城市下穿式立交桥深基坑支护问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化建设的不断发展,基坑工程不仅数量增多,而且向更大、更深方向发展。大量基坑工程集中在市区,施工场地狭小,施工条件复杂,如何减小基坑开挖对周围建(构)筑物、道路和各种市政设施的影响,发展基坑开挖扰动环境稳定控制理论和方法将引起人们进一步的关心和重视。本文研究排桩的优化设计问题,其主要方面如下:
     (1)当土的力学性能比较差时,咬合桩是一种非常好的支护结构,对咬合桩作为永久结构使用的咬合桩复合结构设计理论和方法进行了研究。同时,研究了不同搭配形式咬合桩作为主体结构使用的可行性,认为荤荤搭配的咬合桩可以作为主体结构一部分使用,但荤素搭配的咬合桩作为主体结构一部分使用要控制素桩的裂缝发展。
     (2)当土质为粘性土时,应充分考虑土的拱效应,采用柱列式排桩进行支护。本文利用有限元软件ANSYS对桩后土拱效应进行二维数值分析与探讨,分析不同桩截面、不同桩间距、不同土体参数以及桩体位移等因素对桩后土拱效应的影响程度等问题。
     (3)结合排桩设计的解析法,进行抗滑桩与周围土体相互作用的三维数值模拟分析与探讨,分析桩与周围土体受力特性,桩和周围土体的变形与应力变化趋势。分析结果表明:抗滑桩的支挡作用,土拱效应是主要作用机理;粘聚力高的土体,有利于提高抗滑桩的加固效果,桩距增加会造成最大位移和桩土相对位移的增大,增加到一定程度会造成桩间土挤出量过大,从而使得抗滑桩支挡失效。
     (4)利用ANSYS二次开发技术,开发非线性的邓肯一张模型,采用不同的本构模型,邓肯—张模型和D-P模型,对粘性土中抗滑桩与周围土体相互作用的数值模拟,研究了不同土的本构关系对桩间土拱的影响。
     本文仅对在不同土质中如何选择合理的基坑支护方法做初步的探讨,要得出更完善的设计方法,还要做进一步的深入研究。研究结果和相关结论为完善基坑支护理论,以及为类似工程的设计提供依据和参考。
With the development of the city capital construction, deep excavation pits not only increase, but also develop further. Large quantities of deep excavation pits engineering concentrate in the downtown, so the construction engineering has the special character as below: The first is construction field would be narrow and small. The second is construction has complicity condition and the third is construction engineering affects the roads and different kinds of municipal buildings nearby, etc. How to decrease the effects has become very important for people’s consideration. The paper deals with the optimization design of cantilever row piles retaining structure. The main aspect is as follow:
     (1) If the mechanic property of soil is bad, it’s better to use secant pile wall. The research on the theory and the design method of the secant pile wall composite Structure used as permanent structure is studied in the paper. At the same time, the paper discusses the feasibility of different secant pile wall used as permanent structure and includes that the hard /hard secant pile wall can be used as permanent structure and hard / firm as a part of permanent structure, the joints between secant pile wall and the exterior wall of the major structure are also presented.
     (2) As for clay soil, it is reasonable to use solider piles because of the existence of soil arching effect. The finite element analysis software package, ANSYS, is used to study soil arching effect of anti-slide pile, and the effects of factors on the behavior of soil arching effect such as pile spacing, properties of soil, interface of soil-pile and the movement of pile are discussed in detail in this paper.
     (3)Combined with the analysis of anti-sliding pile , analyzed the interaction of anti-sliding pile with the surrounding soil by three-dimensional numerical modeling, analyzed the characters of anti-sliding pile and surrounding soil, the deformation trend of anti-sliding pile and surrounding soil and stress trend . The results showed that: the main influence factors are the sustentation effect of anti-sliding pile and the earth-arch effect. High cohesion soil will increase anti-sliding piles’reinforcement. The increase of pile spacing will increase the largest displacement and the relative displacement between the pile and earth, arise excess soil that between piles being extruded and make the anti-sliding pile invalid when the extent exceeds the requirement.
     (4) Developed the Duncan-chang constitutive model in ANSYS software by means of the secondary developing technology of ANSYS. Using different soil constitutive models including the Duncan-chang constitutive model, Druker-Prager elastoplastic model, the paper analyzed the interaction of anti-sliding pile with the surrounding soil in clay soil by numerical modeling in order to obtain the influence of different soil constitutive models to the earth-arch effect between piles.
     This paper is just a preliminary study on how to choose the suitable supporting structure of pit, to develop a perfect design method, there is still a lot of further work to do. The results of research and relational conclusion will perfect the analysis theory of the pit support structure, and provide references for the designs of similar engineering projects.
引文
[1]郑琴,周文献.对下穿式立交桥排水问题的探讨[J].科技资讯,2008,34(11):44.
    [2]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社,1997.
    [3]陈肇元.土钉支护技术,深基开挖土钉支护技术研讨会[C],1996:9.
    [4]程良奎等.土钉技术的研究与应用,冶金研究总院内部资料,1996:9.
    [5]周洪川,龚建新.SMW工法在基坑支护中的应用和研究[J].设备与设施,2008,4(30):111.
    [6]张志传.钻孔咬合桩施工工艺及常见问题的处理[J].铁道勘察,2006,2:68-69.
    [7]李付湘.深圳地铁一期工程会购区间钻孔咬合桩施工技术[J].隧道建筑,2001,2:39-41.
    [8]李付湘.深圳地铁工程会购区间钻孔咬合桩施工技术[J].西部探矿工程(增刊),2001:182—183.
    [9]张中安.钻孔咬合桩在深圳地铁会购区间施工中的应用[J].西部探矿工程,2003(2):133-134 .
    [10]吴沛,牟松.杭州解放路延伸工程全套管灌注咬合桩施工技术[J].隧道建设,2005,25(4):41-43.
    [11]韦志娟.解放东路全套管咬合灌注桩的施工质量控制[J].浙江建筑,2005,2(4):46-47.
    [12]史佩栋.实用桩基工程手册〔M〕.北京:中国建筑工业出版社,1999.
    [13]刘根芳.液压全套管钻孔灌注桩(贝诺特桩)施工技术[J].建筑技术,1998,22:136-140.
    [14]捷程MZ系列全套管灌注桩和钻孔咬合桩成套技术研究与开发报告[M].北京,2005.
    [15]陈昌平,黄燮明.浅谈钻孔咬合桩的施工及质量控制[J].城市道桥与防洪,2006,4:135-138.
    [15]刘雪教.排桩全套管法施工技术[J].建筑施工,2001,23 :216—217.
    [16]李俊清.钻孔咬合桩施工质量控制[J].山西建筑,2006,31(15):91—92.
    [17]刘福华,沈保汉.MZ系列摇动式全套管钻机及其工程应用.桩基设计施工与检测[M].北京:中国建材工业出版社,2001.
    [18]刘建国.钻孔咬合桩设计与施工[J].铁道工程学报,2001(2):134—135.
    [19]康涛,刘佑荣.钻孔咬合桩新工艺应用中遇到的问题分析[J].土工基础,2005, 15(4):5-7.
    [20]陈顺勇.钻孔咬合桩施工中常见故障处理技术[J].四川建筑,2006,3:78-79.
    [21]陈斌,施斌,林梅.南京地铁软土地层咬合桩围护结构的技术研究[J].岩土工程学报, 2005, Vol.27(3):354-357.
    [22]郑剑升.咬合桩围护结构设计参数研究:[硕士学位论文].上海:同济大学,2004.
    [23]姚燕明,周顺华,陈力.钻孔咬合桩按刚度分配的计算方法[J].建筑结构,2003,Vol.33(11):25-26.
    [24]廖少明,周学领,宋博.咬合桩支护结构的抗弯承载特性研究[J].岩土工程学报.2008(1):72-78.
    [25]胡世山,朱川鄂,石教豪.钻孔咬合桩在天津地铁3号线华苑站中的应用[J].土工基础,2005(5):35-38.
    [26]吴子树等,土拱的形成机理及存在条件的探讨[J].成都科技大学学报,1995(2):15-19.
    [27]朱碧堂.刘一亮,基坑开挖和支护中的土拱效应[J],岩土工程师,2001,13(1):1-4.
    [28] Terraghi.K, stability and stifness of celluklar coferdams[J],Transactions Asce,1945(110) :2253.
    [29]贾海莉等,关于土拱效应的几个问题[J].西南交通大学学报,2003,38(4):398-402.
    [30] RL.Handy,The arch in soil arching[J].Journal of Geotechnical Engineering A SCE,1985(3):302-318.
    [31]胡敏云,深基坑护壁桩间距确定方法探讨[J].中国公路学报,2001,14(2):27-29.
    [32]潘家铮,建筑物的滑坡稳定和滑坡分析(第一版)[M].北京:水利出版社,1980.
    [33]王士川,陈立新.抗滑桩间距的下限解[J].工业建筑,1997,27(10):32-36.
    [34]王成华,陈永波,林立相.抗滑桩间土拱力学特性与最大桩间距分析[J].山地学报,2001,19(6):556-559.
    [35]周德培等,边坡工程中抗滑桩合理桩间距的探讨[J].岩土工程学报,2004,26(l):132-135.
    [36]冯君,吕和林,王成华.普氏理论在确定抗滑桩间距中的应用[J].中国铁道科学,2003,24(6):79-81.
    [37]周应华.周德培.冯君,推力桩桩间土拱几何力学特性及桩间距的确定[J],岩土力学, 2006,27(3):454-462.
    [38]贾海莉,王成华,李江洪.关于土拱效应的几个问题[J].西南交通大学学报,2003,38(4):398-402.
    [39]陈富坚,廖黎明.抗滑桩临界间距的基兹布尔格算法的改进[J].工程力学增刊,2003:6-10.
    [40]王士川,陈立新.抗滑桩间距的下限解[J].工业建筑,1997. 27 (10), 32-36.
    [41]王勖成,邵敏.有限元方法基本原理和数值方法[M].北京:清华大学出版社,2001.
    [42]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M],中国建筑工业出版社,2002
    [43]沈珠江.理论土力学[M],水利电力出版社,2000.
    [44]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水力水电出版社,1996.44-106.
    [45] Valanis, K.C., A Theory of uiscoplasticity without a yield surface[J], Arch., vol.23.1971,p571.
    [46] Xikui Li, Large strain constitutive modeling and computation for isotropic, creep-elastoplastic-damage solids [J],Int.J.Num.Meth.Engng.,Vol.38,1995, p846-60.
    [47] Ghaboussi,J.ect.,Knowledge-based modeling of material behavior with neural networks[J],ASCE,1991,Vol.37,EMI,P132-153.
    [48]龚晓南.土工计算机分析[M].北京:中国建筑工业出版社,2000,32-63.
    [49]龚晓南.土塑性力学(第二版)[M].杭州:浙江大学出版社,1999,91-146.
    [50]江见鲸,陆新征,叶列平.钢筋混凝土结构有限元设计[M].北京:清华大学出版社,2005:126-150.
    [51] Ngo D, Scordelis A C.Finite element analysis of reinforeced concret beams[J],ACI Journal, 1967,64(3): 152-163.
    [52] Nilson A H. Nonlinear analysis of reinforced concrete by the finite element method[J],ACI journal, sept.1968,65(9): 757—766.
    [53] Wang, A J.The permanent deflection of a plastic plate under blast loading[J], J.Appl.mech.1955,(20):375-376.
    [54]任重.ANSYS实用分析教程[M].北京:北京大学出版社,2003.
    [55]尚晓江,邱峰,赵海峰等.ANSYS结构有限元高级分析方法与范例应用[M].中国水利水电出版社,2006:191-211.
    [56]陈惠发.余天庆,王勋文,刘再华译.土木工程材料的本构方程(第二卷) [M].武汉:华中科技大学出版社,2001.
    [57]过镇海.时旭东,钢筋混凝土原理和分析[M].清华大学出版社,2003.
    [58]张波.盛和太,ANSYS有限元数值分析原理与工程应用[M].清华大学出版社,2005.
    [59] ANSYS非线性分析指南.ANSYS北京办事处,2000.
    [60] ANSYS技术报告.美国ANSYS公司北京办事处,2000.
    [61] ANSYS Inc,Guide to ANSYS User Programmable Features , SAS IP,1998 .
    [62] Ghaboussi J D,PeckNold D A.Incremental finite element analysis of geometrically altered structure[J],int,J.for Num .meth.in engry ,1999, 20(4):34-45.
    [63]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水力水电出版社,1996.44-106.
    [64]博弈创作室.ANSYS 9.0经典产品高级分析技术与实例详解[M].中国水利水电出版社,2005,364-370.
    [65]龚曙光.ANSYS基础应用及范例解析[M].北京:机械工业出版社, 2003.
    [66]铁道部第二勘测设计院.抗滑桩的设计与计算[M].中国铁道出版社, 1983,2-31.
    [67]张建勋,陈福全,简洪钮.被动桩中土拱效应问题的数值分析[J].岩土力学,2004,25(2):174-179.
    [68]中华人民共和国国家标准.混凝土结构设计规范(GB 50010-2002).北京:中国建筑工业出版社,2002.
    [69]李皓月,周天朋,刘相新.ANSYS工程计算应用教程[M].北京:中国铁道出版社, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700