反萃分散组合液膜体系和支撑液膜体系迁移和分离金属离子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液膜分离技术具有传质速度快、选择性好、分离效率高、操作简便和易于实现自动化等特点,在分离和富集废水中的金属离子和有机污染物方面,展示了优良的性能。本文回顾了液膜的发展简史,介绍了液膜的分类、分离机理和特点。通过讨论液膜两种基本构型即支撑液膜和乳化液膜的形成、应用、不足以及对该两种液膜的不稳定性所作的改进,阐述了在科研和工业中发展液膜新构型的必要性,并设计了几种典型的反萃分散组合液膜(SDHLM),考察了它们在废水处理中的实用性。
     具体工作包括以下几个方面:
     1、系统地研究了四个反萃分散组合液膜体系,即三正辛胺—仲辛醇—煤油—CH_3COONH_4体系迁移镉和镉锌分离;PMBP—OT—液体石蜡—二甲苯—HCl体系迁移铜和铜锌分离;TRPO—P_(204)—液体石蜡—煤油—NaOH体系同时迁移镉和氰离子;N_(902)—煤油—HCl体系分离铜锌。在不同的体系中考察了载体浓度,料液pH值,反萃剂浓度,反萃分散相体积比,料液流量,反萃分散相流量以及金属离子浓度等各种条件对迁移和分离的影响,优化了实验条件参数。
     2、与支撑液膜(SLM)在上坡迁移、金属离子分离、膜液中载体的流失等方面进行了系统地比较。
     3、研究了反萃分散组合液膜体系中双载体对Cd~(2+)和CN~-的同时迁移作用。
     由以上工作得出:反萃分散组合液膜体系中的膜溶液可以对支撑体微孔中膜液的损失进行补充,增加膜的稳定性,减小支撑液膜的液膜相从支撑体微孔中的流失,延长膜的使用寿命;反萃分散组合液膜体系中有机相与水相反萃液的搅拌混合提供了反萃过程中的极大传质表面积,因而使反萃效率大为提高,这种高效反萃提高了金属离子迁移通量,同时得到高浓度溶质的反萃液;反萃分散组合液膜体系中没有使用乳化剂和破乳装置,减少操作费用和初期投资,同时简化了操作步骤。实验表明,SDHLM在膜选择性、膜的使用寿命以及膜的渗透速度等方面都优于SLM。
Liquid membrane separation technology has exhibited excellent characters on separation and enriching metal ions and organic pollutant in the industrial wastewaters due to their fast mass transport, great selectivity, high separation efficiency, convenient operation, and easy automatization. This text briefly looked back the development history of the liquid membrane and introduced the classification, separation mechanism and the characteristics of the liquid membrane. By discussing the formation, applications, shortages and the improvement to the instability of supported liquid membrane and emulsion liquid membrane, the experimenters expounded the necessity of developing new configuration of liquid membrane, in scientific research and industry operation, and designed some new types of strip dispersion hybrid liquid membrane (SDHLM), and investigated their practicality in industrial wastewater treatment.
     The concrete work includes:
     (1)Four strip dispersion hybrid liquid membrane systems were studied systematically. They are: transport of Cd~(2+) and separation of Cd~(2+) from Zn~(2+) with tri-n-octylamine-secondary octyl alcohol( )-kerosene-CH_3COONH_4 system, transport of Cu~(2+) and separation of Cu~(2+) from Zn~(2+) with PMBP-OT-paraffine -xylene-HC1 system, separation of Cd~(2+) and CN~- at same time with TROP-P_(204)-paraffine -kerosene -NaOH system, and separation of Cu~(2+) from Zn~(2+) with N_(902)-kerosene-HC1 system. These factors of carrier concentration, pH in feed solution, stripping solution concentration, volume ratio of strip dispersion, flux of the feed solution, and flux of the strip dispersion that influence on ions transport and separation were investigated in different system, and optimized experimental conditions.
     (2)The study made the comparision between strip dispersion hybrid liquid membrane and supported liquid membrane (SLM), as in uphill transport, ions separation, carrier loss in membrane phase.
     (3)The simultaneous separation of Cd~(2+) and CN~- was investigated with double carriers in strip dispersion hybrid liquid membranes.
     From the above work, we drew the following conclusions: the strip dispersion hybrid liquid membrane system can constantly supply the loss of the carrier to the microporous support, and enhanced the stability of membrane. The mixed stirring between the organic phase and the strip phase provided an extra mass transfer surface in addition to the surface given by the microporous film, thus greatly improving the efficiency of stripping.
     The high efficience of stripping increases ions transport flux. Transport and recovery of ions from industrial wastewaters are proved practical with the strip dispersion hybrid liquid membrane. In the experimental comparison of transport flux, permeability coefficient; recovery percentage or oncentration of solute in stripping solution, efficiency of uphill transport, loss of membrane solution, and separation efficiency of embrane for two types of liquid membrane, SDHLM has superiority over SLM.
引文
[1] 常学秀,文传浩,王焕校.重金属污染与人体健康[J],云南环境科学,2000,19(1):59-61。
    [2] 蒋清民.工业废水处理技术进展[J],河南化工,2003,(1):8-10。
    [3] 张建梅.重金属废水处理技术研究进展[J],西安联合大学学报,2003,(2):55-59。
    [4] Haber F, Klemesiewicz Z. Uber elektrische Phasengrenzkrafte[J]. Zeitschirft f Physik [J]., Chemie, 1909,67:385-431。
    [5] Beutner R. Water-immiscible Organic liquids as general conductors in galvanic cells[A]., Miller L. 23rd General Meeting of the American Electrochemical Society[C]. Atlantic City, N J:1913,401-403。
    [6] Beutner R. Neue erscheihungen der electrizitatserregung, Welch einige biodl-ektrische phanomene erklare[J]. Zeitschrift f Elektrochem., 1913,19(8):319-330。
    [7] Osterbout W J V, Some models of protoplasmic surface[J]. Cold Spring Habor Symp Quant Biol., 1940,8:51-56。
    [8] Widdas W F, Facilitated transfer of hexoses across the human erythrocyte membrane[J]. J Physi., 1954,125:163-169。
    [9] Scholander P F, Oxygen transport through hemoglobin solution[J], Science., 1960,131:585-590。
    [10] Wirrenberg J B, The molecular Mechanism of hemoglobin facilitated oxygen diffusion[J]. J Biolo Chem., 1966,241:104-110。
    [11] Stark G, Benz R, The transport of potasium through liquid bilayer membranes by the natural carriers valinomycin and monoaction[J]. J Membr Biol., 1971,5: 133-142。
    [12] Bloch R, Finkelstein A, Kedem O, etal. Metal ion separation by dialysis throughsolvent membranes[J]. Ind Eng chem. Process Design and Develop., 1967,6:231-237。
    [13] Ward ⅢW J, Robb W L. Carbon dioxide-oxyen separation: Facilitated transport of carbon dioxide across a liquid film[J], Science., 1967(156):1481-1486
    [14] Li N N, Somerset N J. Separating hydrocarbons with liquid membrane[P]. US Patent, 3419794, 1968-12-11.
    [15] Bartsch R A, Way J D. Chemical separation with liquid membrane[M]. ACS Symposium series 642.New York: American Chem Soc, 1996
    [16] Gu ZM, Ho W S, Li N N. Desigh considerations of emulsion liquid membrane [A], Ho W S, Sirkar K K. Membrane handbook[C], New York:American Chem Sco. 1996.
    [17] Cussler E L, Evans D F. Liquid membranes for separation and reaction[J].J Membr Sci.,1980, 6:113-121.
    [18] Hayworth H C, Ho W S, Burns A, et al. Extraction of uranium from wet process phosphoric acid by liquid membrane[J] . Sep. Sci. Technol., 1983, 18(6): 493-521.
    [19] Martin T P, Davies G A. The extraction of copper from dilute aqueous solutions using a liquid membrane process[J]. Hydrometallurgy., 1977, 2(4): 315-334,
    [20] Muruganandam N, Paul D R. Evalution of substituted polycarbonnates and a blend with polystyrene as gas separation membranes [J]. J. Membr. Sci., 1987, 34:185-198.
    [21] Pez G P, Carlin R T. Method for gas separation[P]. US Pat:4617029, 1986-10-14.
    [22] Yang X J, Fane A G, Soldenhoff K. Comparison of liquid membrane processes for metal separations: permeability, stability, and selectivity[J]. Ind. Eng. Chem. Res., 2003, 42(2):392-403.
    [23] Szpakowska M, Nagy O B. Membrane material effect on copper coupled transport through liquid membranes[J]. J. Membr. Sci., 1991,64(1-2): 129-143.
    [24] Szpakowska M, Nagy O B. Non-steady state vs. steady state kinetic analysis of coupled ion transport through binary liquid membranes [J]. J. Membr. Sci., 1993, 76(1) :27-38
    [25] 李思芽,马占芳,褚莹,等.原油电破乳新技术[J].膜科学与技术,1995,5(2):21。
    [26] 许谨.液膜分离、浓缩铜工艺研究[J].贵州工业大学学报,1995,24(2):46。
    [27] 谢少雄等.液膜接触法处理含铜废水的实验研究[J].膜科学与技术,2003,23(2):65-68。
    [28] 黄万抚,雷兆武.乳状液膜自含铜废水中提取Cu~(2+)的试验研究[J].南方冶金学院学报,2003,24(5):11-14。
    [29] G Sznejer, A Mannur. Cadmium removal from aqueous solutions by an emulsion liquid membrane the effect of resistance to mass transfer at the outer oil-water interface [J]. Colloidand Surfacea, 1999, (15): 77-83。
    [30] 张瑞华,徐志伟.乳状液膜提取有机酸的工艺状况[J].膜科学与技术,2000,20(3):23。
    [31] 秦非.液膜法处理含酚废水的研究[J].环境化学,1997,16(3):247。
    [32] Li N N, Edison, Robert P Cahn, et al. Removal of organic compounds by liquid membrane[P].US, 3617546.1971-11-02。
    [33] 李民权.液膜分离技术处理含铀废水[J].工业化处理,1995,78(2):14。
    [34] 方建章,朱兵,王向德,等.用乳状液膜法从镀金废液中回收金的研究[J].环境污染与防治,1998,20(3):1-4。
    [35] P S Kulkarni, V V Mahajeni. Application of liquid membrane (LEM) process for enrichment of molybdenum from aqueous solutions[J]. Membrane Science, 2001, 201:123-135。
    [36] P S Kulkarni, K K Tiwari, V V Mahajani. Membrane stability and enrichment of nickel in the liquid emulsion membrane process[J]. J Chem Technol Biotechnol, 2000 (75):533-560。
    [37] 片健,西械中昭.液膜法高度分离技术与开发[J].科学与工业,1989,60(3):386。
    [38] Jean Paul Leclercq. Decorative facing for walls, facades, ceiling and the like[P]. US, 3733766.1970-12-07。
    [39] 武凤兰,王温,李龙泉,等.液膜法提取麦白霉素的试验[J].中国医药工业杂志,1998,29(5):196-199。
    [40] 韩伟,邓修,熊丹柳,等.液膜法提取发酵中的苯丙氨酸[J].华东理工大学学报(自然科学版),1997,23(6):662-668。
    [41] 沈力人,杨品利.液膜法萃取青霉素的研究[J].膜科学与技术,1997,17(1):24-28。
    [42] 林立,牟明仁.乳化液膜提取浓缩柠檬酸的研究[J].微生物学通报,1997,24(4):221-223。
    [43] 吴汉奇,刘兴荣,王小恒.液膜常用表面活性剂对青霉素提取率及液膜溶胀的研究[J].膜科学与技术,2006,26(3):61-64。
    [44] Gu Z M, Ho W S, Li N N. Design considerations of emulsion liquid membranes[A]. Ho W S, Sirkar K K. Membrane Handbook[C]. New York: Chapmar&Hall, 1992:656-700。
    [45] Kunungo S B, Mohapatra R. Coupled transport of Zn(Ⅱ) through a supported liquid membrane containing bis(2,4,4-trimethylpentyl) phosphinic acid in kerosene. Ⅱ Experimental evaluation of model equations for rate process under different limiting conditions[J]. J. Membr. Sci., 1995,105:227-235。
    [46] Daoud J A, Ei-Reefy S A, Aly H F. Permeation of Cd(Ⅱ) ions through a supported liquid membrane containing Cyanex-302 in kerosene [J]. Sep. Sci. Technol., 1998,33:537-549。
    [47] Yaftian M R, Burgard M, Oieleman C B, Matt D. Rare-earth metal-ion separation using a supported liquid membrane mediated by a narrow rim phosphorylated calix[4]arene[J]. J. Membr. Sci., 1998,144:57-64。
    [48] 毛建新等.以P507为载体的支撑液膜体系中Ni2十离子的迁移[J].化学物理学,1995,8(6):569-575。
    [49] 何鼎胜等.三正辛胺一煤油支撑液膜萃取Cd(Ⅱ)的研究[J].水处理技术,1999,25(6):330-334。
    [50] Dingsheng He, Ming Ma. Transport of cadmium ions through a liquid membrane containing amine extractants as carriers[J]. J. Membr. Sci., 2000,169:53-59。
    [51] 张建民,崔心水.支撑液膜法提取柠檬酸工艺条件的研究[J].过滤与分离,2006,16(3),15-21
    [52] Wieczorek P, Jonsson J A, Mathiasson L. Extraction of dansylated amino acids using the supported liquid membrane technique[J]. Anal. Chim. Acta, 1997,337(2):183-189。
    [53] Miyako E, Maruyama T, Kamiya N, et al. Highly enantiosclective separation using a supported liquid membrane encapsulating surfactant-enzyme complex[J]. J. Am. Chem. Soc., 2004,126(28): 8622-8623。
    [54] Miyako E. Maruyama T. Kubota F, et al. Optical resolution of various amino acids using a supported liquid membrane encapsulating a surfactant-protease complex[J]. Langmuir, 2005,21(10):4674-4679。
    [55] Clark J D, Han B B, Bhown A S, et al. Amino acid resolution using supported liquid membranes[J]. Sep. Purif. Technol., 2005,42(3):201-211。
    [56] Kertesz R, Schlosser S, Simo M. Mass-transfer characteristics of a spiral-channel SLM module in pertraction of phenylalanine[J]. Desalination, 2004,163(1-3):103-117。
    [57] Zhang B, Gozzelino G, Baldi G. Membrane liquid loss of supported liquid membrane based on n-decanol[J]. Colloid. Surface. A, 2001, 193(1-3): 61-70。
    [58] Denesi P, Reichley Y L, Richert P G. Life time of supported liquid membranes: The influence of interracial properties, chemical composition and water transport on the long-term stability of the membranes[J]. J. Membr. Sci., 1987, 31(2-3): 117-145。
    [59] Fabiani C, Merigiola M, Seibona G, et al. Degradation of supported liquid membranes under an osmotic pressure gradient[J]. J. Membr. Sci., 1987, 30(1): 97-104。
    [60] Matson S L, Lopez J, Quinn J A. Separation of gases with synthetic membrane[J]. Chem. Eng. Sci., 1983, 38(4): 503-524。
    [61] Chimuka L, Megersa N, Norberg J, et al. Incomplete trapping in supported liquid membrane extraction with a stagnant acceptor for weak bases[J]. Anal. Chem., 1998, 70(18):3906-3911。
    [62] 《化学分离富集方法及应用》编委会.化学分离富集方法及应用[M].中南工业大学出版社,1997。
    [63] 邵刚.膜法水处理技术[M].冶金工业出版社,1992。
    [64] 张瑞华.液膜分离技术[M].江西人民出版社,1984。
    [65] Teramoto M, Tohno N, Ohnishi, et al. Development of a spiral-type flowing liquid membrane module with high stability and its application to the recovery of chromium and zine[J]. Sep. Sci. Technol., 1989,24:981-999。
    [66] Teramoto M, Matsuyama H, Yamashiro T, et al. Separation of ethylene from ethane bya flowing liquid membrane using silver nitrate as a carrier[J]. J. Membr. Sci., 1989,46:115-136。
    [67] Matsuyama H, Boku J, Teramoto M. Separation and concentration of heavy metal ions by a spiral-type flowing liquid membrane module[J]. Water Treatment, 1990,5:237-252。
    [68] Majumder S, Guha A K, Sirkar K K. A new liquid membrane technique for gas separation[J]. AIChE. J., 1988,34:1135-1145。
    [69] Sengupta A, Basu R, Sirkar K K. Separation of solutes from aqueous solution by contained liquid membrane[J]. AIChE. J., 1988,34:1698-1798。
    [70] Boyadzhiev L, Lazerova Z, Bezenshek E. Mass transfer in three liquid phase system[A]. Proceedings of ISEC'83[C]. Denver Colorado: USA, 1983.391-393。
    [71] 顾忠茂,周庆江,金兰瑞.静电式准液膜分离方法及装置[P].中国专利:CN86101730,1988-04-13。
    [72] Gu Z M. Electrostatic pseudo liquid membrane separation technology[J]. J. Chem. Ind. Eng. (China), 1990,5:44-55。
    [73] Gu Z M. Electrostatic pseudo liquid membrane[M]. Ho W S, Sirkar K K. Membrane Handbook. New York:Chapman & Hali, 1992.867-884。
    [74] Gu Z M, Wu Q F, Zheng Z X, et al. Laboratory and pilot plant test of yttrium recovery from wastewater by electrostatic pseudo liquid membrane[J]. J. Membr. Sci., 1994,93:137-147。
    [75] Yang X J, Gu Z M, Wang D X. Extraction and separation of scandium from rare earths by electrostatic pseudo liquid membrane[J]. J. Membr. Sci., 1995, 106:131—145。
    [76] 王雨春,张仲甫,汪德先,等.TTA为载体的乳化液膜对抗与铁、锰、钙、稀土、铁的分离[J].膜科学与技术,1992,1:16-20。
    [77] Zhang R H. Concentration of rare earths from ammonium sulfate type Ieachate with emulsion liquid membrane[A]. Proceedings of the 4th Sino-Japan. Symposimm on Liquid Membranes[C]. Shanghai:China, 1998.58-60。
    [78] 吴全锋,郑佐西,顾忠茂.冠状液膜分离方法及其装置[P].中国专利:CN94107328.9,1997-07-5。
    [79] 吴全锋,顾忠茂,汪德熙.液膜分离过程的新发展一内耦合萃反交替分离过程[J].化工进展,1997,2:30-35。
    [80] 顾忠茂,甘学英,吴全锋.无“返混”内耦合萃取一反萃分离装置[P].中国专利:ZL99213848.5,2000-04。
    [81] 昊全锋,白书雨,顾忠茂.内耦合萃反交替反应槽改进与扩大研究[J].原子能科学技术,1997,31(6):524-529。
    [82] Raghuraman B, Wiencek J. Extraction with emulsion Liquid membranes in a Hollow-fiber contactor[J]. AIChE J., 1993,39:1885-1889。
    [83] Ho W S. Combined supported liquid membrane/strip dispersion process for the removel and recovery of redionuclides and metals[P]. USA Pat:6328782,2001-12-11。
    [84] Ho W S. Combined supported liquid membrane/strip dispersion process for the removel and recovery of penicillin and organic acids[P]. USA Pat:6433163,2002-08-13。
    [85] Ho W S. Combined supported liquid membrane/strip dispersion process for the removel and recovery of metals[P]. US Pat:6350419, 2002-02-26。
    [86] Satre A M, Kumar A, Shukla J P, et al. Sep Purif Methods [J], 1998,27(2):213。
    [87] 顾忠茂.液膜分离过程研究的新进展.膜科学与技术[J],1999,19(6):10。
    [88] P R Danesi. Separation of metal species by supported liquid membranes. Sep. Sci. Technol., 1984-85,19(11&12):857-894。
    [89] P R Danesi. E P Horwitz, G F Vandegrift, R Chiarizia. Mass transfer rate through liquid membranes: interfacial chemical reactions and diffusion as simultaneous permeability controlling factors[J]. Sep. Sci. Technol., 1981,16:202-214。
    [90] P R Danesi. E P Horwitz, P G Rickert. Transport of Eu~(2+) through a bis(2-ethylhexyl) phosphoric acid, n-dodecanol solid supported liquid membrane[J]. Sep. Sci. Technol., 1982,17:1183-1192。
    [91] 何鼎胜,马铭,曾鑫华,谢青季.二(2-L基已基)磷酸-煤油液膜萃取锌(Ⅱ)的动力学分析[J].应用化学,2000,17(1):47-50。
    [92] Dingsheng He, Xinfang Liu, Ming Ma, Transfer of Cd(Ⅱ) chloride species by a tri-octylamine-secondary octyl alcohol-kerosene multimembrane hybrid system[J]. Solvent Extraction and Ion Exchange, 2004,22(3):491-511。
    [93] XU Guang-Xian(徐光宪),YUAN Cheng-Ye(袁承业).Solvent Extract ion of Rare Earth(稀土的溶剂萃取)Beijing:SciencePress,1991。
    [94] Rueyshin Juang, Hwailuh Chang. A mechanistic study of uphill transport of metal ions through countertransport supported liquid membrane. Sep. Sci. Technol., 1996,1:1365-379。
    [95] 倪海勇,邓佐国,林衍洲,等,以Acorga M5640为载体和乳状液膜法分离富集铜[J],膜科学与技术,2004,24(2):40。
    [96] Ho W S, Poddar T K .New membrane technology for removal and recovery of chromium from wasted waters[J].Environ Progr., 2001,20:44。
    [97] (Ⅲ) 1-3-4-5[J], 1965,24(5),711-715。
    [98] 1-3-4-5[J]. 1973,28,267。
    [99] 上海有机所第二研究室.N_(530)萃取铜的动力学协萃研究[J].有机化学,1979,1:1-12。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700