Ni_3Al合金和硫族磁性化合物中的量子临界现象研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在一些强关联电子系统中(如:铜氧化物超导体、铁基超导体、重费米子以及一些钌氧化物),通过压力、磁场或元素替代等手段,将其磁相变温度抑制0 K,在该临界压力(pc)、磁场(Hc)或者临界替代浓度(xc)附近,系统的诸多物理性质呈现一系列反常。与由温度驱动的传统的相变不同,由外部条件(p,H,x)变化所诱导的这种从磁有序态转变为无序态的T=0 K量子相变,通常伴随着强烈的自旋量子涨落,从而决定了系统在很宽的相空间(T, H;T, p或T,x)的物理性质。由此可见,选择更多的磁性系统,甚至是传统的磁性化合物,采用元素替代、外加磁场或加压力等方法,抑制其长程磁有序,通过观测临界点(pc、Hc或xc)附近样品的物性,在更多的磁性系统中,证实其非Fermi液体行为与零温度下自旋量子涨落存在本质关联,这在凝聚态物理学中是一个非常重要的研究课题,其研究结果无论对高温超导电性的微观机制的理解还是对强关联电子系统物理的建立都具有重要意义。
     本论文共分为六章,其主要内容如下:
     第一章我们综述了近年来有关量子相变的理论和实验研究进展,同时对本论文研究的意义及内容给出简单的概括。
     第二章巡游电子铁磁系统Ni3Al1-x Gax中的量子临界现象研究。我们采用Arc-Melting方法制备了不同Ga替代浓度的Ni3Al1-xGax系列样品,对其结构、磁化强度、电阻率和比热的进行了系统观测,结果发现:随着Ga替代浓度x值的增加,系统的铁磁相变温度逐渐降低,在x=0.34附近被抑制至0 K,系统在该临界浓度附近发生了巡游电子铁磁到顺磁的量子相变。在国际首次获得Ni3Al1-xGax系统的磁相图;该临界浓度附近样品的低温磁化强度-磁场、起始磁化率-温度关系分别呈现M∞H1/3和1/χinitial∝T4/3标度律行为;不同温度下,与自旋量子涨落谱相关的γ值随着磁场变化呈现峰值效应,在国际上,首次通过对不同温度下测得的磁化曲线M(H)分析,结合理论解释,获得了自旋量子涨落谱信息;通过对其不同磁场下低温比热的观测,证实在该系统中自旋量子涨落对比热的贡献满足C/T oc-logT关系,同时发现该系统为中等关联电子系统;在量子临界点附近样品的电阻率-温度关系呈现非费米液体行为。
     第三章NiS2-xSex中的反铁磁量子临界现象研究。针对NiS2-xSex系统在x=1.0附近发生的反铁磁-顺磁的量子相交,制备了一系列NiS2-xSex(x= 0.96,0.98,1.00,1.05,1.10和1.20)多晶样品,对其结构、磁性质和电阻率进行了系统的观测。结果发现:样品磁化率-温度关系呈现典型的强关联电子系统特征,NiS2-xSex(x>1.0)中存在两类载流子,一类是巡游的,另一类是局域的,甚至可能存在动态的电子相分离;与铜氧化物超导体的正常态具有类似的电阻率-温度关系的线性行为;在反铁磁量子临界点附近的x=0.98和x=1.00样品,由于存在强烈的量子自旋涨落效应,低温下(3-30 K)其电阻率-温度满足p(T)∞T3.2关系,呈现非费米液体行为,而在偏离临界点(如x=1.10和1.20)样品的p-T又呈现费米液体理论所预期的T2关系。
     第四章有关Co(S1-xSex)2中的铁磁量子相变研究。针对Co(S1-xSex)2系统在x=0.11附近发生的铁磁金属到顺磁金属相变,制备了一系列不同Se替代浓度的样品,对其结构和电阻率-温度p(T)关系进行了系统观测,结果发现:系统铁磁相变温度TC随着Se替代浓度的增加,以x1/2关系单调下降,铁磁相变也由二级转变为一级相变。在临界浓度x=0.11附近,其p(T)关系由Fermi液体行为转变为非Fermi液体行为。
     第五章重费米子系统Ce1-xYxIn3中Y部分替代对其反铁磁有序抑制的研究。在采用助溶剂方法生长出具有不同Y替代浓度的Ce1-xYxIn3单晶样品的基础上,对其结构和磁性质进行了系统研究。结果发现,随着Y替代浓度的增加,其反铁磁相变温度单调下降,在x=0.38附近,其反铁磁相变温度被抑制至0 K,获得了Ce1-xYxln3系统磁相图。
     第六章近铁磁超导体MgCNi3的第Ⅱ类超导电性研究。采用高压合成的方法制备出高品质的MgCNi3超导多晶样品,其超导体积比接近100%。通过对其磁通钉扎机制的研究发现:其低场下的磁通钉扎主要起源于晶粒内部的晶格缺陷,与常规的固态反应法制备的多晶样品存在本质区别;同时还观测到高场下磁通格子软化所导致的体钉扎力峰值行为。另外,我们的研究还表明:用高压合成得到MgCNi3超导多晶样品4.2 K的临界电流密度与商业应用的NbTi线相当,为将来MgCNi3超导体材料的应用提供了一个可行的制备方法。
In some strongly correlated electron systems (for example, cuprate superconductor, iron-based superconductor, heavy fermion compound and ruthenate oxide), the magnetic phase transition temperature can be suppressed to 0 K by adjusting some non-thermal control parameters, such as external pressure, magnetic field and element doping. A series of anomalous physical properties has been discovered in the critical region. In contrast to a classical phase transition driving by thermal fluctuation, a quantum phase transition from an order to a disorder state at 0 K occurs as the result of the variation of external parameter, accompanying by strong quantum spin fluctuations which dominates the behavior of electronic systems over a wide range of the phase diagram. So, it is important in condensed matter physics to research the physical properties close to the critical region and to confirm the relationship between non-Fermi liquid behavior in physical properties and quantum phase transition at 0 K. The result of such a study is a key to understand both high Tc superconductivity and the construction of physics in strongly correlated electron system.
     The content of the dissertation is divided into six chapters and the main results are summarized as follows:
     The Chapter 1 reviews the progress of the quantum phase transition both in theory and experiments, Meanwhile, the aims and content of the present work were given.
     In Chapter 2, we study the quantum critical phenomena in polycrystalline alloys Ni3Al1-xGax synthesized by arc-melting method. We investigated systemically their structure, magnetization, electronic resistivity and specific heat. It is found that the ferromagnetic phase transition temperature is depressed gradually with increasing substitution content x, of Ga for Al, and disappears near x= 0.34, where the system changes from an itinerant ferromagnetic state to a paramagnetic state, a quantum phase transition occurs. The magnetic phase diagram for Ni3Al1-xGax system was obtained. Near this quantum critical point, the field dependence of magnetization satisfies a scaling law M∝H1/3, and the temperature dependence of initial magnetic susceptibility in a way of 1/xinitial∝T4/3. We are the first group to observe the "peak" effect in y-H curves, which reflects the energy spectrum information of spin quantum critical fluctuation by analyzing M(H) curves in different temperatures. The temperature dependence of the part in specific heat due to the spin quantum fluctuation at low temperatures is of C/T oc-logT, which is well satisfied with theory. It is suggested that the strength of electron correlation in Ni3Al1-xGax is medium from the measurements of specific heat. And the non-Fermi liquid behavior in the resistivity near quantum critical point was found.
     In Chapter 3, we studied the antiferromagnetic quantum critical phenomena in the polycrystalline samples of NiS2-xSex(x= 0.96,0.98,1.00,1.05,1.10 and 1.20) which were prepared by a solid state reaction method. And the measurements on their structure, magnetization and resistivity were carried out. It is found that their temperature dependence of susceptibility shows a typical characteristic of a strongly correlated electron system. There are possible two kind of carrier, one is itinerant one, the other is localized one; or, there even exists dynamic electronic phase separation in NiS2-xSex (x>1.0); Similar to high Tc superconductors, the relationship between resistivity and temperature displays a linear behavior in a wider temperature region from 50 to 300 K. For x= 0.98 and 1.00 samples, which is close to the antiferromagnetic critical point, itsρ(T)∝T3/2 at lower temperatures (3-30K), which takes on a non-Fermi-liquid behavior due to the strong quantum spin fluctuation. The x= 1.10 and 1.20 samples, recovers to the Fermi liquid-behavior at lower temperature:ρ(T)∝T2.
     In Chapter 4, we studied the ferromagnetic quantum critical phenomena in polycrystalline samples of Co(S1-xSex)2 (0.0≤x≤0.16) which were prepared by a solid state reaction method. The measurements on their structure and resistivity were carried out. It is found that the ferromagnetic transition temperature Tc is suppressed by Se doping in 7C~(1-x)1/2 way. The ferromagnetic phase transition goes from the second to the first order. The temperature dependence of resistivity, p(T), shows a Fermi liquid behavior,ρ(T)=ρo+AT2 in Co(S1-xSex)2 (x< 0.08) samples, while non-Fermi liquid behavior of p(T) occurs in the samples near the critical concentration x= 0.11. It is suggested that the phase transition near x= 0.11 is a quantum phase transition and the quantum critical spin fluctuation at zero temperature results in non-Fermi liquid behavior.
     We investigated the effect of Y substitution for Ce in Ce1-xYxIn3 system. The single crystal Ce1-xYxIn3 samples were prepared by a self-flux method. We studied its structure and magnetic susceptibility systemically. It is found that the antiferromagnetic phase transition temperature is gradually suppressed with increasing substitution content x of Y, and disappears near x= 0.38. We gained the magnetic phase diagram of Ce1-xYxIn3.
     In the last Chapter, We investigated the typeⅡsuperconductivity in nearly ferromagnetic materials MgCNi3, which was prepared by high pressure method. The superconducting volume ration is almost 100%. We conclude that the flux pinning at lower fields results from the intra-granular structural defects which is different intrinsically in sample prepared by conventional solid state reaction. We also observed the "peak" effect caused by softening of the flux lattice in high magnetic field. On the other hand, it was found that the critical current density in MgCNi3 samples prepared by high pressure is almost the same value as that in NbTi wire. We put forward a practicable preparing method for superconductor MgCNi3 in application in the future.
引文
[1]a:S. Sachdev, Quantum Phase Transition, Cambridge University Press, Cambridge,1999. b:Hertz. J. A., Quantum critical phenonmena Phys. Rev. B 1976 14 1165-1183
    [2]P. Coleman, A. J. Schpfield, Quantum criticality Nature 2005 433 226-229.
    [3]S. S. Saxena, P.Agarwal, K.Ahilan, F. M. Grosche, R. K. W. Haselwimmer, M. J. Steiner, E. Pugh, I. R. Walker, S. R. Julian,P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, J. Flouquet Superconductivity on the border of itinerant-electron ferromagnetism in UGe2 Nature 2000 406 587-592
    [4]C. Pfleiderer, M. Uhlarz, S.M.Hayden, R.Vollmer, H.V. Lohneysen, N.R. Bernhoeft, G.G.Lonzarich, Coexitence of superconductivity and ferromagnetism in the d-band metal ZrZn2 Nature 2001 412 58-61.
    [5]C. Pfleiderer, S. R. Julian, G. G. Lonzarich Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets Nature 2001 414 427-430.
    [6]H. Q. Yuan, F. M. Grosche, M. Deppe, C. Geibel, G. Sparn, F. Steglich, Observation of two distinct superconducting phase in CeCu2Si2 Science 2003 302 2104-2107.
    [7]N. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Walker, D. M. Freye, R. K.W. Haselwimmer, G. G. Lonzarich, Magnetically mediated superconductivity in heavy fermion compounds Nature 1998 394 39-43.
    [8]S.A. GriGera, P. Gegenwart, R.A. Borzi, F. Weickert, A. J. Schofield, R. S. Perry, T. Tayama, T. Sakakibara, Y. Maeno, A. G. Green, A. P. Mackenzie, Disorder-seneitive phase formation linked to metamagnetic quantum criticality Science 2004 306 1154-1157.
    [9]D. Bitko, T. F. Rosenbaum, GAeppli Quantum critical behavior for a model magnet Phys. Rev.Lett.1996 77 940-943. H. M. Ronnow, R. P. Parthasarathy, J. Jensen, G. Aeppli, T. F. Rosenbaum, D. F. Mcmorrow Quantum phase transition of a magent in a spin bath Science 2005 308 389-392.
    [10]F. Levy, I. Sheikin, B. Grenier, A. D. Huxley Magnetic field-induced superconductivity in the ferromagnet URhGe Science 2005 309 1343-1346.
    [11]D.Aoki, A.Huxley, E. Ressouche, D.Braithwaite, J.Flouquet, J-P.Brison, E. Lhotel, C. Paulsen, Coexientence of superconductivity and ferromagnetism in U RhGe Nature 2001413 613-616.
    [12]A. Yeh, Y-A. Soh, J. Brooke, G. Aeppli, T. F. Rosenbaum, S. M. Hayden, Quantum phase transition in a common metal Nature 2002 419 459-462.
    [13]J.Custers, P. Gegenwart, H.Wilhelm, K.Neumaier, Y.Tokiwa, O.Trovarelli, C. Geibel, F. Steglich, C. Pepin, P. Coleman, The break-up of heavy electrons at a quantum critical point Nature 2003 424 524-527
    [14]M. Nicklas, M. Brando, G. Knebel, F. Mayr, W. Trinkl, A. Loidl, Non-Fermi-liquid behavior at a ferromagnetic quantum critical point in NixPd1-x Phys.Rev. Lett.1999 82 4268-4271.
    [15]A. Schroder, G.Aeppli, R.Coldea, M.Adams, O. Stockert, H. V. Lohneysen, E. Bucher, R. Ramazashvili, P. Coleman Onset of antiferromagnetism in heavy-fermion metals Nature 2000 407 351-355.
    [16]B.T. Matthias,R. M. Bozorth Ferromagnetism of a Zirconium-Zinc compound Phys.Rev.1958 109 604-605.
    [17]M.Uhlarz,C.Pflerderer, S. M. Hayden Quantum phase transition in the itinerant ferromagnet ZrZn2 Phys. Rev. Lett.2004 93 256404 。
    [18]S.J. Yates,G.Sani, S.M. Hayden, P.J.Meeson, S. B. Dufdale Heavy quasiparticles in the ferromagnetic superconductor ZrZn2 Phys. Rev. Lett.2003 90 057003
    [19]T.F. Smith J. A. Mydosh E. P. Wohlfarth Destruction of ferromagnetism in ZrZn2 at high pressure Phys. Rev. Lett.1971 27 1732
    [20]I.I. Mazin, D.J.Singh,A. Aguayo Density functional calculations near ferromagnetic quantum phase critical points Arxiv:cond-mat/0401563
    [21]I. I. Mazin, D. J. Singh Spin fluctuations and the magnetic phase diagram of ZrZn2 Phys. Rev. B 2004 69 020402
    [22]D.A. Sokolov, M. C. Aronson, W.Gannon, ZFisk Critical phenomena and the quantum critical point of ferromagnetic Zr1-xNbxZn2 Phys. Rev. lett.2006 96
    116404.
    [23]F. Steglich, J.Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz, H. Schafer Superconductivity in the presence of strong Pauli parammagnetism:CeCu2Si2 Phys. Rev. Lett.1979 43 1892-1896.
    [24]F. M. Grosche, S. R. Julian, N.D. Mathur, G G Lonzarich Phyicsa B 1996 223 50.
    [25]R. Movshovich, T. Graf, D. Mandrus, J.D. Thompson, J. L. Smith, Z. Fisk Superconductivity in heavy-fermion CeRh2Si2 Phys. Rev. B 1996 53 8241-8244; S.Araki, M. Nakashima, R. Settai, T.C.Kobayashi, Y.Onuki Pressure-induced superconductivity in an antiferromagnet CeRh2Si2 J.Phys.:Condens.Matter. 200214 L377-L383.
    [26]Y.Kohori, Y. Inoue, T.Kohara, G Tomka, P. C. Riedi 115 In NQR study in Celn3 Physica B 1999 259 103-104.
    [27]Y.Kohori,T. Kohara, Y.Yamato.G. Tomka, P.C. Riedi 115 In NQR study in Celn3 under pressure Physica B 2000 281 12-13.
    [28]W. Knafo, S. Raymond, B. Fak, G Lapertot, P. C. Canfield J. Fllouquer J. Phys.: Condens. Matter 2003 15 3741.
    [29]I.R. Walker, F. M. Grosche, D.M. Freye, G G Lonzarich The normal and superconducting states of Celn3 neat the border of antiferromagnetic order Physica C 1997 282 303-306.
    [30]F. M. Grosche, I. R. Walker, S. R. Julian, N. D. Mathur, D. M. Freye, M. J. Steiner, G G Lonzarich Superconductivity on the threshold of magnetism in Ce Pd2Si2 and CeIn3 J.Phys.:Condens. Matter 2001 13 2845-2860.
    [31]A. J. Millis Effect of nonzero temperature on quantum critical points in itinerant fermion systems Phys. Rev.B 1993 48 7183-7196.
    [32]G Knebel, D. Braithwaite, P.C. Canfield, G. Lapertot, J. Flouquet Electronic properties of Celn3 under high pressure near the quantum critical point Phys.Rev. B 2001 65 024425
    [33]I. Sheikin, D.Braithwaite, J. P Brison, S. Raymond, D. Jaccard, J. Flouquet Superconductivity, upper critical field and anomalous nornmal state in CePd2Si2 near the quantum critical point J. Low Tem. Phys.2001 122 591-604.
    [34]H. Wilhelm, K. A. Yadri, B.Revaz, D. Jaccard, Detalied investigation of the magnetic phase diagram of CeRu2Si2 up to 11 Gpa Phys. Rev. B 1999 59 3651-3660.
    [35]T. Ebihara, N. Harrison, M. Jaime, S.Uji, J. C. Lashley Emergent fluctuation hot spots on the Fermi surface of CeIn3 in strong magnetic fields Phys. Rev. Lett. 2004 93 246401.
    [36]L.Zhu, M. Garst, A. Rosch, Q. M. Si Universally diverging Gruneisen parameter and magnetocaloric effect close to a quantum critical points Phys. Rev. Lett.2003 91066404.
    [37]R.Kuchler, P. Gegenwart, J. Custers, O. Stockert, N. C. Canales, C. Geibel, J.G. Sereni, F.Steglich Quantum criticality in the cubic heavy-Fermion system CeIn3-xSnx Phys. Rev. Lett.2006 96 256403.
    [38]P. Pderazzini, M. G. Berisso, N. C. Canales, M. Deppe, C. Geibel, J. G. Sereni Low temperature magnetic phase diagram of the cubic non-Fermi liquid system CeIn3-xSnx Eur.Phys. J. B 2004 38 445-450.
    [39]J. Custers, T. Cichorek, P. Gegenwart, N. C. Canales, O. Stockert, C. Geibel, F. Steglich Non-Fermi loquid effects close to a QCP in Cein3-xSnx Acta Phys.polo.B 2003 34 379-381.
    [40]K. Ishida, H. Mukuda, Y.Kitaoka, K. Asayama, Z. Q. Mao, Y. Mori, Y. Maeno Spin-triplet superconductivity in Sr2RuO4 identified by 17O knight shift Nature 1998 396 658-660.
    [41]J. A. Duffy, S. M. Hayden, Y. Maeno, Z. Mao, J. Kulda, G. J. mclntyre Polarizes-Neutron scattering study of the Cooper-pair moment in Sr2RuO4 Phys. Rev. Lett.2000 85 5412-5415.
    [42]K. D. Nelson, Z. Q. Mao, Y. Maeno, Y. Liu Odd-parity superconductivity in Sr2RuO4 Science 2004 306 1151-1154.
    [43]Y. Liu, Z. Q. Mao, K. D. Nelson, M. K. Hass, R. J. Cava Electrical transport properties of single-crystal Sr3Ru2O7:the possible existence of an antiferromagnetic instability at low temperatures Phys. Rev. B 2001 63 174435.
    [44]M. B. Stone, M. D. Lumsden, R. Jin, B. C. Sales, D. Mandrus, S. E. Nagler, Y.Qiu Temperature-dependent bilayer ferromagnetism in Sr3Ru2O7 Phys. Rev. B 2006 73 174426.
    [45]S-I. Ikeda, Y. Maeno, S. Nakatsuji, M.Kosaka, Y. Uwatoko Ground state in Sr3Ru2O7:Fermi liquid close to a ferromagnetic instability Phys. Rev. B 2000 62 R6089.
    [46]G. Cao, S. McCall, J. E. Crow Obsrvation of itinerant ferromagnetism in layered Sr3Ru2O7 single crystals Phys. Rev. B 1997 55 R672
    [47]T. Kiyama, K. Yoshimura, K. Kosuge, H. Michor, G. Hilscher Specific heat of (Sr-Ca)RuO3 J. Phys. Soc.Jpn 1998 67 307-311.
    [48]R. S. Perry, L. M. Galvin, S. A. Grigera, L. Capogna, A.J. Schofield A.P. Mackenzie, M. Chiao, S. R. Julian, S. I.Ikeda,S. Nakatsuji, Y.Maeno, C. Pfleiderer Metamagnetism and critical fluctuations in high quality single crystal of the bilayer ruthenate Sr3Ru207 Phys. Rev. Lett.2001 86 2661-2664.
    [49]S. A. Grigera, R. S. Perry, A. J. Schoflied, M. CHiao, S. J. Julian, G. G. Lonzarich, S. I.ikeda, Y. maeno, A. J. Millis, A. P. Mackenzie Magneric field-tuned quantum criticality in the metallic ruthenate Sr3Ru207 Science 2001 294 329-332.
    [50]A. J. Millis, A. J. Schofield, G. G. Lonzarich, S. A. Grigera Metamagnetic quantum criticality in metals Phys. Rev. Lett.2004 88 217204.
    [51]C.Pfleiderer, G.J. McMullan, S. R. Julian, G. G. Lonzarich Magnetic quantum phase transition in MnSi under hydrostatic pressure Phys. Rev. B 1997 55 8330-8338.
    [52]C. pfletderer, A. D. Huxley Pressure dependence of the magnetization in the ferromagnetic superconductor UGe2 Phys. Rev. Lett.2002 89 147005
    [53]D. Belitz T. R. Kirkpatrick Fluctuation-driven quantum phase transition in clean itinerant ferromagnets Phys.Rev. Lett.2002 89 247202.
    [54]D. Belitz, T. R. Kirkpatrick T. Vojia First order transition and multricritical points in weak itinerant ferromagnets Phys. Rev.B 1999 82 4707-4710
    [55]Y. Dagan, M. M. Qzailbash, C. P. Hill, V. N.Kulkarni, R. L. Greene Evidence for quantum phase transition in Pr2-xCexCu4-δ from transport measurements Phys. Rev. Lett.2004 92 167001.
    [56]J. Xia, E. Schemm, G. Deutscher, S. A. Kivelson, D. A. Bonn, W. N. Hardy, R. Liang, W. Siemons, G. Koster, M. M. Fejer, A. Kapitulnik Polar Kerr-effect measurements of the high-temperature YBa2Cu3O6+x superconductor:evidence for broken symmetry near the pseudogap temperature Phys. Rev. Lett.2008100 127002-127005.
    [57]N. Rivier, K. Adkins, Resistivity of spin glasses J. Phys. F:Met. Phys.5 1745 (1975).
    [58]H. R. Ott, H. Rudigier, Z. Fisk, J. L. Smith UBe13:an unconventional actinide superconductor Phys. Rev. Lett.1983 50 1595-1598.
    [59]G. R. Stewart Non-Fermi-liquid behavior in d-and f-electron metals Rev. Mod. Phys 2001 73 797-855.
    [60]B.Windom J.Chem.Phys.1965 43 3989.
    [61]L. P. Kadanoff Static phenomena near critical points:theory and experiment Rev. Mod. Phys.1967 39 395.
    [62]K.Wilson The renormalization group:critical phenomena and the Kondo problem Rev.Mod.Phys.1975 47 773-840
    [63]M. Vojta Quantum phase transitions Rep. Prog. Phys.2003 66,2069-2110.
    [64]Shang-Keng Ma, Modern theory of Critical Phenomena, Addison-Wesley, Reading, MA. (1976).
    [65]B. Andraka, A. Tsvelik Observation of non-Fermi-liquid behavior in U0.2Y0.8Pd3 Phys. Rev.Lett.1991 67 2886-2889.
    [66]A.Tsvelik, M. Reizer Phenomenological theory of non-Fermi-liquid heavy-fermion alloys Phys. Rev.B 1993 48 9887-9889.
    [67]Continentino Phys. Rep.1994 239 179.
    [68]K. Heuser, E. W. Scheidt, T. Schreiner, G. R. Stewart Disappearance of hypercaling at low temperature in non-Fermi-liquid CeCu5.2Ag0.8 Phys. Rev. B 1998 58 R15959-R15961.
    [69]T. Moriya, T. Takimoto Anomalous properties around magnetic instability in heavy electgron systems J. Phys. Soc. Jp 1995 64 960-969.
    [70]S. Kamble, S. Raymond, H. Suderow, J. Mc Donough, B.Fak, L. P. Regnault, R. Calemczuk, J. Flouquet Excitations in heavy fermion systems Physica B 1996 223-224135-140.
    [71]Y. Takahashi Quantum spin fluctuation theory of the magnetic equation of state of weak itinerant-electron ferromagnets J. Phys.:Condens. Matter 2001 13 6323-6358.
    [72]Y. Ishikawa, Y. Noda, Y. J. Uemura, C. F. Majkrzak, G. Shirane Paramagnetic spin fluctuations in the weak itinerant-electron ferromagnet MnSi Phys. Rev. B 1985 31 5884-5893.
    [73]Nozieres S. A. Blandin J. Phys.1980 41 193.
    [74]N. Andrei, C. Destri Solution of the multichannel Kondo problem Phys. Rev. Lett. 1984 52 364-367.
    [75]I. Affleck, A. W. W. Ludwig The Kondo effect, conformal field theory and fuson rules Nucl. Phys. B 1991352 849-862.
    [76]A. W. W. Ludwig, I. Affleck Exact, asymptotic, three-dimensional, space-and time-dependent, Green'sfunctions in the multichannel Kondo effect Phys. Rev. Lett.1991 67 3160-3163.
    [77]曹烈兆阎守胜陈兆甲低温物理学(中国科学技术大学出版社,1999.合肥)
    [78]O. O. Bernal, D. E. MacLaughlin, H. G Lukefahr, B.Andraka, Cooper NMR and thermodynamics of UCus.xPdx:evidence for Kondo disorder Phys. Rev. Lett. 1995 75 2023-2026.
    [79]A. Rosch Interplar of disorder and spin fluctuations in the resistivity near a quantum critical point Phys. Rev. Lett.1999 82 4280-4283.
    [80]E. Miranda, V. Dobrosavljevic, G Kotliar Kondo disorder:a possible route towards non-Fermi-liquid behavior J. Phys.:Condens. Matter 1996 8 9871; Disorder-driven non-Fermi-liquid behavior in Kondo alloys Phys. Rev. Lett. 1997 78 290-293; Non-Fermi-liquid behavior as a consequene of Kondo disorder Physica B 1996 230-232 569-571.
    [81]R. B. Griffiths Nonanalytic behavior above the critical point in a random Ising ferromagnet Phys. Rev. Lett.1969 23 17-19.
    [82]A. H. Castro. Neto, G. Castilla, B. A. Jones Non-Fermi liquid behavior and Griffiths phase in f-electron compounds Phys. Rev. Lett.1998 81 3531-3534.
    [1]J. C. Slater Ferromagnetism and the band theory Rev. Mod. Phys.1953 25 199-210.
    [2]C. Herring, C. Kittel On the theory of spin waves in ferromagnetic media Phys. Rev.195181869-880.
    [3]G. G. Lonzarich, L. Taillefer, J. Phys. C 1985 18 4339.
    [4]T. Moriya Spin Fluctuantions in Itinerant Electron Magnetism (Springer,Berlin, 1985).
    [5]F. R. de Boer, C. Jsterbos, S. Proost. Schinkel J. Bie Exchange-enhanced paramagnetism and weak ferromagnetism in the Ni3Al and Ni3Ga phases; giant moment induced in Fe-doped Ni3Ga J. Appl. Phys.1969 40 049-1055.
    [6]H. Sasakura, K. Suzuki, Y. Masuda, Magnetization and electrical resistivity in itinerant electron ferromagnet Ni3Al J. Phys. Soc. Jpn.1984 53 352-358.
    [7]C. J. Fuller, C. J. lin, T. Mihalisin, F. M. Chu, N. Bykovetz Thermodynamic, transport and magnetic properties of single crystal Ni3Al Solid state commun. 1992 83 863-866.
    [8]J. H. J. Fluitmant, R.Boom, P. F. De. Chatel, C.J. Scinkel, J. L. L. Tilanus, B. R. De. Vries. Possible explanations for the low temperature resistivities of Ni3AI and Ni3Ga alloys in terms of spin density fluctuation theories J. Phys. F: Metal Phys.1973 3 109.
    [9]T. Umemura, Y. Masuda Nuclear magnetic resonance and relaxation in itierant electron ferromagnet Ni3AI J. Phys. Soc. Jpn.1983 52 1439-1445.
    [10]K. Suzuki, Y. Masuda, Thermal expansion in itinerant electron magnetic Ni3Al system J. Phys. Soc. Jpn.1985 54 630-638.
    [11]S. K. Dhar, K. A. Gschneidner, Jr., L. L. Miller, D. C. Johnston Low twmperature behavior of Ni3Al alloys near the spin-fluctuator-ferromagnet phase boundary Phys. Rev. B 1989 40 11488-11492.
    [12]S. K. Dhar, K. A. Gschneidner, Jr. Effect of magnetic field on the heat capacity alloys Phys. Rev. B 1989 39 7453-7460.
    [13]J. J. Buiting, J. klubler, F. M. Mueller, Weak itinerant ferromagnets:Ni3Al J.Phys.F 1983 13 L179.
    [14]V. L. Moruzzi, P. M. Marcus Magnetovolume transition in ordered Ni3Al Phys. Rev. B 1990 42 5539-5543.
    [15]B. I. Min, A. J. Freeman, H. J. F. Janse Magnetism, electronic structure, and Fermi surface of Ni3Al Phys. Rev. B 1988 37 6757-6762.
    [16]J. H. Xu, B. I. Min, A. J. Freeman, T. Oguchi Phase stability and magnetism of Ni3Al Phys. Rev. B 1990 41 5010-5016.
    [17]G. Y. Guo, Y. K. Wang, Li-Shing Hsu, First-principles and experimental studies of the electronic structure and magnetism in Ni3Al, Ni3Ga and Ni3In J. Magn. Magn. Mater.2002 239 91-93.
    [18]L.-S. Hsu, Y.-K. Wang, G.Y. Guo, Experimental and theoretical study of the electronic structures of Ni3Al, Ni3Ga, Ni3In and NiGa J. Appl. Phys.2002 92 1419-1424.
    [19]S. M. Hayden, G. G. Lonzarich, H. L. Skriver Electronic structure of the strongly-exchange-enhanced paramagnet Ni3Ga Phys. Rev. B 1986 33 4977-4986.
    [20]N. R. Bernhoeft, G. G. Lonzarich, P. W. Mitchell, D. Mck. Paul Magnetic excitations in Ni3Al at low energies ans long wavelengths Phys. Rev. B 1983 28 422-424.
    [21]F. Semadeni, B. Roessli, P. Boni, P. Vorderwisch, T. Chatterji Critical fluctuations in the weak itinerant ferromagnet Ni3Al:a comparison between self-consistent renormalization ans mode-mode coupling theory Phys. Rev. B 2000 62 1083-1088.
    [22]D. J. Singh, I. I. Mazin Competition of spin fluctuations and phonons in superconductivity of ZrZn2 Phys. Rev. Lett.2002 88 187004.
    [23]A. Aguayo, D. J. Singh Itinerant ferromangnetism and quantum criticality in Sc3In Phys. Rev. B 2002 66 020401.
    [24]D. J. Singh Quantum critical behavior and possible triplet superconductivity in electron-doped CoO2 sheets Phys. Rev. B 2003 68 020503.
    [25]A.Aguayo.I.I. Mazin, D. J. Singh Why Ni3Al is an itinerant ferromagnet but Ni3Ga is not Phys. Rev. Lett.2004 92 147201.
    [26]P. G Niklowitz, F. Beckers, G. G. Lonzarich, G. Knebel B. Salce, J. Thomasson, N. Bernhoeft, D. Braithwaite J. Flouquet Spin-fluctuation-dominated magnetic transport Ni3Al at high pressure Phys. Rev. B 2005 72 024424.
    [27]A. Arrott Criterion for ferromagnetism from observations of magnetic isotherms Phys. Rev.1957 108 1394-1396.
    [28]A.Aharoni著杨正译铁磁性理论导论,Page56(兰州大学出版社,2002).
    [29]M. A. Continentino Quantum scaling in many-body systems (World Scientific Publishing Co. Pte. Ltd 2001)
    [30]Y. Takahashi Quantum spin fluctuation theory of the magnetric equation of state weak itinerant-electron ferromagnets J.Phys.:Condens.Matter 2001 13 6323-6358
    [31]H.V. Lonheysen Non-Fermi-liquid behavior in the heavy-fermion system CeCe6-xAux J.Phys.:Condens.Matter 1996 8 9689-9706.
    [32]S. A. Grigera, R. S. Perry, A. J. Schoflied, M. CHiao, S. J. Julian, G. G. Lonzarich, S. I.ikeda, Y. maeno, A. J. Millis, A. P. Mackenzie Magneric field-tuned quantum criticality in the metallic ruthenate Sr3Ru207 Science 2001 294 329-332.
    [33]P. Tong, Y. P. Sun, X. B. Zhu, W. H. Song Strong spin fluctuations and possible non-Fermi-liquid behavior in AlCNi3 Phys. Rev. B 2006 74 224416.
    [34]E.A. Yelland, S. J. C. Yates, O. Taylor, A. Griffiths, S. M. Hayden, A. Carrington Ferromagnetic properties of ZrZn2 Phys. Rev. B 2005 72 184436
    [35]P. Tong, Y. P. Sun, X. B. Zhu, W. H. Song Strong electron-electron correlation in the antiperovskite compound GaCNi3 Phys. Rev. B 2006 73 245106;
    [36]S.Ogawa Electrical resistivity of weak itinerant ferromagnet ZrZn2 J. Phys. Soc.Jpn.40 1007 (1976).
    [37]Y. Masuda, T. Hioki, A. Oota Physica B 1977 91 291.
    [1]Orenstein J, Millis A J Science 2000 288 468.
    [2]Gegenwart P,langhammer C,Geibel C,Helfrich R,Lang M,Spam G, Steglich F Phys. Rev. Lett.1998 811501.
    [3]Aoki Y,Matsuda T D,Sugawara H,Sato H.Ohkuni H.Settai R,Onuki Y,Yamamoto E,Haga Y,Andreev A V,Sechovsky V,Havela L,Ikeda H,Miyake K 1998 J. Magn. Magn. Mater.1998177-181271.
    [4]Kim J S, Hall D, Heuser K, Stewart G R Solid State Commun.2000114 413.
    [5]Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haswlwimmer R K W,Lonzarich G G 1998 Nature 1998 394 39.
    [6]Mazin 11, Sigh D J Phys. Rev. B 1997 56 2556.
    [7]Grigera S A, Perry R S,Schofield A J,Chiao M,Julian S R,Lonzarch G G,lkeda S I,MaenoY,Millis A J,Mackenzie A P 2001 Science 2001294 329.
    [8]Mao Z Q, Zhou M, Hooper J,Golub V and O'Connor C J Phys. Rev. Lett.2006 96 077205.
    [9]Pfleiderer C, Uhlarz M, Hayden S M, Vollmer R, Lohneysen V, Bernhueft N R, Linzarich G G 2001 Nature 2001412 58.
    [10]Yanase Y, Jujo T, Nomura T, Ikeda H, Hotta T, Yamada K 2003 Phys. Rep.2003 3871.
    [11]Jarrett H S, Bouchard R J, Gillson J L, Jones G A, Marcus S M, Weiher J F Mater. Res. Bull.1973 8 887.
    [12]Honig J M, Spaelk J 1998 Chem. Mater.1998 10 2910.
    [13]Iwaya K, Kohsaka Y Y, Sato S, Hanaguri T, Miyasaka S, Takagi H Phys. Rev. B 2004 70 161103(R).
    [14]Inagaki S J. Phys. Soc. Jpn.1978 45 1253.
    [15]Sudo S U, Miyda T J. Phys. Soc. Jpn.1985 54 3934.
    [16]Miyasaka S, Takagi H, Sekine Y, Takahashi H, Mori N,Cava R J 2000 J. Phys. Soc. Jpn.2000 69 3166.
    [17]Ogawa S J. Appl.Phys.1979 50 2308.
    [18]Sudo S J. Magn. Magn. Mater.1992 114 57.
    [19]Tsuda N, Nasu K, Yanase A, Siratori K 1991 Electronic Conduction in Oxides (Berlin:Springer) p155
    [20]Chakraverty B K,Sienko M J Phys. Rev. B 1978 17 3781.
    [21]Chen Q,Lu C, Lozanne A de Science 1997 276 2006.
    [22]Uehara M, Mori S, Chen C H, Cheong S W Nature 1999 399 560.
    [23]Renner Ch, Aeppli G., Kim B G, Soh Y-A,Cheong S W Nature 2002 416 518.
    [24]Emery V J, Kivelson S A, Lin H Q Phys. Rev. Lett.1990 64 475.
    [25]Kivelson S A, Emery V J, Lin H Q Phys. Rev. B 1990 42 6523.
    [26]Moriya T 1985 Spin Fluctuation in Itinerant Electron Magnetism (Berin:Springer) p82-107
    [27]Lohneysen H V, Pietrus T, Portisch G., Schlager H G, Schroder A, Soeck M ,Trappmann T Phys. Rev. Lett.1994 72 3262.
    [28]Grosche F M, Julian S R, Mathur N D,Lonzarich G G Physica B 1996 50 223.
    [1]Bither T A, Bouchard R J, Cloud W H, Donohue P C, Siemons W J, Transition metal pyrite dichalcogenides, high-pressre synthesis nd correlation of properties Inorg. Chem.1968 7 2208-2220.
    [2]A. Fujimori, K. Mamiya, T. Mizokawa, T. Miyadai, T. Sekiguchi, H. Takahashi, N. Mori, S. Suga, Resonant photoemission study of pyrite-type NiS2,CoS2 and FeS2 Phys. Rev. B 1996 54 16329-16332.
    [3]Jarret H S, Cloud W H, Bouchard R J, Butler S R, Frederick C G, Gillson J L 1968 Phys. Rev. Lett.26 617.
    [4]Adachi K, Sato K, Takeda M, Magnetic properties of cobalt and nickel dichalcogenide compound with pyrite structure J. Phys. Soc. Jpn.1963 26 631-638.
    [5]Takano Y, Naoaki U, Ogawa S, Mori N, Takseshita N, Noda T, Eisaki H, Uchida S 2002 Physica C 378-381 192.
    [6]Sato K, Adachi K, Okamoto T, Tatsumoto E 1969 J. Phys. Soc. Jpn.26 639.
    [7]Ohsawa A, Yamamoto H, Watanabe H, X-ray photoelectron spectra of valence electrons in FeS2, CoS2 and NiS2 J. Phys. Soc Jpn.1974 37 568-568.
    [8]Goto T, Shindo Y, Takahashi H, Ogawa S, Magnetic properties of the itinerant metamagnetisc system Co(S1-xSex)2 under high magnetic fields andhigh pressure Phys. Rev. B 1997 56 14019-14028.
    [9]Yamada H, Terao K, Aoko M 1998 J. Magn. Magn. Mater. 177 607.
    [10]Adachi K, Sato K, Okimori M, Yamaguchi G, Yasuoka H, Nakamura Y 1975 J. Phys. Soc. Jpn.38 81.
    [11]Barakat S, Braithwaite D, Alireza P, Grube K, Uhlarz M, Wilson J, Pfleiderer C, Flouquet J, Lonzarich G 2005 Physica B 359-361 1216.
    [12]Wang L, Chen T Y, Leighton C, Spin-dependent band structure effects and measurement of the spin polarization in the candidate half-metal CoS2 Phys. Rev. B 2004 69 094412.
    [13]Hiraka H, Endoh Y, Ferromagnetic transition of Heisenberg ferromagnetic metal of CoS2-static critical properties J. Phys. Soc. Jpn.1994 63 4573-4582.
    [14]Hiraka H, Endoh H, Field dependence of magnetic phase transition in metallic ferromagnet CoS2-specific heat measurements J. Phys. Soc. Jpn.1999 68 36-38.
    [15]Adachi K, Matsui M, Kawai M 1979 J. Phys. Soc. Jpn.46 1474.
    [16]Hiraka H, Endoh Y, Metamagnetism of CoS2 under high pressure and in Co(SxSe1-x)2J. Phys. Soc. Jpn.1996 65 3740-3742.
    [17]Pfleiderer C, G J. McMullan G J, S. R. Julian S R, Lonzarich G G, Magnetic quantum phase transition in MnSi under hydrostatic pressure Phys.Rev. B 1997 55 8330-8338.
    [18]Grigera S A, Perry R S, Schofield A J, Chiao M, Julian S R, Lonzarich G G, Ikeda S I, Maeno Y, Millis A J, Mackenzie A P, Magnetic field-tuned quantum criticality in the metallic ruthenate Sr3Ru2O7 Science 2001 294 329-332.
    [1]K.Andres, J. E. Graebner, H. R. Ott 4f-virtual-bound-state formation in CeAl3 at low temperatures Phys. Rev.Lett.1975 35 1179-1782.
    [2]C. Pfleiderer, M. Uhlarz, S. M. Hayden, R. Vollmer, H. V. Lohneysen, N. R. Bernhoeff, G. G. Lonzarich, Nature 2001 412 58. S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W. Haselwimmer, M. J. Steniner, E. Pugh, I. R. Walker, S. R. Julian, P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, J. Flouquet, Superconductivity on the border of itinerant-electron ferromagnetism in UGe2 Nature 2000 406 587, D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J.-P. Brison, E. Lhotel, C. Paulsen, Coexistence of superconductivity and ferromagnetism in URhGe Nature 2001 413 613, P. Gegenwart, C. Langhammer, C. Geibel, R. Helfrich, M. Lang, G Sparn, F. Steglich, R. Horn, L. Donnevert, A. Link, W. Assmus, Breakup of heavy fermions on the brink of "phase A " in CeCu2Si2 Phys. Rev. Lett.1998 81 1501-1504, H. Q. Yuan, F. M. Grosche, M. Deppe, C. Geibel, G. Sparn, F. Steglich, Observation of two distinct superconducting phases in CeCu2Si2 Science 2003 302 2104-2107.
    [3]P. Morin, C. Vettier, J. Flouquet, M. Konczykowski, Y. Lassailly, J.-M. Mignot, U. Welp, J. Low. Temp. Physics 1999 70 377.
    [4]Y. Kohori, Y. Inoue. T. Kohara, G. Tomka, P. C. Riedi, Physica B 1999 259-231, 103, Y. Kohori, T. Kohara, Y. Yamato, G. Tomka, P. C. Riedi, physica B 2000 281-282, 12.
    [5]N. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Walker, D. M. Freye, R. K. W. Haselwimmer, G. G. Lonzarich, Magnetically mediated superconductivity in heavy fermion compounds Nature 1998 394 39.
    [6]R. Settai, T. Kubo, T. Shiromoto, D. Honda, H. Shishido, K. Sugiyama, Y. Haga, T. D. Matsuda, K. Betsuyaku, H. Harima, T. C. Kobayashi, Y. Onuki, Change of the Fermi surface across the critical pressure in CeIn3:the de Haas-van Alphen study under pressure J. Phys. Soc. Jpn 2005 74 3016-3026.
    [7]T. Ebihara, N. Harrison, M. Jaime, S. Uji, J. C. Lashley, Emergent fluctuation hot spots on the Fermi surface of CeIn3 in strong magnetic fields Phys. Rev. Lett. 2004 93 246401.
    [8]N. Harrison, S. E. Sebastian, C. H. Mielke, A. Paris, M. J. Gordon, C. A. Swenson, D. G. Rickel, M. D. Pacheco, P. F. Ruminer, J. B. Schillig, J. R. Sims, A, H. Lacerda, M.-T. Suzuki, H. Harima, T. Ebihara, Fermi surface of CeIn3 above the Neel critical field Phys. Rev. Lett.2007 99 056401.
    [9]Y. Onuki, R. Settai, H. Shishido, T. Kubo, Y. Yasuda, K. Betsuyaku, H. Harima, Change of the electronic states in CeIn3, CeRhIn5 and CePt3Si tuned by pressure J. Alloy. Compds.2007 408-412 27-32.
    [10]J. Lawrence, Scaling behavior near a valence instability:the magnetic susceptibility of CeIn3-xSnx Phys. Rev. B 1979 20 3770-3782.
    [11]A. V. Silhanek, D. Zocco, N. Harrison, M. Jaime,T. Ebihara, Approacing field tuned quantum criticality in Celn3-xSnx Physica B 2006 378-380 90-91.
    [12]T. Ebihara, N, Harrison, M. Jaime, A. Silhanek, K. Tezuka, K. Morishita, Y. Iwamato, T. Terashima, Physical properties at high magnetism fields in CeIn2.75Sn0.25 J. Magn. Magn. Mater.2007 310 298-299.
    [13]P. Pedrazzini, M. Gomez Berisso, N. Caroca-Canakes, M. Deppe. C. Geibel, J. G. Sereni, Eur. Phys. J. B 2004 38 445.
    [14]R. Kucher, P. Gegenwart, J. Custers, O. Stocket, N. Caroca-Canales, C. Geibel. J. G. Sereni, F. Steglich, Phys. Rev. Lett.2006 96 256403.
    [15]Y. Iwamoto, T. Ebihara, N. Harrison, M. Jaime, A. Silhanek, K. Tezuka, K. Morishita, T. Terashima, A.Iyo, Reduction of Neel temperature of CeIn3 by La doping J. Magn. Magn. Mater.2007 310 300.
    [16]J. Teter, J. E. Crow, T. Mihalisin, Magnetic ordering, Kondo lattice, and mixed valence behavior in the Ce1-xYxIn3 system J. Appl. Phys.1984 55 1978.
    [17]J. M. Lawrence, S. M. Shapiro, Magnetic ordering in the presence of fast spin fluctuations:A neutron scattering study of Celn3 Phys. Rev. B 1980 22 4379-4388.
    [1]T. He, Q.Huang, A. P. Ramirez, Y. Wang, K. A. Regan, N. Rogado, M. A. Hayward, M. K. Haas, J. S. Slusky, K. Inumara, H. W. Zandbergen, N. P. Ong, R. J. Cava, Superconductivity in the non-oxide perovskite MgCNi3 Nature 200141154-56.
    [2]H. Rosner, R. Weht, M. D. Johannes, W. E. Pickett, E. Tosatti, Superconductivity near ferromagnetism in MgCNi3 Phys.Rev. Lett.2002 88 027001.
    [3]R. Prozorov, A. Snezhko, T. He R. J. Cava, Evidence for unconventional superconductivity in the nonoxide perovskite MgCNi3 from penetration depth measurements Phys. Rev. B 2003 68 180502.
    [4]D. P. Young, M. Moldovan, P. W. Adams, Scaling behavior of the critical current density in MgCNi3 microfibers Phys. Rev. B 2004 70 064508.
    [5]Z. Q. Mao, M. M. Rosario, K. D. Nelson, K. Wu, I. G. Deac, P. Schiffer, Y. Liu, T. He, K. A. Regan, R. J. Cava Experimental determination of superconducting parameters for the intermetallic perovskite superconductor MgCNi3 Phys. Rev. B 2003 67 094502.
    [6]P. M. Singer, T.Imai, T. He, M. A. Hayward, R. J. Cava, 13C NMR investigation of the superconductor MgCNi3 up to 800 K Phys. Rev. Lett.2001 87 257601.
    [7]L. Shan, H. J. Tao, H. Gao, Z. Z. Li, Z. A. Ren, G. C. Che, H. H. Wen, S-wave paring in MgCNi3 revealed by point contact tunneling Phys. Rev. B 2003 68 144510.
    [8]L. Shan, Z. Y. Liu, Z. A. Ren, G. C. Chen, H. H. Wen, Competition between BCS superconductivity and ferromagnetic spin fluctuations in MgCNi3 Phys. Rev. B 2005 71 144516.
    [9]M. A. Hayward, M. K. Haas, A. P. Ramirez, T. He, K. A. Regan, N. Rogado, K.Inumaru, R. J. Cava Solid State Commun.2001 119 491.
    [10]A. Das, R. K. Kremer, Suppression of superconductivity in Mn-substituted MgCNi3 Phys.Rev. B 2003 68 064503.
    [11]T. Klimczuk, V. Gupta, G. Lawes, A. P Ramirez, R. J. Cava, Effect of Ru
    substitution for Ni on the superconductivity in MgCNi3-xRux Phys. Rev. B 2004 70 094511.
    [12]T. G. Kumary, J. Janaki, A. Mani, S. M. Jaya, V. S. Sastry, Y. Hariharan, T. S. Radhakrishnan, M. C. Valsakumar, Normal and superconducting states of MgCNi3 upon Fe and Co substitution and external pressure Phys. Rev. B 2002 66 064510
    [13]S. H. Park, Y. W. Lee, J. Giim, S. J, H. C. Ri, E. J. Choi, Physica C 2004 400 160
    [14]T. Klimczuk, M. Avdeev, J. D. Jorgensen, R. J. Cava, Effect of11 B substitution on the superconductivity of MgCNi3 Phys. Rev. B 2005 71 184512
    [15]T. G. Amos, Q. Huang, J. W. Lynn, T. He, R. J. Cava, Solid State Commun.2002 12173
    [16]L. Shan, K. Xia, Z. Y. Liu, H. H. Wen, Z. A. Ren, G. C. Chen, Z. X. Zhao, Influence of carbon concentration on the superconductivity in MgCxNi3 Phys. Rev. B 2003 68 024523
    [17]A. Walte, G. Fucchs, K. H. Muller, S. L. Drechsler, K. Nenkov, L. Schultz, Role of carbon for superconductivity in MgCxNi3from specific heat Phys. Rev. B 2005 72100503
    [18]M. S. Park, J. Giim, S. H. Park, Y. W. Lee, S.I. Lww, E. J.Choi, Physica properties of ZnCNi3:comparison with superconducting MgCNi3 Supercond. Sci. Technol.2004 17 274-277.
    [19]M. Sieberer, P.Mohn, J. Redinger Role of Carbon in AlCNi3 and GaCNi3:A density functional theory study Phys. Rev. B 2007 75 024431
    [20]P. Tong, Y. P. Sun, X. B. Zhu, W. H. Song, Strong electron-electron correlation in the antiperovskite compound GaCNi3 Phys. Rev. B 2006 73 245106
    [21]P. Tong, Y. P. Sun, X. B. Zhu, W. H. Song, Synthesis and physical properties of antiperovskite-type compound In o.9sCNi3 Solid State Commun.2007 141 336-340
    [22]C. Meingast, D. C. Larbalestier, J. Appl. Phys.1989 66 5971
    [23]R. I. Coote, J. E. Evetts, and A.M. Campbell, Can. J. Phys.1972 50 421.
    [24]L.D. Cooley, X. Song, J. Jiang, D.C. Larbalestier, T. He, A. Regan, and R.J. Cava, Core Pinning by intragranular nanoprecipitates in polycrystalline MgCNi3 Phys. Rev. B 2002 65 214518.
    [25]R. Wordenweber, P.H. Kes, C.C. Tsuei, Peak and History effects in two-dimensional collective flux pinning Phys. Rev. B 1986 33 3172-3180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700