sensing of Environment,1998,66(2):153-165.
    [15]Kirk J T O. Light and photosynthesis in aquatic ecosystems [M].2nd ed. Cambridge, Britain:Cambridge University Press,1994.
    [16]Klemas V, Bartlett D, Philpot W et al. Coastal and Estuarine Studies with ERTS-1 and Skylab [J]. Remote Sensing of Environment,1974,3(3):153-174.
    [17]Kutser T, Hannonen T, Kallio K et al. Monitoring of turbid coastal and inland waters by airborne imaging spectrometer AISA [C]. International Geoscience and Remote Sensing Symposium,1998:2597-2599.
    [18]Lathrop R G. Landsat Thematic Mapper Monitoring of Turbid Inland Water Quality [J]. Photogrammetric Engineering of Remote Sensing,1992,58(4): 465-470.
    [19]Liew S C. Computation of coastal sea water absorption coefficients and retrieval of water quality parameters from EO1 Hyperion data [C]. International Geoscience and Remote Sensing Symposium,2002,2:802-804.
    [20]Mertes L A K, Smith M O, Adams J B. Estimating Suspended Sediment Concentrations in Surface Waters of the Amazon River Wetlands from Landsat Images [J]. Remote Sensing of Environment,1993,43(3):281-301.
    [21]Miller R L, McKee B A. Using MODIS Terra 250m imagery to map concentrations of total suspended matter in coast waters [J]. Remote Sensing of Environment,2004,93:259-266.
    [22]Moore G F, Aiken J, Lavender S J. The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case Ⅱ waters:application to MERIS [J] Int. J. Remote Sensing,1999, 20(9):1713-1733.
    [23]Morel A. In-water and remote measurement of ocean color [J].Boundary-Layer Meteorology,1980,18(2):177-201.
    [24]Morel A, Prieur L. Analysis of variations in ocean color [J]. Limnology and Oceanography,1977,22(4):709-722.
    [25]Munday J C, Alfoldi T T. Landsat test of diffuse reflectance models for aquatic suspended solids measurement [J]. Remote Sensing of Environment, 1979,8:169-183.
    [26]Myint S W, Walker N D. Quantification of surface suspended sediments along a river dominated coast with NOAA AVHRR and SeaWiFS measurements: Louisiana, USA. International Journal of Remote Sensing,2002.8(16): 3229-3249.
    [27]Malthus T J, Dekker A G. First derivative indices for the remote sensing of inland water quality using high spectral resolution reflectance [J]. Environment International,1995,21(2):221-232.
    [28]Populus J, Hastuti W, Martin J L M et al. Remote Sensing as a Tool for Diagnosis of Water Quality in Indonesian Seas [J]. Ocean and Coastal Management,1995,27(3):197-215.
    [29]Petzold T J. Volume scattering functions for selected ocean waters [M]. San Diego:Scripps Institution of Oceanography Ref,1972.72-78.
    [30]Pulliainen J, Kallio K, Eloheimo K et al. A semi-operative approach to lake water quality retrieval from remote sensing data[J].The Science of the Total Environment,2001,268:79-93.
    [31]Risovic D. Effect of suspended particulate-size distribution on the backscattering ratio in the remote sensing of seawater [J]. Applied Optics,2002, 41(33):7092-7101.
    [32]Shubha Sathyendranath. Remote sensing of ocean colour in coasta,1 and other optically-complex, waters. IOCCG Report:No.3. Canada:International Ocean-Colour Coordinating Group,2000.
    [33]Tanaka H, Watada J. Possibilistic linear systems and their application to the linear regression model [J]. Fuzzy Sets and Systems,1998,27(3):275-289.
    [34]Tassan S. An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters [J]. Int. J. Remote Sensing,1993,14(6):1221-1229.
    [35]Tassan S. A procedure of determine the particulate content of shallow water from Thematic Mapper data [J]. Int. J. Remote Sensing,1998,19(3):557-562.
    [36]Warrick J A, Mertes L A K, Siegel D A et al. Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS [J] Int. J. Remote Sensing,2004,25(10):1995-2002.
    [37]Williams A N, Grabau W E. Sediment Concentration Mapping in Tidal Estuaries[R]. Third Earth Resources Technology Satellite-1 Symposium, NASA SP-351,1973,1:1347-1386.
    [38]Zhao W, Tamura M, Takahashi H. Atmospheric and spectral corrections for estimating surface albedo from satellite data using 6S code [J]. Remote Sensing of Environment,2000,76(2):202-212.
    [39]阿布都瓦斯提·吾拉木,秦其明,朱黎江.基于6S模型的可见光、近红外遥感数据的大气校正[J].北京大学学报(自然科学版),2004,40(4):611-618.
    [40]蔡启铭.太湖环境生态研究[M].北京:气象出版社,1998.
    [41]曹文熙,钟其英,杨跃忠.南海水色遥感的主因子分析[J].遥感学报,1999,3(2):112-115.
    [42]陈涛,李武,吴曙初.悬浮泥沙浓度与光谱反射率峰值波长红移的相关关系[J].海洋学报,1994,16(1):38-43.
    [43]戴昌达,姜小光,唐伶俐.遥感图像应用处理与分析[M].北京:清华大学m版社,2004.
    [44]傅克忖,荒川久幸,曾宪模.悬沙水体不同波段反射比的分布特征及悬沙量估算实验研究[J].海洋学报,1999,21(3):135-140.
    [45]管义国,王心源,吉文帅.巢湖水体悬浮物的摇杆分析[J].遥感信息,2007(05)
    [46]韩震,恽才兴,蒋雪中.悬浮泥沙反射光谱特性实验研究[J].水利学报,2003,12:118-122.
    [47]何青,恽才兴,时伟荣.长江口表层水体悬沙浓度场遥感分析[J].自然科学进展,1999,9(2):160-164.
    [48]黄海军.黄河口海域悬沙光谱特征的研究[J].海洋科学,1994,4:40-44.
    [49]黄漪平.太湖水环境及其污染控制[M].北京:科学出版社,2001.
    [50]乐成峰,李云梅,查勇,孙德勇,伍蓝,王莉珍.太湖梅梁湾水体组分吸收特性季节差异分析[J].环境科学,2008,(9):2448-2455.
    [51]李铜基,陈清莲,杨安安.黄东海春季水体后向散射系数的经验模型研究[J].海洋技术,2004,23(3):10-14.
    [52]李云梅,黄家柱,陆皖宁,石浚哲,.基于分析模型的太湖悬浮物浓度遥感监测[J].海洋与湖沼,2006,(2):171-177.
    [53]李京.利用NOAA卫星的AVHRR数据测杭州湾海域的悬浮泥沙含量[J].海洋学报,1987,9(1):132-136.
    [54]李京.水域悬浮固体含量的遥感定量研究[J].环境科学学报,1986,6(2):166-173.
    [55]李四海,唐军武,恽才兴.河口悬浮泥沙浓度SeaWiFS遥感定量模式研究[J].海洋学报,2002,24(2):51-58.
    [56]李素菊,吴倩,王学军等.巢湖水体悬浮物含量与光谱反射率的关系[J].城市环境与城市生态,2003,16(6):66-68.
    [57]李炎,李京(1999)基于海面-遥感器光谱反射率斜率传递现象的悬浮泥沙遥感算法[J].科学通报,44(17):1892-1897.
    [58]黎夏.悬浮泥沙遥感定量的统一模式及其在珠江口中的应用[J].环境遥感,1992,7(2):106-113.
    [59]刘堂友,匡定波,尹球.湖泊藻类叶绿素-a和悬浮物浓度的高光谱定量遥感模型研究[J].红外与毫米波学报,2004,23(1):11-15.
    [60]吕恒,魏小鸿.太湖悬浮物浓度的MODIS数据定量反演提取[J].地球信息科学,2008(02):151-155.
    [61]吕恒.太湖水质多尺度遥感定量监测研究[D].中科院南京地理与湖泊研究所博士学位论文,2004.
    [62]吕国楷,洪启旺,郝允充,等.遥感概论[M].北京:高等教育出版社,1995.
    [63]马荣华,戴锦芳.结合Landsat ETM与实测光谱估测太湖叶绿素及悬浮物含量[J].湖泊科学,2005,17(2):97-103.
    [64]钱少猛.遥感像元分解方法及其在滇池水质监测中的应用研究[D].中国科学院遥感应用研究所硕士学位论文,2003.
    [65]疏小舟,尹球,匡定波.内陆水体藻类叶绿素浓度与反射光谱特征的关系[J].遥感学报,2000,4(1):41-45.
    [66]孙顺才,黄漪平编.太湖[M].北京:海洋出版社,1993.10-11.
    [67]唐军武,田国良,汪勇等.水体光谱测量与分析I:水面以上测量法[J].遥感学报,2004,8(1):37-44.
    [68]唐军武,陈清莲,田国良.离水辐射非朗伯特性的Monte Carlo模拟及分析[J].海洋学报,2000,22(2):48-57.
    [69]汪小勇,李铜基,唐军武,杨安安.二类水体表观光学特性的测量与分析—水面之上法方法研究[J].海洋技术,2004,23(2):1-6.
    [70]王建平,程声通,贾海峰等.用TM影像进行湖泊水色估测研究的人工神经网络模型[J].环境科学,2003,24(2):73-76.
    [71]王艳红,邓正栋,马荣华.基于实测光谱与MODIS数据的太湖悬浮物定量估测[J].环境科学学报,2007(03):3022-3026.
    [72]王学军,马延.应用遥感技术监测和评价太湖水质状况[J].环境科学,2000,11(21):65-68.
    [73]韦玉春,黄家柱,光洁.太湖悬浮物浓度的遥感监测归一化指数模型[R].第十五届全国遥感技术学术会议,2005,8.
    [74]许珺,方红亮.运用SPOT数据进行河流水体悬浮固体浓度的研究——以台湾淡水河为例[J].遥感技术与应用,1999,14(4):17-22.
    [75]许陈忠,乐华福,毛显谋.表层水体悬浮泥沙光谱特性及航空遥感方法的初步研究[J].海洋通报,1982(02):48-56.
    [76]杨顶田,陈伟民,张运林等.太湖梅梁湾水体中悬浮质及光谱的分布特征[J].生态科学,2002,21(4):289-293.
    [77]尹球,疏小舟,姚兆安等.湖泊水环境指标的超光谱响应特征分析[J].红外与毫米波学报,2004,23(6):427-435.
    [78]俞宏,蔡启铭,吴敬禄.太湖水体吸收系数与散射系数的特征研究[J].水科学进展,2003,14(1):46-49.
    [79]岳涛,黄宇民,刘品雄,等.未来中国卫星遥感器的发展分析[J].航天器工程,2008,17(4)
    [80]詹海刚,施平,陈楚群.基于遗传算法的二类水体水色遥感估测[J].遥感学报,2004,8(1):31-36.
    [81]张运林,秦伯强,陈伟民等.太湖水体中悬浮物研究[J].长江流域资源与环境,2004,5(13):266-271.
    [82]张运林,秦伯强.太湖水体中悬浮物研究[J].长江流域资源与环境,2004,13(3):266-271.
    [83]张运林,秦伯强,陈伟民等.悬浮物浓度对水下光照和初级生产力的影响[J].水科学进展,2004,15(5):615-620.
    [84]张运林,吴生才,秦伯强等.太湖梅梁湾有色可溶性有机物对光的吸收[J].中国环境科学,2004,24(4):405-409.
    [85]赵碧云,贺彬,朱云燕等.滇池水体中总悬浮物含量的遥感定量模型[J].环境科学与技术,2001,2:16-18.
    [86]祝令亚,王世新,周艺,阎福礼,杨龙元.应用MODIS影像估测太湖水体悬浮物浓度[J].水科学进展,2007(03):444-450.
    [87]朱敏,金伟其·JZ-1星座CCD摄像机光学系统F数的选取[J].光学技术,2002,28(6)
    [88]中华人民共和国国家标准GB11901-89.水质悬浮物的测定-重量法[S].http://www.zhb.gov.cn/eic/650208300008210432/20050117/4590.shtml

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700