煤中汞的环境地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞是煤中有害微量元素之一,具有较强的挥发性,几乎所有的汞在煤燃烧过程中都会释放进入大气,对环境和人体健康造成影响。本次研究在充分调研国内、外文献及相关科学研究领域的基础上,通过精密仪器测试、化学实验以及微区分析等手段,对中国煤样品中的汞进行了分析和研究,并充分运用煤地球化学、煤田地质学、煤化学、环境地球化学、环境科学等交叉理论知识,系统探讨了煤中汞的环境地球化学特征。
     通过研究得出:(1)中国煤中汞的含量多在0.1mg╱kg到0.3mg╱kg,平均含量为0.19mg╱kg,并根据其含量特征将中国煤中汞划分为低含量汞区、中等含量汞区和典型富汞区等三个区域;由于沉积环境及成煤过程中各种地质因素的综合影响,中国不同成煤时代以及不同变质程度煤中汞的含量差别较大;(2)探索性研究了中国低硫煤中汞的浓度分布和赋存特征,研究结果表明,硫化物结合态的汞和有机结合态的汞在低硫煤中占共同的支配方式;(3)重点系统研究了淮北煤田低硫煤中汞的含量、赋存状态及影响因素,研究结果表明,岩浆侵入导致了煤层中汞的重新分配,硅酸盐结合态的汞是岩浆侵入煤层中汞的主要赋存方式;(4)对比研究了不同煤级、高氯、高硫以及风化煤和非风化煤等典型煤样中汞的赋存特征,发现了煤中汞在不同类型的典型煤中赋存方式明显不同;(5)对淮北煤田和兖州煤田煤中汞的地球化学形成与演化进行了详细研究,分析了成煤植物、陆源母岩性质、沉积环境、岩浆热液作用以及其它一些因素对煤中汞分布和富集的影响机理;(6)在对洗选、淋滤以及矿区水环境中汞的浓度分布特征分析的基础上,探讨了煤中汞在环境中的迁移和分配规律,评价了1980到2007年间我国燃煤过程中汞的大气排放量,结果表明,煤炭资源的开采利用,导致煤中的汞对中国部分地区环境(特别是典型矿区的环境)造成了污染,控制燃煤过程中汞的排放仍是今后研究的重要内容之一。
Mercury (Hg) is a toxic, persistent, and globally distributed pollutant due to its characteristic properties such as low melting and boiling points, conversion between chemical forms and participation in biological cycles. During combustion Hg in coal is almost totally emitted to the atmosphere and result in environmental contamination and human health problem. Combining with the knowledge of coal geochemistry, coal geology, coal chemistry and environmental geochemistry, the environmental geochemistry of Hg in coals was investigated using instrument analysis, chemical experiments, and microprobe analysis, and the results indicate as follows.
     (1) By combining our results with the literature values, we have a database of Hg content in 1,712 samples of Chinese coals, and using this database, the variation of Hg in Chinese coals was investigated according to coal basins, geological ages and coal ranks. The results show most Chinese coals have Hg content in the range of 0.1 to 0.3 mg/kg, with an average of 0.19 mg/kg, and the Hg content in coals varies in different coal basins, geological ages and coal ranks.
     (2) The author groping investigated abundance and mode of occurrence of Hg in low sulfur coals, and the original results indicates that the organic-bound and sulfide-bound Hg are the main forms in most low-sulfur coals;
     (3) Hg in the Huaibei Coalfield, Anhui Province was systematically studied, especially on distribution, modes of occurrence, and enrichment of Hg in coals influence by magmatic intrusion. The results indicates that magmatic intrusion not only results in enrichment of Hg in coals but also influences modes of occurrence of Hg in coals, silicate-bound Hg is the main form in coals intruded by magmatic;
     (4) Hg in coals of different coal ranks, high-Cl, high-sulfur, weathered and unweathered were selected to determine their forms, and the results indicates that modes of occurrence of Hg are different in these special coals.
     (5) The Huaibei Coalfield in Anhui Province and the Yanzhou Coalfield in Shandong Province were selected as studied areas. Hg enrichment in these coals were investigated according to factors such as coal-forming plants, character of source rock, sedimentary environment, hydrotherm such as magmatism and others, and the results indicates that Hg enriched in coals are formed in multiphase and multigenesis.
     (6) Character of Hg distribution and migration during coal mining, accumulation and utilization has been investigated in this study, and the results shows:①Physical coal cleaning techniques such as coal washing is not effective in Hg reduction;②Leaching experiment indicates migration of Hg varies with conditions of pH values, times and temperatures;③Dump accumulation has resulted in water contamination in coal mining area. Mercury emission to atmosphere during coal combustion increased from 1980 to 2007, and has resulted in serious environmental contamination in China, particularly in the northeastern and southwestern China, where a high Hg content in the atmosphere occurs.
引文
Baker P.G.L., Brunke E.G., Slemr G., et al., 2002. Atmospheric mercury measurements at Cape Point South Africa. Atmospheric Environment, 36, 2459-2465.
    
    Belkin H.E., Zheng B.S., Zhou D.X., 1997. Preliminary results on the geochemistry and mineralogy of arsenic in mineralized coals from endemic arsenosis areas in Guizhou Province, P.R.China. Proceedings of the 14~(th) Annual International Pittsburgh Coal Conference (CD-ROM). Taiyuan, China, 1997, September: 23 - 27.
    Belyaev V.K., Pedash E.T., Ko N.A., 1989. Minor elements in coal and host rocks at he Shubarkol coal deposit. Razved. Ohr. Nedr [Exploration and Conservation of Mineral Resources], 11, 12-16.
    Bergan T., Gallardo L., Rohde H., 1999. Mercury in the global troposphere: a three dimensional model study. Atmospheric Environment, 33, 1575-1585.
    
    Berglund F., Bertin M., 1969. Chemical Fallout. Tomas Publisher, Springfield.
    Birk D., White J. C., 1991. Rare earth elements in bituminous coals and under clays of the Sydney basin, Nova Scotia: Element sites, distribution, mineralogy. International Journal of Coal Geology, 9, 219-251.
    Bockris J.O..M., 1997. Environmental Chemistry. Plenum, New York.
    Bool L.E., Helble J.J., 1995. A laboratory study of the partitioning of trace-elements during pulverized coal combustion. Energy, Fuels 9 (5), 880-887.
    
    Bouska and Pesek, 1999. Distribution of elements in the world lignite average and its comparison with lignite seams of the North Bohemian and Sokolov Basins. Folia Musei Rerum Naturalium Bohemiae Occidentails, Geologica, 42, p. 1-51.
    
    Bowen H.J.M., 1979. Environmental chemistry of the elements. London, Academic Press, 228 pp.
    Bragg L.J., Finkelman R.B., Tewalt S.J., 1991. Distribution of chlorine in United State coal. In: Stringer J., Banerjee D. D., eds., Chlorine in coal. Coal Science and Technology, 17,3-10.
    
    Brownfield M. E., Affolter R. H., Strieker G. D., Hildebrand R.T., 1995. High chromium contents in Tertiary coal deposits of northwestern Washington- a key to their depositional history. International Journal of Coal Geology, 27, 153-169.
    
    Brownfield M.E., Affolter R.H., Cathcart J.D., Johnson S.Y., Brownfield I.K., Rice C.A., 2005. Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone,
    Puget Group, John Henry No. 1 Mine, King County, Washington, USA. International Journal of Coal Geology, 63 (3-4), 247-275.
    
    Cabrera F., Ariza J., Madejon P., Madejon E., Murillo J.M., 2008. Mercury and other trace elements in soils affected by the mine tailing sprill in Aznalcollar (SW Spain). Science of the Total Environment, 390,311-322.
    
    Camargo J.A., 2002. Contribution of Spanish-American silver mines (1570-1820) to the present high mercury concentrations in the global environment: a review. Chemosphere, 48, 51-57.
    Cecil C.B., Stanton R.W., Allshouse S.D., Finkelman R.B., Greenland L., 1979. Geologic controls on element concentrations in the Upper Freeport coal bed. Prepr. - Am. Chem. Soc, Div. Fuel Chemistry, 24 (1), 230-235.
    Chou C.-L., 1990. Geochemistry of sulfur in coal. In Geochemistry of Sulfur in Fossil Fuels (edited by W. L. Orr and C. M. White), ACS Symposium Series 429, Chapter 2, pp. 30-52. American Chemical Society, Washington, D.C.
    Chou Chen-Lin, 1991. Distribution and forms of chlorine in Illinois Basin coals. In: Stringer J., Banerjee D. D. (eds). Chlorine in coal. Elsevier Science Publishers, Amsterdam., 11-29.
    Chou C.-L., 1997a. Abundances of sulfur, chlorine, and trace elements in Illinois Basin coals, USA. Proceedings of the 14th Annual International Pittsburgh Coal Conference, Taiyuan, China, September 23-27, p. S1/76-S1/87.
    Chou C.-L., 1997b. Geologic factors affecting the abundance, distribution, and speciation of sulfur in coals. Proceedings of the 30th International Geological Congress, v. 18, part B, Geology of Fossil Fuels - Coal (edited by Yang Qi), p. 47-57. VSP, Utrecht, The Netherlands.
    Christopher D.K., 2008. Development and test application of screening-level mercury fate model and tool for evaluating wildlife exposure risk for surface waters with mercury contaminated sediments (SERAFM). Environmental Modelling & Software, 23(4), 495-510.
    Chu P., Porcella D.B., 1995. Mercury stack emissions from U.S. electric power plants. Water, Air and Soil Pollution, 80, 134-144.
    Crowley S. S., Ruppert L. F., Belkin H. E., et al., 1993. Factors affecting the geochemistry of a thick, subbituminous coal bed in the Powder River Basin: Volcanic, detrial, and peat-forming processes. Organic Geochemistry, 20(6), 843-853.
    Da Silva D S, Lucotte M, Roulet M, Poirier H., Mergler D., Santos E.O., Crossa M., 2005. Trophic structure and bioaccumulation of mercury in fish of three natural lakes of the Brazilian Amazon. Water Air Soil Pollution, 165,77-94.
    Dai S.F., Ren D.Y., Tang Y.G., Shao L.Y., Li S.S., 2002. Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China. International Journal of Coal Geology, 51, 237-250.
    Dai S., F., Hou X.Q., Ren D.Y., Tang Y.G., 2003. Surface analysis of pyrite in the No. 9 coal seam, Wuda Coalfield, Inner Mongolia, China, using high-resolution time-of-flight secondary ion mass-spectrometry. International Journal of Coal Geology, 55,139- 150.
    Dai S.F., Li D.H., Ren D.Y., Tang Y.G., Shao L.Y., Song H.B., 2004a. Geochemistry of the late Permian No.30 coal seam, Zhijin Coalfield of Southwest China: influence of a siliceous low-temperature Hydrothermal fluid. Applied Geochemistry, 19, 1315-1330.
    Dai S.F., Ren D.Y., Ma S.M., 2004b. The cause of endemic fluorosis in western Guizhou Province, Southwest China. Fuel, 83, 2095-2098.
    
    Dai S.F., Ren D.Y., Tang Y.G., Yue M., Hao L.M., 2005a. Concentration and distribution of elements in Late Permian coals from western Guizhou Province, Chin. International Journal of Coal Geology, 61(1-2), 119-137.
    
    Dai S.F., Chou C.-L., Yue M, Luo K.L., Ren D.Y., 2005b. Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfeild, Guizhou, China: influence from siliceous and iron-rich calcic hydrothermal fluids. International Journal of Coal Geology, 61, 241-258.
    Dai S.F., Han D.X., Chou C-L., 2006a. Petrography and geochemistry of the Middle Devonian coal from Luquan, Yunnan Province, China. Fuel, 85,456-464.
    
    Dai S.F., Ren D.Y., Chou C-L., Li S.S., Jiang Y.F., 2006b. Mineralogy and geochemistry of the No.6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. International Journal of Coal Geology, 66, 253-270.
    Dai S.F., Zeng R.S., Sun Y.Z., 2006c. Enrichment of arsenic, antimony, mercury, and thallium in a Late Permian anthracite from Xingren, Guizhou, Southwest China. International Journal of Coal Geology, 66,217-226.
    Dai S.F., Ren D.Y., Li S.S., 2006d. Discovery of the superlarge gallium ore deposit in Junger, Inner Mongolia, North China. Chinese Science Bulletin, 51,2243-2252.
    Dai S.F., and Ren D.Y., 2006e. Fluorine concentration of coals in China-An estimation considering coal reserves. Fuel, 85, 929-935.
    Delmas R.J., Kirchner S., Palais J.M., Petit J.R., 1992. 1000 years of explosive olcanism recorded at the South Pole. Tellus, 44B, 335-350.
    
    Diehl S.F., Goldhaber M.B., Hatch J.R., 2004. Modes of occurrence of mercury and other trace elements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama. International Journal of Coal Geology, 59, 193-208.
    
    Ding Z.H., Zheng B.S., Long J.P., Belkin H.E., 2001. Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China. Applied Geochemistry, 16(11-12), 1353-1360.
    Dronen L.C., Moore A.E., Kozliak E.I., Seams W.S., 2004. An assessment of acid wash and bioleaching pre-treating options of remove mercury from coal. Fuel, 83,181-186.
    Dvornikov A.G., 1981. Mercury modes of occurrence in Donetsk basin coals. Dokl. Akad. Nauk SSSR [Compt. Rend. USSRAcad. Sci.], 257(5), 1214-1216.
    Dvornikov A.G., Kirikilitsa S.I., 1987. Mercury in Donetsk basin coals. Nedra [Entrails Publ. House], Moscow, 155 PP-
    
    Ebinghaus R., Koch H., Temme C., et al, 2002. Antarctic spring-time depletion of atmospheric mercury. Environmental Science and Technology, 36, 1238-1244.
    EFSA, 2004. Press Release, EFSA provides risk assessment on mercury in fish: precautionary advice given to vulnerable groups, March 18.
    Engle M.A., Tate M.T., Krabbenhoft D.P., Kolker A., Olson M.L., Edgerton E.S., Dewild J.F., McPherson A.K., 2008. Characterization and cycling of atmospheric mercury along the central U.S. Gulf Coast. Applied Geochemistry, doi: 10.1016/j.apgeochem.2007.12.024.
    Ericksen J., Gustin M., Lindberg S., Olund S., Krabbenhoft D., 2005. Assessing the potential for re-emission of mercury deposition in precipitation from arid soils using a stable isotope. Environment Science and Technology, 39, 8001-8007.
    Ericksen J.A., Gustin M.S., Xin M., Weisberg P.J., Fernandez G.C.J., 2006. Air-soil exchange of mercury form background soils in the United States. Science of the Total Environment, 366, 851-863.
    Eskenazy G.M., 1987. Rare earth elements in a sampled coal from the Pirin deposit, Bulgaria. International Journal of Coal Geology, 7, 301-314.
    Eskenazy, G.M., 1996. Geochemistry of rare earth elements in Bulgarian coals. Ann. de L' Univ. de Sofia 'St. Kl. Ohridski', Fac. de Geol. et Geographie, Livre 1-Geologie, p. 39-65.
    Eskenazy G.M., 1999. Aspects of the geochemistry of rare elements in coal: an experimental approach. International Journal of Coal Geology, 38,285-295.
    Eskhenazy G., Vassilev S., Karaivanova E., 1998. Chlorine and bromine in the Pirin coal deposit, Bulgaria. Review of Bulgaria Geology Science, 59(2), 67-72.
    European Commission, 2001. Ambient Air Pollution by Mercury (Hg) Position Paper; Office of official publications of the Eurpean Communities (KH-41-01-341-EN-N); ISBN 92-894-2053-7
    European Commission, 2005. Consultation EU mercury. http://europa.eu.int/comm/environment/chemicals/mercurv/index.htm
    Fang F.M., Wang Q.C., Li J.F., 2001. Atmospheric particulate mercury concentration and its dry deposition flux in Changchun City, China. Science of the Total Environment, 281,229-236.
    Fang P.M., Wang Q.C., Li J.F., 2004. Urban environmental mercury in Changchun, a metropolitan city in Northeastern China: source, cycle, and fate. Science of the Total Environment, 330,159-170.
    Feng X.B., Hong Y.T., 1999. Modes of occurrence of mercury in coals from Guizhou, People's Republic of China. Fuel, 78 (10), 1181-1188.
    Feng X.B., Sommar J., Lindqvist O, Hong Y.T., 2002. Occurrence, emissions and deposition of mercury during coal combustion in the Province Guizhou, China. Water Air Soil Pollution, 139, 311 -324.
    Feng X.B., Tang S.L., Shang L.H., Yan H.Y., Sommar J., Lindqvist O., 2003. Total gaseous mercury in the atmosphere of Guiyang, P.R. China. The Science of the Total Environment, 304,61-72.
    Fiene F.L., Kuhn J.K., Gluskoter H.J., 1979. Mineralogic affinities of trace elements in coal. In: Rogers S.E., Lemmon Jr., A.W. (Eds.), Symposium on Coal Cleaning to Achieve Energy and Environmental Coals Process, Vol.1.EPA, Washington, D.C., Rep. EPA-600/7-79-098a, p. 29-58.
    Finkelman R.B., Dulong F.T., Stanton R.W., Cecil C.B., 1979. Minerals in Pennsylvania coal. Pa. Geology, 10(5), 2-5.
    Finkelman R.B., 1981. Modes of Occurrence of Trace Elements in Coal. U. S. Geology Survey, Open-file Report, p. 81-99.
    Finkelman R.B., Palme, C. A., Krasnow M.R., Aruscavage P.J., Sellers G.A., and Dulong F.T., 1990a. Combustion and leaching behavior of elements in the Argonne premium coal samples. Energy and Fuels, 4, 755-766.
    Finkelman R.B., Bragg L.J., Tewalt S.J., 1990b. Byproduct recovery from high-sulfur coals. Processing and utilization of high-sulfur coals, vol. III, Elsevier, Amsterdam, p. 89-96.
    
    Finkelman R.B., Bostick N.H., Dulong F.T., 1992. Ingluence of an igneous intrusion on the element distribution of a bituminous coal from Pitkin County, Colorado. Ninth Ann. Meet. The Soc. Org. Petrology (University Park, PA, July 23-24) Abstr. Progr., p. 112-114.
    Finkelman R.B., 1993. Trace and minor elements in coal. In: Engel, M.H., Macko, S.A. (Eds.), Organic Geochemistry. Plenum, New York, p, 593-607.
    Finkelman R.B., 1994. Modes of occurrence of potentially hazardous elements in coal: levels of confidence. Fuel Processing Technology, 39 (1-3), 21-24.
    
    Finkelman R.B., 1995. Modes of occurrence of environmentallly sensitive trace elements in coal. In D. J. Swaine, F. Goodarzi (eds). Environmental Aspects of Trace Elements in coal. Kluwer Academic Publishing, Netherlands, 24-50.
    
    Finkelman R.B., Bostick N.H., Dulong F.T., Senftle F.E., Thorpe A.N., 1998. Influence of an igneous on the inorganic geochemistry of bituminous coal from Pitkin Country, Colorado. International Journal of Coal Geology, 36, 223-241.
    Finkelman R.B., Gross P.M.K., 1999. The type of data needed for assessing the environmental and human health impacts of coal. International Journal of Coal Geology, 40,91-101.
    
    Finkelman R.B., William O., Vincent C., Castranova V., Tatu C.A., Belkin H.E., Zheng B.S., Lerch H.E., Maharaj S.V, Bates A.L., 2002. Health impacts of coal and coal use: possible solutions. International Journal of Coal Geology, 50, 425-443.
    Finkelman R.B., 2003. Mercury in coal and mercury emissions from coal combustion. In: Gray, J.E.(Ed.), Geologic studies of mercury by the US Geological Survey. US Geol. Surv. Cire, vol. 1248, p. 9-11.
    Fitzgerald W F, Engstrom D R, Mason R P, Nater E.A., 2005. The case for atmospheric mercury contamination in remote areas. Environmental Science and Technology, 32, 1-7.
    Fleet A.J., 1984. Aqueous and sedimentary geochemistry of the rare earth elements. In: Anderson, P. Ed., Rare Earth Element Geochemistry. Developments in Geochemistry. 2. Elsevier, Amsterdam, p. 343-374.
    Forster C., Wase J., 1997. Biosorbents for Metal Ions. Tayor and Francis, New York.
    Galbreath K.C., Zygarlicke C.J., 2000. Mercury transformation in coal combustion flue gas. Fuel Process Technology, 65-66, 289-310.
    Gayer R. A., Rose M., Dehmer J., Shao L.Y., 1999. Impact of sulphur and trace element geochemistry on the utilization of marine-influenced coal-case study from the South Wales Variscan foreland basin. International Journal of Coal Geology, 40(2-3), 151-174.
    Ghosh S.B., Das M.C., Roy R.R., et al., 1994. Mercury in Indian coals. Indian Journal of Chemistry Technology, 1, 237-240.
    Goodarzi F., 1987. Comparison of elemental distribution in fresh and weathered samples of selected coals in the Jurassic-Cretaceous Kootenay Group, British Columbia, Canada. Chemical Geology, 63,21-28.
    Goodarzi F., 1995. The effect of weathering and natural heating on trace elements of coal. In: Swaine D.J., Goodarzi F (eds). Environmental Aspects of Trace Elements in Coal. Kluwer Academic Publication. Dordrect, Netherlands, 5, 76-92.
    Goodarzi F., Gentzis T., 1995. Geochemistry of coals form the Red Deer River Valley, Alberta, Canada. In: Pajares J. A., Tascon J.M.D. (eds). Coal Science. Proc. 8~(th) International Conference of Coal Science, Vol 1 (Oviedo, Sept. 10-15, 1995).
    Greive D.A., Goodarzi F., 1993. Trace elements in coal samples from active mines in the Forland Belt. British Columbia, Canada. International Journal of Coal Geology, 24,259-280.
    Gustin M.S., Engle M.A., Ericksen J., Lyman S., Stamenkovic J., Xin M., 2006. Elemental Hg exchange between the atmosphere and low Hg containing substrates. Applied Geochemistry, 21,1913-1923.
    Hassett D.J., 1994. Scientifically valid leaching of coal conversion solid residues to predict environmental impact. Fuel Processing Technology, 39,445-459.
    Hassett D.J., Pflughoet-Hassett D.F., Heebink L.V., 2003. Leaching of COBs: Observations from over 25 years of research. International Ash Utilization Symposium, University of Kentucky, USA.
    He T.R., Feng X.B., Guo Y.N., Qiu G.L., Li Z.G., Liang L, Lu J.L., 2008. The impact of entrophication on the biogeochemical cycling of mercury species in reservoir: A case study from Hongfeng Reservoir, Guizhou, China. Environmental Pollution, doi: 10.1016/j.envpol.2007.11.013.
    Hines N., Brezonik P., 2007. Mercury inputs and outputs at a small lake in northern Minnesota. Biogeochemistry, 84, 265-284.
    Horvat M., Nolde N., Fajon V., Jereb V., Logar M., Lojen R., Jacimovic R., Falnoga I., Qu L.Y., Faganeli J., Drobene D., 2003. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Science of the Total Environment, 304,231-256.
    Hower J.C., Eble C.F., Quick J.C., 2005a. Mercury in Eastern Kentucky coals: Geologic aspects and possible reduction strategies. International Journal of Coal Geology, 62(4), 223-236
    Hower J.C., Mastalerz M., Drobniak A., Quick J.C., Eble C.F., Zimmerer M.J., 2005b, Mercury content of the Springfield coal, Indiana and Kentucky .International Journal of Coal Geology, 63( 3-4), 205-227
    Huang W.H., Yang Q., Tang D.Z., 2000. Rare earth element geochemistry of Late Palaeozoic coals in North China. Acta Geological Sinica, 74(1), 74-83.
    
    Huggins F.E., Huffman, G.P., 1991a. An XAFS investigation of the form-of-occurrence of chlorine in U.S. coals. In: J. Stringer and D.D. Banerjee (Editors), Chlorine in Coal. Coal Science and Technology, 17. Elsevier, Amsterdam, 43-58.
    
    Huggins F.E., Huffman G.P., 1991b. Chlorine in coal: an XAFS spectroscopic investigation. In: IEA coal Research (Editors), Coal Science Proceedings (1991) Int. Conf. Newcastle, England). Butterworth-Heinemann, Oxford, 1981-984.
    
    Huggins F. E., Gerald P. H., 1995. Chlorine in coal: An XAFS spectroscopic investigation. Fuel, 74(4), 556-569.
    Huggins F.E., Shah N., Huffman G.P., 2000. Mode of occurrence of chromium in four U.S. coals. Fuel Processing Technology, 63, 79-92.
    Hutson N.D., Attwood B.C., Scheckel K.G., 2007. XAS and XPS characterization of mercury binding on brominated activated carbon. Environmental Science & Technology, 41(5), 1747-1752.
    Iwashita A., Tanamachi S., Nakajima T., Takanashi H., Ohki A., 2004. Removal of mercury from coal by mild pyrolysis and leaching behavior of mercury. Fuel, 83, 631-638.
    Jaffe D., Prestbo E., Swartzendruber P., Weiss-Penzias P., Kato S., Takami A., Hatakeyama S., Kajii Y, 2005. Export of atmospheric mercury from Asia. Atmospheric Environment, 39, 3029-3038.
    Jing Y.D., He Z.L., Yang X.E., 2007. Effects of pH, organic acids, and competitive cations on mercury desorption in soils. Chemosphere, 69, 1662-1669.
    
    Khairetdinov, I.A., 1971. On the mercury ags aoreols. Geokhimiya [Geochemistry] 6,668-683.
    Khrustaleva G.K., Andrianova T.P., Medvedeva G.A., Kvochkina L.V., Ulanov N.N., 2001. Geological aspects of coal conversion to liquid fuels: a review. Geoinformmark, Moscow, 55 pp.
    Kirkby W.A., 1927. Mercury from coal target Journal Society Chemistry. Ind., 46,422R.
    Kizilstein L.Ya., Peretyat'ko A.G., Gogen G.I., 1989. Concentration of trace elements in coals in light of hard-soft acid-base conception Khim. Tverd. Topl. Chemical Solid Fuels, 2,132-138.
    Kolker A., Finkelman R.B., 1998. Potentially hazardous elements in coal: modes of occurrence and summary of concentration data for coal components. Coal Prep., 19, 133-157.
    Kolker A., Senior C.L., Quick J.C., 2006. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems. Applied Geochemistry, 21,1821-1836.
    Kortenski J., Bakardjiev S., 1993. Rare earth and radioactive elements in some coals from the Sofia, Svoge and Pemik Basins, Bulgaria. International Journal of Coal Geology, 22,237-246.
    
    Kortenski J., Sotirov A., 2002. Trace and major element content and distribution in Neogene lignite from the Sofia Basin, Bulgaria. International Journal of Coal Geology, 52 (1-4), 63-82.
    Krabbenhoft D.P., Branfireun B.A., Heyes A., 2005. Biogeochemical cycles affecting the speciation and transport of mercury in the environment. Vol.34 Short Course Series. Mineralogical Association of Canada, 139-156.
    Lacerda L.D., 1997. Evolution of mercury contamination in Brazil. Water, Air and Soil Pollution, 97,247-255.
    Lamborg C.H., Fitzgerald WF., Torgersen T., 2002. A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. Geochim. Cosmoschim Acta, 66, 1105-1118.
    Langway C.C., Osada K., Clausen H.B., Hammer C.U., Shoji H.A., 1995. A 10-century comparison of prominent bipolar volcanic events in ice cores. Journal of Geophys Resource, 100, 16241-16247.
    Leena T., Terese N, Edinaldo de C. e S., Lars D.H., 2008. Fish mercury development in relation to abiotic characteristics and carbon sources in a six-year-old, Brazilian reservoir. Science of the Total Environment, 390(1), 177-187.
    Linqvist O., Johansson K., Aastrup M., 1991. Mercury in the Swedish environment. Water, Air, Soil Pollution, 55, 1-261.
    Liu B., Keeler G.J., Dvonch J.T., Barres J.A., Lynam M.M., Marsik F.J., Morgan J.T., 2007. Temporal variability of mercury speciation in urban air. Atmospheric Environment, 41,1911-1923.
    Liu G.J., Peng Z.C., Yang P.Y., Wang G.L., 2001. Sulfur in coal and its environmental impact from Yanzhao Mining District, China. Chinese Journal of Geochemistry, 20(3), 273-281.
    Liu G.J., Yang P.Y., Peng Z.C., Wang G.L., Zhang W., 2003. Comparative study of the quality of some coals from the Zibo coalfield. Energy, 28, 969-978.
    Liu G.J., Yang P.Y., Peng Z.C, Chou C.-L., 2004a. Petrographic and geochemical contrasts and environmentally significant trace elements in marine-influenced coal seams, Yanzhou mining area, China. Journal of Asian Earth Sciences, 23,491 -506.
    Liu G.J., Zheng L.G., Peng Z.C., 2004b. Distribution of hazardous trace elements during coal beneficiation. Geochimica et Cosmochimica Acta, 67(18), A522.
    Liu G.J., Zheng L.G., Duzgoren-Aydin N.S., Gao L.F., Liu J.H., Peng Z.C., 2007a. Toxic Trace Elements As, F and Se in Chinese indoor coals combustion and their health implications. Review of Environmental Contaminated and Toxicology, 189,89-106.
    Liu G.J., Zheng L.G., Zhang Y, Qi C.C., Chen Y.W., Peng Z.C., 2007b. Distribution and mode of occurrence of As, Hg, and Se and Sulfur in coal seam 3 of the Shanxi Formation, Yanzhou Coalfield, China. International Journal of Coal Geology, 71(1-2), 371-385.
    Liu G.J., Zheng L.G., Qi C.C., Zhang Y., 2007c. Environmental geochemistry and health of fluorine in Chinese coals. Environmental Geology, 52,1307-1314.
    
    Liu S, Nadim F, Perkins C, Carley R.J., Hoag G.E., Lin Y.H., Chen L.T., 2002. Atmospheric mercury monitoring survey in Beijing, China. Chemosphere, 48, 97-107.
    Lopez-Anton M.Antonia, Mercedes Diaz-Somoano, Ana B. Garcia, M. Rosa Martinez-Tarazona, 2006. Evaluation of mercury associations in two coals of different rank using physical separation procedures. Fuel, 85, 1389-1395.
    Luo K.L., Ren D.Y., Xu L.R., Dai S.F., Cao D.Y., Feng F.J., Tan J.N., 2004. Fluorine content and distribution pattern in Chinese coals. International Journal of Coal Geology, 57, 143-149.
    Luttrell G.H., Kohmuench J.N., Yoon R.H., 2000. An evaluation of coal preparation technologies for controlling trace element emissions. Fuel Process Technology, 65-66,407-422.
    Malcolm E.G., Keeler G.J., 2007. Evidence for a sampling artifact for particulate-phase mercury in the marine atmosphere. Atmospheric Environment, 3352-3359.
    Martinez-Cortizas A., Pontevedra-Pombal X., Garcia-Rodedja E., Novoa-Munoz J.C., Shotyk W., 1999. Mercury in a Spanish peat bog: Archive of climate change and atmospheric metal deposition. Science, 284,939-942.
    Mastalerz M., Drobniak A., 2005. Vertical variations of mercury in Pennsylvanian coal beds from Indiana. International Journal of Coal Geology, 63,36-57.
    Mastalerz M., Drobniak A., Filippelli G., 2006. Mercury content and petrographic composition in Pennsylvanian coal beds of Indiana, USA. International Journal of Coal Geology, 68,2-13.
    Meli M., 1991. Fluxes, pools and turnover of mercury in Swedish forest lakes. Water, Air, Soil Pollution, 56, 719-727.
    Mellor J.W, 1967. In: A comprehensive Treatise on Inorganic and Theoretical Chemistry. London: Longmans, Green & Co.
    Meytov E.S., 2001. Metal-bearing coals. Ugol'naya baza Rossii. T. IV[Russian Coal Base. Vol. IV]. Geoinformmark, Moscow, pp. 293-301.
    Milena H., Natasa N.,Vesna F., Martina L., Sonja L., Radojko J., Ingrid F., Qu L., Jadran F., Damjaha D., 2003. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China, The Science of the Total Environment, 304, 231-256.
    Morel F., Kraepiel A., Amyot M., 1998. The chemical cycle and bioaccumulation of mercury. Annual Review of Ecological System, 29, 543-566.
    Mukherjee A.B., Zevenhoven R., Bhattacharya P., Sajwan K.S., Kikuchi R., 2008. Mercury flow via coal and coal utilization by-products: A global perspective. Resource, Conservation and Recycling, 52, 571-591.
    Mukhopadhyay P. K., Goodarzi F., Grandlemire A., et al., 1998. Comparison of coal composition and elemental distribution in selected seams of the Sydney and Stellarton Basin, Nova Scotia, Eastern Canada. International Journal of Coal Geology, 37(1-2), 113-141.
    N R C. (National Research Council), 1980. Trace-Element Geochemistry of Coal Resource Development Related to Environmental Quality and Health. National Academy Press, Washington, DC, 153 pp.
    Nam K.H., Gomez-Salazar S., Tavlarides L.L., 2003. Mercury (II) adsorption from wastewater using a thiol functional adsorbent. Ind. Eng. Chem. Res. 42: 1955-1964.
    Nriagu J., Becker C., 2002. Volcanic emissions of mercury to the atmosphere: global and regional inventories. The Science of the Total Environment, 304: 3-12.
    Nriagu J.O., 1994. Mercury pollution from the past mining of gold and silver in the America. Science of the Total Environment, 149, 167-181.
    
    Nymaral J., 1995. Algae and element cycling in wetlands. Lewis Publisher, 1995.
    Ohki A., Sagayama S., Tanamachi S., Iwashita A., Nakajima T., Takanashi H., 2008. Release behavior of mercury during mild pyrolysis of coals and nitric acid-treated coals. Powder Technology, 180, 30-34.
    P E C H, 1981. Trace-Element Geochemistry of Coal Resource Development Related to Environmental Quality and Health. Washington, DC, National Academy Press, 153 pp.
    Pacyna E.G, Pacyna J.M., 2002. Global emission of mercury from anthropogenic sources in 1995. Water, Air, and Soil Pollution, 137, 149-165.
    Pacyna J.M., Pacyna E.G., Steenhuisen F., Wilson S., 2003. Mapping 1995 global anthropogenic emissions of mercury. Atmospheric Environment, 37(1), 109-117.
    Pacyna E.G., Pacyna J.M., Steenhuisen Frits, Wilson Simon, 2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40,4048-4063.
    Palmer C.A., Krasnow M.R., Finkelman R.R., D'Angelo W.M., 1993. An evaluation of leaching to determine modes of occurrence of selected toxic elements in coal. Journal of Coal Quality, 12 (4), 135-141.
    Palmer C.A., Mroczkowski S.J., Finkelman R.B., 1998. The use of sequential leaching to quantify the modes of occurrence of elements in coal. In: Proceedings of the 15~(th) Annual International Pittsburgh Coal Conference & Workshop. Sept 14-18, 1998. Pittsburgh, USA. Cd-rom isbn 1-890977-15-2, recorded in USA.
    Palmer C.A., Mroczkowski S.J., Kolker A., 2000. Chemical analyses and modes of occurrence of selected trace elements in a Powder River Basin coal and its corresponding simulated cleaned coal. U.S. Geological Survey, Open-File Report 00-323, 52 pp.
    Park K.S., Seo Y.-C., Lee S.J., Lee J.H., 2008. Emission and speciation of mercury from various combustion sources. Powder Technology, 180,151-156.
    Paterson M.J., Blanchfield P.J., Podemski C., Hintelmann H.H., Gilmour C.C., Harris R., Ogrinc N., Rudd J.W., Sandilands K.A, 2006. Bioaccumulation of newly deposited mercury by fish and invertebrates: an enclosure study using stable mercury isotopes. Canada Journal of Fish Aquatic Science, 63,2213-2224.
    Pirrone N, Allegrini I, Keeler G J, Nriagu J.Q., Rossmann R., Robbins J.A., 1998. Historical atmospheric mercury emissions anddepositions in North America compared to mercury accumulations in sedimentary records. Atmospheric Environment, 32,929 - 940.
    Querol X., Fernandez-Turiel J.L., Lopez-Soler A., 1995. Trace elements in coal and their behavior during combustion in a large power station. Fuel, 74,331-343.
    Rada R.G., Wiener J.G., Winfrey M.R., Powell D.E., 1989. Recent increases in atmospheric deposition of mercury to north-central Wisoonisin lakes inferred from sediment analyses. Archaeological Environmental Contamination Toxicology, 36,53-57.
    
    Reichel W., 2003. Coal: the European legacy. London, World Coal: 2003, p. 38-44.
    Ren D.Y., Zhao F.H., Wang Y.Q., Yang S.J., 1999. Distribution of minor and trace elements in Chinese coals. International Journal of Coal Geology, 40(2-3), 109-118.
    Rio S., Delebarre A., 2003. Removal of mercury in aqueous solution by fluidized bed plant fly ash. Fuel, 82, 153-159.
    Robock A., Free M.P., 1995. Ice core as an index of global volcanism from 1850 to the present. Journal of Geophys Resource, 100, 11549-11567.
    Ruch R.R. GlusKoter H.J., Kennedy E.J., 1971. Mercury content of Illinois coals. Ill. State Geology Survey. Environment Geology Notes, 43,15 pp.
    Ruch R.R., Gluscoter H.J., Shimp N.F., 1974. Distribution of trace elements in coal, EPA, Washington, DC (1974) Environ. Protect. Technol. Ser. EPA-650-2-74-118,49 pp.
    Rudnick R.L., Gao S., 2004. Composition of the continental crust Treatise on geochemistry. Volume, 3. Amsterdam: Elsevier, p. 1-64.
    Rutter A., Schauer J., 2007. The impact of aerosol composition on the particle to gas partitioning of reactive mercury. Environment Science and Technology, 41, 3934-3939.
    Saukov A.A., 1946. Geochemistry of Mercury. Moscow, 1946. 80pp. (Proc. Inst. Geology Sci. Acad. Sci. USSR, 78, No. 17).
    
    Schroeder W.H., Munthe J., 1998. Atmospheric mercury-an overview. Atmospheric Environment, 32,809-822.
    Schroeder W.H., Steffen S., Lawson G., et al., 2001. Mercury measurements at Alert. In Synopsis of Research Conducted Under the 2000/2001 Northern Contaminants Program, edited by Kalhok, 130-135, Indian and North. Affairs Can., Wttawa, Ontario. 2001.
    Seigneur C., Vijayaraghavan K., Lohman K., Karamchandani P., Scott C, 2004. Global source attribution for mercury deposition in the United States. Environmental Science and Technology, 38, 555-569.
    Senior C.L., Zeng T., Che J., Ames M.L., Sarofim A.F., Olmez I., Huggins F.E., Shah N., Huffman G., Kolker A., Mroczkowski S., Palmer C, Finkelman R., 2000. Distribution of trace elements in selected pulverized coals as a function of particle size and density. Fuel Process. Technology, 63,215-241.
    
    Shotyk W, Goodsite M E, Roos-Barraclough F, Givelet N., Lerour G., Weiss D., Cheburkin A.K., Kudsen K., Heineweier J., Van Der Knaap W.O., Norton S.A., Lohse C, 2005. Accumulation rates and predominant atmosphericsources of natural and anthropogenic Hg and Pb on the Faroe Islands. Geochim Cosmochim Acta, 69, 1-17.
    Skipsey E., 1974. Distribution of alkali chlorides in British coal seams. Fuel, 53, 258-267.
    Skipsey E., 1975. Relations between chlorine in coal and the salinity of strata water. Fuel, 54,121-125.
    Skyllberg U., Xia K., Bloom P R., et al., 2000. Binding of mercury( II) to reduced S in soil organic matter along upland -peat soil transects. Journal of Environmental Quality, 29, 855-865.
    Srivastava R.K., Hutson N., Martin B., Princiotta F., Staudt J., 2006. Control of mercury emissions from coal-fired in electric utility boilers. Environmental Science & Technology, 40(5), 1385-1393.
    Stewart A.K., Massey M., Padgett P.L., Rimmer S.M., Hower J.C., 2005. Influence of a basic intrusion on the vitrinite reflectance and chemistry of Springfield (No.5) coal, Harrisburg, Illinois. International Journal of Coal Geology, 63(1-2), 58-67.
    
    Stock A., Cucuel F., 1934. Die Verbreitung des Quecksilbers. Naturwissenschaften, 22(22/24), 390-393.
    Streets D.G., Hao J.M., Wu Y., Jiang J.K., Chan M., Tian H.Z., Feng X.B., 2005. Anthropogenic mercury emissions in China. Atmospheric Environment, 39,7789-7806.
    
    Stutzer O., 1914. Kohle (Allgemeine Kohlengeologie). Gebr. Borntraeger, Belin. 345 pp.
    Swaine D.J., 1990. Trace elements in coal. London Botterworths, p. 178-386.
    Swaine D.J., and Goodarzi F., 1995. Environmental aspects of trace elements in coal. Printed in the Netherlands, Kluwer Academic Publishers, p. 24-50.
    Tanamachi S., Iwashita A. Nakajima T., Takanashi H., Ohki A., 2004. Release behavior of mercury and arsenic from coal during pyrolysis. Proceedings of the 21~(st) Annual International Pittsburgh Coal Conference, Osaka, Japan, Paper No. P5-4.
    Takahashi F., Yamagata M., Yasuda K., Kida A., 2008. Impact of mercury emissions from incineration of automobile-shredder residue in Japan. Applied Geochemistry, 23(3), 584-593.
    Tayban N B A B, Preston M R., 2005. Atmosperic vapour phase and particulate phase mercury in a coastal desert climate[J]. Journal of Environmental Monit, 7, 977 - 982.
    Tessier A., Campbell P.G.C., Bisson M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51 (7), 844-851.
    Toole-O'Neil B., Tewalt S.J., Finkelman R.B., Akers D.J., 1999. Mercury concentration in coal-unraveling the puzzle. Fuel, 78,47-54.
    USDHHS, USEPA, March 2004. Backgrounder for the 2004 FDA/EPA Consumer Advisory: what you need to know about mercury in fish and shell fish, EPA-823-f-04-008.
    US-EPA(United States Environmental Protection Agency), 1990. Emissions of Human-Caused Hg. Available: www.epa.gov/mercury/ control _emissions/emissions.htm.
    US-EPA (United States Environmental Protection Agency), 2001. National primary drinking water standards. Report EPA 816-F-007, Washingtong DC.
    US-EPA(United States Environmental Protection Agency), 2005a. Fact Sheet: 2005 National Listing of Fish Advisories. Office of Water, Washington, D.C. EPA-823-F-05-004, Available from : http://www.epa.gov/waterscience/fish/advisories/fs2004.pdf.
    US-EPA (United States Environmental Protection Agency), 2005b. Clean air interstate rule. URL: http://www.epa.gov/interstateairquality/.
    US-EPA (United States Environmental Protection Agency), 2005c. Clean air interstate rule. URL: http://epa.gov/air/mercuryrule/.
    
    US-EPA (United States Environmental Protection Agency), 2005d. Mercury, http://www.wpa.gov/mercury.
    US-EPA (United States Environmental Protection Agency), 2006. Frequent Questions About Hg. Available: www.epa.gov/mercury/faq.htm#
    
    Valkovic V., 1983. Trace elements in coal. CRC Press, Boca Raton, 1, 1-210; 2,1-281.
    Vassilev S.V., Kitano K., Vassileva C.G., 1997. Relations between ash yield and chemical and mineral composition of coals. Fuel, 76(1), 3-8.
    
    Virtanen J.K., Voutilainen S., Rissanen T.H., Mursu J., Tuomainen T.P., Korhonen MJ., Valkonen V.P., Seppanen K., Laukkanen J.A., Salonen J.T., 2004. Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern Finland. Arteriosclerosis, Thrombosis and Vascular Biology, 25,228-233.
    
    Wang B.F., Li W., Li B.Q., Wang G., 2007. Study on the fate of As, Hg and Pb in Yima coal via sub-critical water extraction. Fuel, 86, 1822-1830.
    Wang D.Y., He L, Wei S.Q., Feng X.B., 2006. Estimation of mercury emission from different sources to atmosphere in Chongqing, China. Science of the Total Environment, 366, 722-728.
    Wang Q C, Shen W G, Ma Z W., 2000. Estimation of mercury emission from coal combustion in China. Environmental Science & Technology, 34, 2711-2713.
    Wang Y.Q., Ren D.Y., Zhao F.H., 1999. Comparative leaching experiments for trace elements in raw coal, laboratory ash, fly ash and bottom ash. International Journal of Coal Geology, 40,103-108.
    Wang Z.Y., Zhang X.S., Chen Z.S., Zhang Y, 2006. Mercury concentrations in size-fractionated airborne particles at urban and suburban sites in Beijing, China. Atomospheric Environment, 40,2194-2201.
    WHO, 2000. Reginal office for Europe, Air quality guidelines-Second edition. Denmark, Copenhagen, p. 1-15.
    Weiss-Penzias P., Jaffe D.A., McClintick A., Prestbo E.M., Landis M.S., 2003. Gaseous elemental mercury in marine boundary layer: evidence for rapid removal in anthropogenic pollution. Environmental Science & Technology, 37(17), 3755-3763.
    Wong C.S.C., Nurdan S.D.A.A,, Wong M.H., 2006. Sources and trends of environmental mercury emissions in Asia. Science of the Total Enveronment, 368, 649-662.
    Wu Z.H., Steel K.M., 2007. Demineralization of a UK bituminous coal using HF and ferric ions. Fuel, 86, 2194-2200.
    Xia K., Skyllberg U., Bleam W, et al., 1999. X-ray absorption spectroscopic evidence for the complexation of Hg( II) by reduced sulfur in soil humic substances. Environmental Science Technology, 33, 257-261.
    Xu X.C., Chen C.H., Qi H.Y., He R., You C.F., Xiang G.M., 2000. Development of coal combustion pollution control for SO_2 and NO_x in China. Fuel Processing Technology, 2000,62, 153-60.
    Yudovich Ya.E., Ketris M.P., Merts A.V., 1985. Trace elements in fossil coals. Nauka [Science Publ. House], Leningrad, 239 pp.
    Yudovich Ya. E. and Ketris M. P., 2005. Mercury in coal: a review Part 1. Geochemistry. International Journal of Coal Geology, 62,107-134.
    Zhang J.Y., Ren D.Y., Xu D.W., 1999. Distribution of arsenic and mercury in Triassic coals from Longtoushan Syncline, Southsestern Guizhou, P.R.Chins. In: Li B.Q., Liu Z.Y.(Eds.), Prospects for Coal Science in 21~(st) Century Science Technology Press, Shanxi, p. 153-156.
    Zhang J., Qui Y., Ren D., Liu J., 2003. Concentrations and occurrences of mercury and arsenic in coals from the Qianxi Fault Depression Area in Southwestern Guizhou, China 12th Int. Conf. Coal. Sci. (2-6 Nov. 2003, Cairns, Australia), pap. No. 7B2,9. pp.
    Zhang J.Y., Ren D.Y., Zhu, Y., Chou C-L., Zeng R.S., Zheng B.S., 2004. Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in southwestern Guizhou, China. International Journal of Coal Geology, 57 (1), 49-61.
    Zhang L., Wong M.H., 2007. Environmental mercury contamination in China: sources and impacts. Environment Internation, 33, 108-121.
    Zhang M.Q., Zhu Y.C., Deng R.W., 2002. Evaluation of mercury emissions to the atmosphere from coal combustion, China. Ambio, 31 (6), 482-484.
    Zhang X.M., Luo K.L., Sun X.Z., Tan J.A., Lu Y.L., 2006. Mercury in the topsoil and dust of Beijing City. Science of the Total Environment, 368, 713-722.
    Zheng B.S., Ding Z.H., Huang R.G., Zhu J.M., Yu X.Y., Wang A.M., Zhou D.X., Mao D.J., Su ILC, 1999. Issues of health and disease relation to coal use in southwestern China. International Journal of Coal Geology, 40 (2-3), 119-132.
    Zheng L.G., Liu G.J., Chou C-L., 2007a. The distribution, occurrence and environmental effects of mercury in Chinese coals. Science of the Total environment, 384,374-383.
    Zheng L.G., Liu G.J., Chou C-L., Qi C.C., Zhang Y, 2007b. Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China. Journal of Asian Earth Science, 31,167-176.
    Zheng L.G., Liu G.J., Qi C.C., Zhang Y., Wong M.H., 2008a. The use of sequential extraction to determine the distribution and modes of occurrence of mercury in Permian Huaibei Coal, Anhui, Province, China. International Journal of Coal Geology, 73,139-155.
    Zheng L.G., Liu G.J., Chou C-L., 2008b. Abundance and modes of occurrence of mercury in some low-sulfur coals from China. International Journal of Coal Geology, 73,19-26.
    Zheng L.G.,Liu G.J.,Wang L.,Chou C.-L.,2008c.Composition and quality of coals in the Huaibei Coalfield,Anhui,China.Journal of Geochemical Exploration 2007,doi:10.1016/j.gexplo.2007.11.002.Zhou Y.P.,Bruce F.B.,Ren Y.L.,2000.Trace element geochemistry of altered volcanic ash layers(tonsteins)in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Pvovince,China.International Journal.of Coal Geology,44(3-4),305-324.
    Zubovic P.,Oman C.L.,BraggL.J.,1980.Chemical analysis of 659 coal samples from the eastern United States.U.S.Geology Survey Open-file Rep,No 80-2003,p.1-513.
    陈静生,1990.环境地球化学.北京,海洋出版社,p.1-69.[Chen J.S.,1990.Environmental Geochemistry Beijing,Ocean Press House,1-69.]
    陈萍,1994.中国煤中硫的分布特征和脱硫研究.煤炭转化,17,1-9.[Chen,P.,1994.Characteristics and distribution of sulfur in Chinese coals and desulfurization.Coal Conversation 17,1-9.]
    陈儒庆,龙斌,曹长春,1996.广西煤的稀土元素分布模式.广西科学,3(2),32-36.[Chen R.Q.,Long B.,Cao C.C.,1996.Rare earth element distribution patterns of coals in Guangxi.Guangxi Science,3(2),32-36.]
    程介克,1986.痕量元素及痕量分析,痕量分析,1,90-110.[Cheng J.K.,1986.Trace element and its analyze.Analyze of Trace Element,1,90-110.]
    代世峰,2002.煤中伴生元素的地质地球化学习性与富集模式.北京,中国矿业大学,1-139.[Dai S.F.,2002.Geological-geochemical behaviors and enrichment models of associated elements in coal.Beijing,University of Mining and Technology,1-139.]
    代世峰,任德贻,马施民,2005a.黔西地方流行病-氟中毒起因新解.地质论评,51(1),42-45.[Dai S.E,Ren D.Y.,Ma S.M.,2005a.Endemic fluorosis in western Guizhou:new discovery.Geological Review,51(1),42-45.]
    代世峰,唐跃刚,常春祥,张义忠,李薇薇,2005b.开滦煤洗选过程中稀土元素的迁移和分配特征.燃料化学学报,33(4),417-420.[Dai S.F.,Tang Y.G.,Chang C.X.,Zhang Y.Z.,Li W.W.,2005b.Migration and distribution of rare earth elements during washing process of Kailuan coals.Journal of Fuel Chemistry and Technology,33(4),417-420.]
    代世峰,李薇薇,唐跃刚,张勇,冯鹏,2006.贵州地方病氟中毒的氟源、致病途径与预防措施.地质论评,52(5),50-655.[Dai S.F.,Li W.W.,Tang Y.G.,Zhang Y.,Feng P.,2006.The sources,pathway,and preventive measures for fluorosis in Guizhou Province.Geological Review,52(5),650-655.]
    窦廷焕,肖达先,董雅琴,张遂安,张庆玲,1998.神府东胜矿区煤中微量元素初步研究.煤田地质与勘探,1998,26(3),11-15.[Dou T.H.,Xiao D.X.,Dong Y.Q.,Zhang S.A.,Zhang Q.L.,1998.Preliminary study on the trace elements in coals of Songsheng mining district,Shenfu Coalfield.Coal Geology & Exploration,26(3),11-15.]
    冯宝华,1989..我国北方石炭二叠纪火山灰沉积水解改造而成的高岭岩.沉积学报,7(1),101-106.[Feng B.H.,1989.Kaolinite from deposited water of volcanic ash in Carboniferous-Permian ages from northern China. Acta Sedmentologica Snica,7(1),101-106.]
    冯新斌,洪业汤.,1996.中国燃煤过程中汞的排放.煤矿环境保护,1996,10(3),10-13.[Feng X B and Hong Y T.,1996.Evaluation of mercury emissions to atmosphere of China from coal combustion.Coal Mine Environmental Protection,1996,10(3),10-13.]
    冯新斌,洪业汤,倪建宇,周斌,王羽,1998.贵州煤中汞的分布、赋存状态及对环境的影响.煤田地质与勘探,4,12-15.[Feng X.B.,Hong Y.T.,Ni J.Y.,Zhou B.,Wang Y.,1998.Distribution and occurrence mode of mercury in some coals of Guizhou province and its enviromental impact.Coal Geology & Exploration,4,12-15.]
    高连芬,刘桂建,Chou Chen-Lin,郑刘根,郑旺,2005.中国煤中硫的地球化学研究.矿物岩石地球化学通报,24(1):79-87.[Gao,L.F.,Liu,G.J.,Chou,C-L.,Zheng,L.G.,Zheng,W.,2005.The study of sulfur geochemistry in Chinese coals.Bulletin of Mineralogy,Petrology and Geochemistry 24(1):79-87.]
    高连芬,2006a.煤中含硫有机化合物及煤的热解脱硫研究.合肥:中国科学技术大学,9 pp.[Gao L.F.,2006a.Study on sulfur-containing organic compounds and desulfurize from coal by pyrolysis experiment.Hefei:Univerdity of Science and Technology of China,9 pp.]
    高连芬,刘桂建,薛翦,张浩原,郑刘根,2006b.淮北煤田煤中有机硫的测定与分析.环境化学,25(4),498-502.[Gao L.F.,Liu G.J.,Xue J.,Zhang H.Y.,Zheng L.G.,2006b.Determination of sulfur-containing organic compounds in coals from the Huaibei Coalfield,Anhui Province,China.Environmental Chemistry,25(4),498-502.]
    郭英廷,侯慧敏,李娟,常江林,1994.煤中砷、氟、汞、铅、镉在灰化过程中的逸散规律.中国煤田地质,6(4),54-56.[Guo Y.T.,Hou H.M.,Li J.,Chang J.L.,1994.Emission of As,F,Hg,Pb,and Cd during coal cineration China Coal Geology,6(4),54-56.]
    郭英廷,王延斌,方爱民等,1996.贵州西部晚二叠世煤层中有害微量元素及其分布.《煤田地质研究文集》,北京:煤炭工业出版社,188-194.[Guo Y.T.,Wang Y.T.,Fang A.M.,1996.Distribution of hazardous trace elements in Late-Permian coals from west Guizhou Province.Beijing,Coal Industry Press,p.188-194.]
    贾炳文,张俊计,1996.冀北辽西晚古生代煤系地层中火山碎屑岩层的发现与研究.沉积学报,16(2),163-171.[Jia B.W.,Zhang J.J.,1996.Discovery and research of pyroclastic layers in coal measures,Late Carboniferous,North parts of Hebei and west parts of Liaoning.Acta Sedmentologica Snica,16(2),163-171.]
    荆治严,杨洪莉,杨杰.,1992.沈阳市汞污染水平与测试技术的研究.环境科学丛刊,5,1-4.[Jin Z.Y.,Yang H.L.,Yang J.,1992.Study on mercury contamination and analysis technology of Shenyang city.A Series of Books of Environmental Science,5,1-4.]
    梁汉东,张兆英,冯久舟,饶竹,周强,左丹英,2000.从高硫煤的抽提物和残渣中检测元素硫.燃料化学学报,28(6),492-495.[Liang H.D.,Zhang Z.Y.,Feng J.Z.,Rao Z.,Zhou Q.,Zuo D.Y.,2000.Determination of elemental sulfur in high-sulfur coal from Southwestern China.Journal of Fuel Chemistry and Technology,28(6),492-495.]
    梁汉东,2001.超高硫煤有机相中的元素硫与铁复合物的证据.燃料化学学报,29(2),108-110.[Liang H.D.,2001.Evidence for the complex of elemental sulfur plus iron in organic phase of super-high sulru coal Journal of Fuel Chemistry and Technology,29(2),108-110.]
    廖自基,1992.微量元素的环境化学及生物效应.北京,中国环境科学出版社,124-360.[Liao Z.J.,1992.Geochemistry and bioeffect of trace elements.Beijing,China Environmental Science Press,124-360.]
    林炳营,1990.环境地球化学简明原理.北京:冶金工业出版社,89-92.[Lin B.Y.,1990.Principle of environmental geochemistry.Beijing,Metallurgy Industry House,89-92.]
    刘大锰,葛宝勋,邓寅生,1993.平顶山矿区煤矸石特征及利用途径分析.矿物学报,13(4),374-381.[Liu D.M.,Ge B.X.,Den Y.S.,1993.Characteristic and utilization of waste rocks from Pingdingshan coal mine.Journal of Mineral,13(4),374-381.]
    刘桂建,王桂梁,张威,1999.煤中微量元素的环境化学研究.徐州,中国矿业大学出版社,p.1-119.[Liu GJ.,Wang G.L.,Zhang W.,1999.Study on the environmental geochemistry of minor and trace and elements -example for Yanzhou minging area.Xuzhou,China University of Mining and Technology Press,p.1-119.]
    刘桂建,杨萍月,彭子成,吴恩江,王桂梁,2001a.煤矸石中潜在有害微量元素淋溶析出研究.高校地质学报,7(4),451-457.[Liu G.J.,Yang P.Y.,Peng Z.C.,Wu E.J.,Wang G.L.,2001a.Study on leaching of potentially hazardous trace elements form coal-waste rocks.Geological Journal of China Universities,7(4),451-457.]
    刘桂建,彭子成,杨萍月,王桂梁,张威,2001b.煤中微量元素富集的主要因素分析.煤田地质与勘探,29(4),1-4.[Liu G.J.,Peng Z.C.,Yang P.Y.,Wang G.L.,Zhang W.,2001b.Main factors controlling concentration of trace element in coal.Coal Geology & Exploration,29(4),1-4.]
    刘桂建,彭子成,王桂梁,杨萍月,Chou Chen-Lin,2002.煤中微量元素研究进展.地球科学进展,17(1),53-62.[Liu G.J.,Peng Z.C.,Wang G.L.,Yang P.Y.,Chou C.-L.,2002.Study on trace elements in coal.Advance in Earth Sciences,17(1),53-62.]
    刘桂建,张浩原,郑刘根,高连芬,王芳,彭子成.,2004.济宁煤田煤中氯的分布、赋存状态及富集因素研究.地球科学,29(1):85-92.[Liu G.J.,Zhang H.Y.,Zheng L.G.,Gao L.F.,Wang F.,Peng Z.C.,2004.Study on distribution,occurrence and enrichment factors of chlorine from Jining Coalfield.Earth Science-Journal of China University of Geosciences,29(1):85-92.]
    刘惠永,徐旭常,姚强等,2000.重庆电厂炉前煤及飞灰中As元素在有机酸作用下的淋滤行为.重庆环境科学,22(4),29-32.[Liu H.Y.,Xu X.C.,Yao Q.,et al.,2000.Releasing of As in coal and fly ash of Chongqing power plant under organic acid conditions.Chongqin Environmental Science,22(4),29-32.]
    刘晶,陆晓华,郭欣等,2000.煤中痕量砷和汞的形态分析.华中理工大学学报,28(7),71-73.[Liu J.,Lu X.,Guo X.,et al.,2000.Speciation analysis of arsenic and mercury in coal.Journal of Huazhong University of Science & Technology,28(7),71-73.]
    刘绪五,孙淑珍,宋河育.,1996.平顶山煤中汞的分布与释放.煤炭加工与综合利用,3(2),52-54.[Liu X.W., Sun S.J.,Song H.Y.,1996.Distribution and emission of mercury from Pingdingshan Coalfield.Coal Process and Intergrational Utilization,3(2),52-54.]
    雒昆利,王五一,姚改焕,米娟层,张红民,杨林生,2000.渭北石炭二叠纪煤中汞的含量及分布特征.煤田地质与勘探,28(3),12-14.[Luo K.L,Wang W.Y,Yao G.H,Mi J.C.,Zhang H.M.,Yang L.S.,2000.Mercury content and its distribution in Permo-carboniferous coal in Weibei area,Shaanxi.Coal Geology & Exploration,28(3),12-14]
    马剑,吴式瑜,2004.提高认识,落实措施,加快煤炭洗选加工的发展.煤炭加工与综合利用,1,8-11.[Ma J.,Wu S.Y.,2004.Putting measures into effect consiciously to improve the development of coal processing.Coal Processing & Comprehensive utilization,1,8-11.]
    潘志刚,姚艳斌,黄文辉,2005.煤矸石的污染危害与中和利用途径分析.资源.产业,7(1),46-49.[Pan Z.G.,Yao Y.B.,Huang W.H.,2005.Contamination and utilization of waste rocks.Resource and Industry,7(1),46-49.]
    戚华文,胡瑞忠,苏文超等.,2002.临沧锗矿褐煤的稀土元素地球化学.地球化学,31(3),300-308.[Qi H.W.,Hu R.Z.,Su W.C.,2002.REE geochemistry of lignites in Lincang Germanium deposit,Yunnan Province.Geochimica,31(3),300-308.]
    秦勇,王文峰,宋党育,2002.太西煤中有害元素在洗选过程中的迁移行为与机理.燃料化学学报,30(2),147-150.[Qin Y.,Wang W.F.,Song D.Y.,2002.Migration behavior and mechanism of deleterious elements in Taixi coals during cleaning process.Journal of Fuel Chemistry and Technology,30(2),147-150.]
    任德贻,许德伟,张军营,赵峰华,郦桂芝,谢烈文,1999a.沈北煤田煤中伴生元素分布特征.中国矿业大学学报,28(1),5-8.[Ren D.Y.,Xu D.W.,Zhang J.Y.,Zhao F.H.,Li G.Z.,Xie L.W.,1999a.Distribution of associated elements in coals from Shenbei coalfield.Journal of China University of Ming & Technology,28(1),5-8.1
    任德贻,赵峰华,张军营等,1999b.煤中有害微量元素德成因类型初探.地学前缘,6(增刊),17-22.[Ren D.Y.,Zhao F.H.,Zhang J.Y.,et al.,1999b.A Preliminary study on genetic type of enrichment for hazardous minor and trace elements in coal.Earth Science Frontiers,6(suppl),17-22].
    任德贻,赵峰华,代世峰,张军营,雒昆利,2006.煤的微量元素地球化学.北京:科学出版社,p.268-279.[Ren D.Y.,Zhao F.H.,Dai S.F.,Zhang J.Y.,Luo K.L.,2006.Geochemistry of trace elements in coals.Beijing,the Science Press,p.268-279.]
    桑树勋,刘焕杰,贾玉如,1999.华北中部太原组火山时间层与煤岩层对比-火山事件层的沉积学研究与展布规律(Ⅰ).中国矿业大学学报,28(1),46-49.[Sang S.X.,Liu H.J.,Jia Y.R.,1999.Volcanic event strata and correlation of coals and rocks of Taiyuan Formation in central North China-Sedimentary study of volcanic event strata and their distribution(Ⅰ).Journal of China University of Ming & Technology,28(1),46-49.]
    邵靖邦,曾凡桂,王宇林等,1997.平庄煤田煤中稀土元素地球化学特征.煤田地质与勘探,25(4),13-15.[Shao J.B.,Zeng F.G.,Wang Y.L.,et al.,1997.Rare earth elements geochemical features of coal in Pingzhuang coal field.Coal Geology&Exploration,25(4),13-15.]
    宋党育,秦勇,张军营,王文峰,郑楚光,2005.煤及其燃烧产物中有害痕量元素德淋滤特性研究.环境科学学报,25(9),1195-1201.[Song D.Y.,Qin Y.,Zhang J.Y.,Wang W.F.,Zheng C.G.,2005.Leaching characteristics of hazardous trace elements in coal and ash.Acta Scientiae Cicumstantiae,25(9),1195-1201.]
    唐书桓,秦勇,姜尧发,2006.中国洁净煤地质研究.北京:地质出版社,98-103.[Tang S.H.,Qin Y.,Jiang Y.E.,2006.Geological study on clean coal of China.Beijing,Geology Press House,p.98-103.]
    唐修义,黄文辉,2004.中国煤中微量元素.北京:商务印书馆,8.[Tang,X.Y.and Huang,W.H.,2004.Trace elements in Chinese coals.Beijing:The Commercial Press,8.pp.]
    唐跃刚,常春祥,张义忠,2005.河北开滦矿区煤洗选过程中15种主要有害微量元素的迁移和分配特征.地球化学,34(4),366-372.[Tang Y.G.,Chang C.X.,Zhang Y.Z.,2005.Migration and distribution of fifteen toxic trace elements during the coal washing of the Kailuan Coalfield,Hebei Province.Geochimica,34(4),366-372.]
    王起超,康淑莲,陈春,王志刚,邹山同,1996.东北、内蒙古东部地区煤炭中微量元素含量及分布规律.环境化学,15(1),27-35.[Wang Q.C.,Kang S.L.,Chen C.,Wang Z.G,Zou S.T,1996.Study on the contents and distribution laws of trace elements in coal in northeast China and eastern Inner Mongolia.Environmental Chemistry,15(1),27-35.]
    王起超,马如龙.,1997.煤及其灰渣中的汞.中国环境科学,17(1),76-79.[Wang Q.C.,Ma R.L.,1997.The Hg in coal and its cinder.China Environmental Science,17(1),76-79.]
    王起超,沈文国,麻壮伟.,1999.中国燃煤汞排放量估算.中国环境科学,19(4),318-321.[Wang Q C,Shen W G,Ma Z W.,1999.The estimation of mercury emission from coal combustion in China.China Environmental Science,19(4),318-321.]
    王文峰,秦勇,宋党育,桑树勋,姜波,朱炎铭,傅雪海,2005.安太堡矿区11号煤层的元素地球化学及其洗选洁净潜势研究.中国科学D辑,地球科学,35(10),963-972.[Wang W.F.,Qin Y.,Song D.Y.,Sang S.x.,Jiang B.,Zhu Y.M.,Fu X.H.,2005.Study on elemental geochemisty and its potential cleaning in 11 coals from Antaibao Coalfield.Science in China Ser.D Earth Science,35(10),963-972.]
    王云,魏复盛,1995.土壤环境元素化学.北京,中国环境科学出版社,p.1-394.[Wang Y.,Wei F.S.,1995.Elemental geochemistry in soil environment.Beijing,Chinese Environmental Science Press House,p.1-394.]
    王运泉,任德贻,1996.煤及其燃烧产物中微量元素德淋滤实验研究.环境科学,17(1),16-19.[Wang Y.Q.,Ren D.Y.,1996.Study on leaching experiment of minor and trace elements in coals and combustion residues.Environmental Science,17(1),16-19.]
    王运泉,张汝国,王良平,任德贻,赵峰华,1997.煤中微量元素赋存状态的逐提试验研究.中国煤田地质,9(3),23-25.[Wang Y.Q.,Zhang R.G.,Wang L.P.,Ren D.Y.,Zhao F.H.,1997.Extract experiments of minor and trace element occurrence in coal.Coal Geology of China,9(3),23-25.
    王运泉,莫洁云,任德贻,1999.梅田矿区岩浆热变煤中微量元素分布特征.地球化学,28(3),289-296.[wang Y.Q.,Mo J.Y.,Ren D.Y.,1999.Distribution of minor and trace elements in magmatic hydrothermal metamorphic coal of Meitian Coal Mine,Hunan Province.Geochimica,28(3),289-296.]
    吴式瑜,王美丽,2006.煤炭在中国能源的地位.煤炭加工与综合利用,5,2-8.[Wu S.Y.,Wang M.L.,2006.Status of coal in China.Coal Processing & Comprehensive Utilization,5,2-8.]
    吴文金,刘文中,陈克清.2000.淮北煤田二叠系沉积环境分析.北京地质,3,21-25.[Wu W.J.,Liu W.Z.,Chen K.Q.,2000.Analysis of sedimentary environments of Permian strate in Huaibei coalfield.Beijing Goelogy,3,21-25.]
    徐文东,曾荣树,2003.燃煤电厂废弃物中的砷对周围环境的影响.矿物岩石,23(4),110-114.[Xu W.D.,Zeng R.S.,2003.The impacts of the environment upon arsenic in coal-burned wastes from a power plant.Journal of Mineral Petrology,23(4),110-114.]
    袁三畏,1999.中国煤质评论.北京:煤炭工业出版社,p.12-102.[Yuan S.W.,1999.The evaluation on coal quality in China.Beijing,Coal Industry House,12-102.]
    曾荣树,赵杰辉,庄新国,1998.贵州六盘水地区水城矿区晚二叠世煤的煤质特征及其控制因素.岩石学报,14(4),549-558.[Zeng R.S.,Zhao J.H.,Zhuang X.G.,1998.Qulity of late Permian coal and its controlling factors in Shuicheng Mining district of Liupanshui Area,Guizhou.Acta Petrologica Sinica,14(4),549-558.1
    张慧,周安期,郭敏泰,贾炳文,2000.沉积环境对降落火山灰蚀变作用的影响-以大青山晚古生代煤为例.沉积学报,18(4),515-520.[Zhang H.,Zhou A.Q.,Guo M.T.,Jia B.W.,2000.The effect of depositional setting on alteration of landing ash.18(4),515-520.]
    张军营,任德贻,许德伟,赵峰华,1999a.煤中汞及其对环境影响.环境科学进展,7(3),100-104.[zhang J.Y.,Ren D.Y.,Xu D.W.,Zhao F.H.,1999a.Mercury in coal and its effect on environment.Advances in Environmental Science,7(3),100-104.]
    张军营,任德贻,许德伟,刘建荣,董兵,张春燕,1999b.黔西南煤层主要伴生矿物中汞的分布特征.地质论评,45(5),539-542.[Zhang J.Y.,Ren D.Y.,Xu D.W.,Liu J.R.,Dong B.,Zhang C.Y.,1999b.The distribution of mercury in major associated minerals from coal beds in southwestern Guizhou.Geological Review,45(5),539-542.]
    张军营,1999c.煤中潜在毒害微量元素富集规律及其污染性抑制研究.北京:中国矿业大学,1999.[zhang J.Y.,199c.Study on controlling and enrichment of hazardous trace elements in coal.Beijing,China University of Ming & Technology,1999.
    张玉成,1993.四川南部晚二叠世含煤地层沉积环境及聚煤规律.贵阳:贵州科技出版社,1-204.[zhang Y.C.,1993.Regularity and sedimentary environment of Late Permian coal strata of south Sichuang ProvincE Guiyang,Guizhou Science Press House,1-204.]
    赵峰华,1997.煤中有害微量元素分布赋存机制及燃烧产物淋滤实验研究.北京:中国矿业大学北京研究生部,1997.[Zhao F.H.,1997.Study on leaching experiment and distribution and occurrence of hazardous trace elements in coal.Beijing.China University of Ming & Technology,1997.]
    赵峰华,任德贻,1998.燃煤产物中有害元素德淋滤实验研究现状.煤田地质与勘探,26(4),14-17.[zhao F.H.,Ren D.Y.,1998.Study on leaching experiment of hazardous trace elements in coal-fired residues:Review.Coal Geology & Exploration,26(4),14-17.]
    赵峰华,任德贻,尹金双,李亚男,王秀琴,1999.煤中As赋存状态的逐级化学提取研究.环境科学,20(2),79-81.[Zhao F.H.,Ren D.Y.,Yin J.S.,Li Y.N.,Wang X.Q.,1999.The study on the occurrence of arsenic in coal by sequential chemical extract.Chinese Journal of Environmental Science,20(2),79-81.]
    赵峰华,彭苏平,李大华,唐跃刚,许德伟,2003.低煤级煤中部分元素有机亲和性的定量研究.中国矿业大学学报,32(1),18-22.[Zhao F.H.,Peng S.P.,Li D.H.,Tang Y.G.,Xu D.W.,2003.Quantitative study oforganiC affinity of elements in low rank coals.Journal of China University of Ming & Technology,32(1),18-22.]
    赵峰华,彭苏平,唐跃刚,任德贻,2005.合山超搞有机硫煤中 Fe-Mn-Hg-Ni-Cr-V 的赋存状态及意义.中国矿业大学学报,34(1),33-36.[Zhao F.H.,Peng S.P.,Tang Y.G,Ren D.Y.,2005.Occurrence of Fe-Mn-Hg-Ni-Cr-V and its significance in high organic sulfur coal from Heshan Coalfield.Journal of China University of Ming & Technology,34(1),33-36.]
    赵志根,冯士安,唐修义,1998.微山湖地区石炭-二叠纪煤的稀土元素沉积地球化学.地质地球化学,26(4),64-67.[Zhao Z.G.,Feng S.A.,Tang X.Y.,1998.REE sedimentary geochemistry of Permocarboniferous coalsin Weishanhu area.Geology-Geochemistry,26(4),64-67.]
    赵志根,唐修义,李宝芳,2000a.淮北煤田煤的稀土元素地球化学.地球化学,29(6),578-583.[zhao Z.G.,Tang X.Y.,Li B.F.,2000a.Geochemistry of rare elements of coal in Huaibei Coalfield.Geochemica,29(6),578-583.]
    赵志根,唐修义,李宝芳.,2000b.淮南矿区煤的稀土元素地球化学.沉积学报,18(3),453-459.[zhao z.G.,Tang X.Y.,Li B.E,2000b.Geochemistry of Rare-Earth of Coal in Huainan Miniing Area.Acta sedimentologica Sinica,18(3),453-459.]
    郑刘根,刘桂建,薛翦,2005.两淮煤田煤矸石的环境影响及综合利用途径分析.安徽建筑工业学院学报,13,1-5.[Zheng L.G.,Liu G.J.,Xue J.,2005.Environmental effects and comprehensive utilization of waste rocks from Huaibei and Huainan coalfields.Journal of Anhui Institute of Architecture & Industry,13,1-5.]
    郑刘根,刘桂建,Chou Chen-lin,高连芬,彭子成,2006a.中国煤中砷的含量分布,赋存状态,富集及环境意义.地球学报,27(4),355-366.[Zheng L.G.,Liu G.J.,Chou C.-L.,Gao L.F,Peng Z.C.,2006a.Arsenic in Chinese coals:its abundance,distribution,modes of occurrence,enrichment processes,and environmental significance.Acta Geoscientica Sinica,27(4),355-366.]
    郑刘根,刘桂建,齐翠翠,陈怡伟,张莹,2007a.中国煤中汞的环境地球化学研究.中国科学技术大学学报,37(8),953-963.[Zheng L.G.,Liu G.J.,Qi C.C.,Chen Y.W.,Zhang Y.,2007a.Study on environmental geochemistry of mercury in Chinese coals.Journal of University of Science and Technology of China,37(8),953-963.]
    郑刘根,刘桂建,齐翠翠,张莹,陈怡伟,2007b.淮北煤田煤中汞的赋存状态.地球科学,32(2),279-284. [Zheng L.G.,Liu G.J.,Qi C.C.,Zhang Y.,Chen Y.W.,2007b.Study on modes of occurrence of mercury in coals from the Huaibei Coalfield.Earth Science-Journal of China University of Geosciences,32(2),279-284.]
    周义平,1974.试论锗在煤层中分布的两种类型.地质科学,2,182-188.[Zhou Y.P.,1974.Distribution of two types of Ge in coal.Geological Science,2,182-188.]
    周义平,1983.云南某些煤中砷的分布及控制因素.煤田地质与勘探,11(3),2-8.[Zhou Y.P.,1983.Controlling factors and distribution of As in some coals from Yunnan Province.Coal Geology & Exploration,11(3),2-8.]
    周义平,1994.老厂矿区煤中汞的成因类河赋存状态.煤田地质与勘探,22(3),17-22.[zhou,Y.P.,1994.Occurrence and enrichmental factor of mercury from Laochang Coal mine.Coal Geology & Exploration 22(3),17-22.].
    周义平,1999.中国西南龙潭早期碱性火山灰蚀变的TONSTEINS.煤田地质与勘探,27(4),5-9.[Zhou Y.P.,1999.The synsed mentray alkalinity-volcanic ash derived tonsteins of early Longtan age in south-western China.Coal Geology & Exploration,27(4),5-9.]
    庄新国,曾荣树,徐文东,1998.山西平朔安太堡露天矿9号煤层中的微量元素.地球科学-中国地质大学学报,23(6),583-587.[Zhuang X.G.,Zeng R.S.,Xu W.D.,1998.Trace elements in 9 coal from Antaibao open pit mine Pingshuo,Shanxi province.Earth Science-Journal of China University of Geoscience,23(6),583-587.]
    庄新国,杨生科,曾荣树等,徐文东,1999.中国几个主要煤产地煤中微量元素特征.地质科技情报,18(3),63-66.[Zhuang X.G.,Yang S.K.,Zeng R.S.,Xu W.D.,1999.Characteristics of trace elements in coals from several main coal districts in China.Geological Science and Technology Information,18(3),63-66.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700